

How Primordial Black Holes constrain leptogenesis

Università degli Studi di Napoli Federico II

Based on works

Phys.Rev.D 109 (2024) 10, 10 Phys.Rev.D 107 (2023) 12, 123537

in collaboration with

Stefano Morisi, Marco Chianese, Ninetta Saviano, Roberta Calabrese, Gennaro Miele

And work in preparation in collaboration with

Jessica Turner, Yuber Perez-Gonzalez, Lucien Heurtier

Primordial Black Holes constrain (resonant) leptogenesis

 $M_N < 10^3 \,\mathrm{GeV}$

Primordial Black Holes constrain (resonant) leptogenesis $M_N < 10^3 \, {\rm GeV}$

Leptogenesis - overview

$$\mathcal{L}_{\text{seesaw}} = \frac{1}{2} \bar{N}_i^c \hat{M}_{ij} N_j - Y_{\ell i} \bar{L}_\ell \tilde{\phi} N_i + \text{h.c.},$$

$$10^{-2}$$

Low scale

 10^{16}

Low scale

 10^{16}

Occurs at very high temperatures

Theoretically appealing

Far beyond the reach of direct detection

Low scale

 $M_N(\text{GeV})$

Occurs at low temperatures

Requires some degree

of (unexplained) degeneracy

Within the reach of experiments

Occurs at very high temperatures

Theoretically appealing

 10^{16}

Far beyond the reach of direct detection

Low scale

Leptogenesis is difficult to constrain at all scales

Occurs at low temperatures

Occurs at very high temperatures

Requires some degree of (unexplained) degeneracy

Within the reach of experiments

Theoretically appealing

 10^{16}

Far beyond the reach of direct detection

Low scale

 $M_N(\text{GeV})$

$$\begin{pmatrix} M_{N_1} & 0 & 0 \\ 0 & M_{N_2} & 0 \\ 0 & 0 & M_{N_3} \end{pmatrix}$$
$$M_{N_i} \approx M_{N_j}, M_{N_k}$$
$$M_{N_i} - M_{N_j} = \Delta M_{ij}$$

$$\begin{pmatrix} M_{N_1} & 0 & 0 \\ 0 & M_{N_2} & 0 \\ 0 & 0 & M_{N_3} \end{pmatrix}$$
$$M_{N_i} \approx M_{N_j}, M_{N_k}$$
$$M_{N_i} - M_{N_j} = \Delta M_{ij}$$

1

•

$$\begin{pmatrix} M_{N_1} & 0 & 0 \\ 0 & M_{N_2} & 0 \\ 0 & 0 & M_{N_3} \end{pmatrix}^{10^{-4}}$$
 Total active-sterile $_{10^{-5}}$ Standard $U^2 = U^2(x, y, m_h, M)$ $U^2 = U^2(x, y, m_h, M)$ $M_{N_i} \approx M_{N_j}, M_{N_k}$ $M_{N_i} - M_{N_j} = \Delta M_{ij}$ $U^{10^{-10}}$ U^{1

How do PBHs affect leptogenesis?

Production of RHNs

Cosmological evolution

Entropy injection

$\frac{\rm Production~of~RHNs}{\rm dt} \stackrel{\rm dM_{\rm PBH}}{\propto} M_{\rm PBH}^{-2}$

Boosted RHNs produced by PBH

$\frac{\rm Production \ of \ RHNs}{\rm dt} \ \frac{\rm dM_{\rm PBH}}{\rm dt} \propto M_{\rm PBH}^{-2}$

 $M_{N_i} \leq T_{\text{PBH}}$

Boosted RHNs decay seeding asymmetry

Boosted RHNs produced by PBH

 $\frac{\mathrm{dY}_{\mathrm{B}}}{\mathrm{dt}} = \epsilon \, \Gamma_{N_i}^{\mathrm{PBH}} \mathcal{N}_{N_i}$

Cosmological evolution

PBHs redshift like matter

Cosmological evolution

PBHs redshift like matter Large populations dominate the energy budget

Cosmological evolution

PBHs redshift like matter Large populations dominate the energy budget

Increased Hubble rate close to evaporation

Sphaleron freeze-out

Sphaleron freeze-out

Mutual exclusion limits

Mutual exclusion limits

Mutual exclusion limits

Hope on the Gravitational Wave horizon?

Bhaumik, Jain, Lewicki

PBH Hot-spots formation

Hawking radiation deposits energy at particular r

PBH Hot-spots formation

PBH Hot-spots formation

PBH Hot-spot profiles

PBH Hot-spot profiles

PBH Hot-spot profiles

 $\lambda(T(r)) = \frac{1}{\Gamma_X(T(r))} \longrightarrow \Gamma_X(r) = \Gamma_S(r) + \Gamma_D(r)$

 $\frac{\mathbf{L}}{\chi(T(r))} \longrightarrow \Gamma_X(r) = \Gamma_S(r) + \Gamma_D(r)$ $\lambda(T(r))$ Insufficient

$$\lambda(T(r)) = \frac{1}{\Gamma_X(T(r))} \longrightarrow \Gamma_X(r) = \Gamma_S(r) + \Gamma_D(r)$$

Insufficient

$$P(r) = e^{-\int_0^r \Gamma_X(r') \mathrm{d}r'}$$

$$\lambda(T(r)) = \frac{1}{\Gamma_X(T(r))} \longrightarrow \Gamma_X(r) = \Gamma_S(r) + \Gamma_D(r)$$
Insufficient

$$P(r) = e^{-\int_0^r \Gamma_X(r') \mathrm{d}r'}$$

$$P\left(\lambda\right) \equiv \frac{1}{2}$$

$$\mathcal{N}_{X}^{\text{escape}} = \int_{\alpha_{\text{form}}}^{\alpha_{\text{evap}}} \frac{\log(10)}{H} P(r_{\text{HS}}) \Gamma_{\text{PBH} \to X} d\alpha$$

Outlook

Where are PBHs incompatible with alternative mechanisms of baryogenesis (type-2 seesaw, GUT baryogenesis)

Does the standard treatment of entropy injection need modification in the presence of hot-spots?

How do hot-spots cool after PBH evaporation?

Is Hawking radiation ever able to equilibriate across the entire universe?

$$\mathcal{L}_{\text{seesaw}} = \frac{1}{2} \bar{N}_i^c \hat{M}_{ij} N_j - Y_{\ell i} \bar{L}_\ell \tilde{\phi} N_i + \text{h.c.},$$

SM is extended by at least two gauge singlet Right Handed Neutrinos (RHNs)

$$\mathcal{L}_{\text{seesaw}} = \frac{1}{2} \bar{N}_{i}^{c} \hat{M}_{ij} N_{j} - Y_{\ell i} \bar{L}_{\ell} \tilde{\phi} N_{i} + \text{h.c.},$$

SM is extended by at least two gauge singlet Right Handed Neutrinos (RHNs)

 $m_{\nu} \approx -v_{\rm EW}^2 Y M_N^{-1} Y^T$ Provides mechanism of

neutrino mass generation

$$\mathcal{L}_{\text{seesaw}} = \frac{1}{2} \bar{N}_{i}^{c} \hat{M}_{ij} N_{j} - Y_{\ell i} \bar{L}_{\ell} \tilde{\phi} N_{i} + \text{h.c.},$$

SM is extended by at least two gauge singlet Right Handed Neutrinos (RHNs)

 $m_{\nu} \approx -v_{\rm EW}^2 Y M_N^{-1} Y^T$ Provides mechanism of

neutrino mass generation

SM is extended by at least two gauge singlet Right Handed Neutrinos (RHNs)

 $\mathbf{v} = \frac{1}{2} \bar{N}_{i}^{c} \hat{M}_{ij} N_{j} - Y_{\ell i} \bar{L}_{\ell} \tilde{\phi} N_{i} + \text{h.c.},$ $\sum_{\text{EWSB}} \int_{m_{D} \ll M_{N}} m_{D} \ll M_{N}$ $m_{\nu} \approx -v_{\rm EW}^2 Y M_N^{-1} Y^T$

> Provides mechanism of neutrino mass generation

Fits neutrino mass splitting and mixing data

 $\mathcal{L}_{\text{seesaw}}$

$$\Delta m_{\rm sol}^2 = m_m^2 - m_l^2$$
$$\Delta m_{\rm atm}^2 = m_h^2 - m_l^2$$

 $\mathbf{v} = \frac{1}{2} \bar{N}_{i}^{c} \hat{M}_{ij} N_{j} - \underbrace{Y_{\ell i} \bar{L}_{\ell} \tilde{\phi} N_{i} + \text{h.c.}}_{\text{evsb}},$ SM is extended by at least two gauge singlet Right Handed Neutrinos (RHNs)

> Provides mechanism of neutrino mass generation

 $m_{\nu} \approx -v_{\rm EW}^2 Y M_N^{-1} Y^T$

Fits neutrino mass splitting and mixing data

 $\mathcal{L}_{\text{seesaw}}$

$$\Delta m^2_{\rm sol} = m^2_m - m^2_l \qquad \qquad {\rm free \ parameter} \\ \Delta m^2_{\rm atm} = m^2_h - m^2_l \qquad \qquad {\rm free \ parameter} \\ \qquad {\rm free \ parameter} \\$$

$$\mathcal{L}_{ ext{seesaw}} = rac{1}{2} ar{N_i}^c \hat{M}_{ij} N_j - egin{matrix} Y_{\ell i} ar{L}_\ell ilde{\phi} N_i + ext{h.c.}, \ & \swarrow \ Y = rac{1}{v_0} U_{ ext{PMNS}} \cdot \sqrt{\hat{m}_
u} \cdot R^T \cdot \sqrt{\hat{M}}, \end{cases}$$

$$\mathcal{L}_{ ext{seesaw}} = rac{1}{2} ar{N_i} \hat{N_i} N_j - egin{array}{c} Y_{\ell i} ar{L}_\ell ilde{\phi} N_i + ext{h.c.}, \ Y = rac{1}{v_0} U_{ ext{PMNS}} \cdot \sqrt{\hat{m}_
u} \cdot R^T \cdot \sqrt{\hat{M}}, \ N_R = egin{pmatrix} 0 & \cos(z_{23}) & \sin(z_{23}) \ 0 & -\sin(z_{23}) & \cos(z_{23}) \ 1 & 0 & 0 \end{pmatrix}$$

$$\mathcal{L}_{ ext{seesaw}} = rac{1}{2} ar{N_i} \hat{N_{ij}} N_j - Y_{\ell i} ar{L}_\ell ilde{\phi} N_i + ext{h.c.}, \ Y = rac{1}{v_0} U_{ ext{PMNS}} \cdot \sqrt{\hat{m}_
u} \cdot R^T \cdot \sqrt{\hat{M}}, \ X = egin{pmatrix} 0 & \cos(z_{23}) & \sin(z_{23}) \ 0 & -\sin(z_{23}) & \cos(z_{23}) \ 1 & 0 \ \end{pmatrix} \ z_{23} = x + i y$$

$$\mathcal{L}_{\text{seesaw}} = \frac{1}{2} \bar{N}_{i}^{c} \hat{M}_{ij} N_{j} - \underbrace{Y_{\ell i} \bar{L}_{\ell} \tilde{\phi} N_{i} + \text{h.c.}}_{Y = \frac{1}{v_{0}} U_{\text{PMNS}} \cdot \sqrt{\hat{m}_{\nu}} \cdot R^{T} \cdot \sqrt{\hat{M}},$$

$$\stackrel{\ell}{\underset{\ell}{\overset{\ell}{\overset{\ell}{\overset{N_{2,3}}{\overset{\ell}{\overset{N_{2,3}}{\overset{\ell}{\overset{\Gamma}{\overset{N_{2,3}}{\overset{\Gamma}{\overset{N_{2,3}}{\overset{\ell}{\overset{\Gamma}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{\Gamma}{\overset{N_{2,3}}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}{\overset{N_{2,3}}}{\overset{N_{2,3}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}{\overset{N_{2,3}}}{\overset{N_{2,3}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}{\overset{N_{2,3}}}}{\overset{$$

Leptogenesis – High Scale Models

$$\begin{pmatrix} M_{N_1} & 0 & 0 \\ 0 & M_{N_2} & 0 \\ 0 & 0 & M_{N_3} \end{pmatrix}$$
$$M_{N_1} \ll M_{N_2} \ll M_{N_3}$$

Leptogenesis – High Scale Models

$$\begin{pmatrix} M_{N_1} & 0 & 0 \\ 0 & M_{N_2} & 0 \\ 0 & 0 & M_{N_3} \end{pmatrix}$$
$$M_{N_1} \ll M_{N_2} \ll M_{N_3}$$

 $M_{N_1} > 10^9 \text{GeV}$

Davidson-Ibarra limit

Leptogenesis – High Scale Models

$$\begin{pmatrix} M_{N_1} & 0 & 0 \\ 0 & M_{N_2} & 0 \\ 0 & 0 & M_{N_3} \end{pmatrix}$$
$$M_{N_1} \ll M_{N_2} \ll M_{N_3}$$

 $M_{N_1} > 10^9 \text{GeV}$

Davidson-Ibarra limit

Far out of the reach of direct detection

Dynamics at very high scales

Fewer relevant degrees of freedom

Mass hierarchy can be arbitrary

Free parameters

Common RHN mass M_{ij} Mass splitting -ow scale ratio \mathcal{X} Real and imaginary parts of mixing Y angle

 m_h Mass of heaviest active neutrino

Free parameters

-ow scale

 M_{N_1} scale \mathcal{X} High Y Пh

RHN mass

Real and imaginary parts of mixing angle

Mass of heaviest active neutrino

Mutual exclusion limits – High scale

Mutual exclusion limits – High scale

High scale

Mutual exclusion limits – High scale

High scale

