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Introduction to light PBHs (1/2)

* PBHs arise from large overdensity containing of most of the mass in the Hubble horizon collapse in the
early universe

* BHs (or their decay product) formed after inflation are visible to us
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* Light PBHs (<10'%g) have been proposed as a DM production mechanism
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Introduction to light PBHs (2/2)

* PBHs can be light and have evaporated in the past if <10'°g
* Bounds exist already in this region, although the region I-10? are more difficult to probe
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Introduction to Higgs Metastability

* Higgs potential at large energies receives largest (loop renormalization) corrections from Yukawa
interactions with top quark

* We can use latest LHC values of SM constants to find metastability (@ 2 sigma)
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Introduction to FVDs

» Taking t = it in the path integral from FV to TV gives e®" for t-independent solutions and L.=H

* Notice 7 is periodic in the complex plane with period B=1/T. Two options for tunnelling appear

Tunnelling Fluctuations

h is 7-dependent &

B periodic h is T-independent
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 Coleman and de Lucia found decay rate of FV.Itis I |'2e! for decays with 1D symmetry
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Black Holes as Bubble Nucleators (1/3)

* Although Higgs vacuum has been found to be stable at low
energies (today), decay rate would increase for lower bubble
energies = inhomogeneities considered for this purpose

* Black holes evaporate and thus can contribute energy to the
bubble if high enough temperature
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Black Holes as Bubble Nucleators (2/3)

* Gregory & Moss have calculated the action of a Higgs decay in the presence of a black hole, using the
high temperature sphalerons, to be:
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using the Euclidean B = 8TTM, i.e. the black hole temperature.

* Critically the calculation is independent of ambient temperature and cosmological constants, thanks to
conical deficits: TT

Iy[T) = I, [Tx] H< 3 T
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* However the temperature appears in the decay rate:
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Black Holes as Bubble Nucleators (3/3)

* These results require thermalized plasma around
the black hole, however evaporating black holes
are not in equilibrium

* Note results were calculated for Hartle-Hawking
vacuum, but expected to be too short lived to
allow FVD. Alternatively, lower temperatures
would be suppressed due to determinant

* Strumia noted thermal loop corrections to the
Higgs potential must also be taken into account
which increase the action (i.e. suppress the decay
rate) at high temperature

1 V(h)

heopt T
//" top

-2 | = E/T ~ cst.

-
\ 4

htop

Louis Hamaide



Hot Spots Around PBHs (1/2)

* He, Kohri, Matsui & Yamada recently computed the energy deposition rate of Hawking radiation into
the surrounding plasma

* Due to the deposition rates much higher than evaporation rate for masses above M: ~ 0.8g ,
thermalized “hot spots” can form around black holes (hotter than plasma but colder than black hole)
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Hot Spots Around PBHs (2/2)

* Vacuum decay can now occur inside hotspots: energy is calculated using thermal fluctuations from
(relatively low) Ty, while temperature in front of action is Ty

* Hot spot create ideal conditions: if T 5 too low or too high FVD doesn’t occur since:

FFVD (T) ~ T oy exp (—Ib [TH])
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Bounds on PBHs

Decay ratio >> 1 - P, ~ 1 before end of
evaporation

We can exclude any PBH which evaporated
in our current Hubble horizon = very
stringent constraints

Conservative bounds T, .., assume
Euclidean formalism only valid at M;

Further work must solve exact temperature
profile, as action depends strongly on near
horizon region

Higgs stabilization at high energy could allow
light PBHs
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Conclusions

PBHs are of theoretical interest and not highly constrained below 10'%g

Light PBHs give a mechanism to create FVD of metastable Higgs but difficult to produce without PBHs

due to thermal fluctuations
Hot spots around PBHSs provide a path to destabilize the vacuum
Studying light PBHs means one needs to address metastability first

We can now apply this to metastability in DM and/or other BSM scenarios!
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Thank you!
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