Characterising spacetime during cosmological collapse

Robyn L. Munoz Based on 2211.08133 and 2302.09033 With Marco Bruni

Robyn L. Munoz - University of Sussex, UK - NEHOP 19th June 2024

r.l.munoz@sussex.ac.uk

Top-Hat Spherical Collapse Model

Objective:

Explore the top-hat spherical collapse model in full GR, even beyond spherical symmetry, and see how the spacetime responds.

Background:

- ✤ Flat FLRW metric,
- * Λ CDM with pressureless perfect fluid,
- Matter-dominated era.

Inhomogeneity:

- Synchronous and comoving gauge
- Scalar perturbations,

 ${}^{(3)}R^{(1)} = \frac{1}{a^2} \delta^{ij} \partial_i \partial_j \mathscr{R}_c$

\$\mathcal{R}_c\$ and \$\zeta^{(1)}\$ are used to quantify perturbations created during inflation
\$\mathcal{R}_c\$ is gauge invariant at first order
\$\mathcal{R}_c\$ = 0

M.Bruni, J.C.Hidalgo, N.Meures and D.Wands (2014) 1307.1478

$$\mathcal{R}_{c} = A_{pert} \left[\sin\left(\frac{2\pi x}{\lambda_{pert}}\right) + \sin\left(\frac{2\pi y}{\lambda_{pert}}\right) + \sin\left(\frac{2\pi z}{\lambda_{pert}}\right) \right]$$

$$\mathscr{R}_{c} = A_{pert} \left[\sin\left(\frac{2\pi x}{\lambda_{pert}}\right) + \sin\left(\frac{2\pi y}{\lambda_{pert}}\right) + \sin\left(\frac{2\pi z}{\lambda_{pert}}\right) \right]$$

Simulation evolution

Simulation evolution

Simulation vs Top-Hat model

$\delta_{OD, IN} = 0.03$ $L = 4/(a_{IN}H_{IN})$		Top Hat	Here 2302.09033	E.Bentivegna & M.Bruni (2016) 1511.05124	W.East et al (2018) 1711.06681
Turn Around $\Theta = 0$	$\delta^{(1)}_{OD}$	1.062 41	1.057 34 ± 2e-6	1.8 *Correction	
	δ_{OD}	4.551 65	4.551 64 ± 1e-5		
Collapse / Crash	$\delta^{(1)}_{OD}$	1.686 47	1.678 ± 3e-3	2.88	1.686

At the peak of the over-density the top-hat spherical collapse model is an excellent approximation.

Simulation vs Top-Hat model

$\delta_{OD, IN} = 0.03$ $L = 4/(a_{IN}H_{IN})$		Top Hat	Here 2302.09033	E.Bentivegna & M.Bruni (2016) 1511.05124	W.East et al (2018) 1711.06681
Turn Around $\Theta = 0$	$\delta^{(1)}_{OD}$	1.062 41	1.057 34 ± 2e-6	1.8 *Correction	
	δ_{OD}	4.551 65	4.551 64 ± 1e-5		
Collapse / Crash	$\delta^{(1)}_{OD}$	1.686 47	1.678 ± 3e-3	2.88	1.686

At the peak of the over-density the top-hat spherical collapse model is an excellent approximation.

This is because we find that the shear is locally negligible. Then, neglecting the shear in the Raychaudhuri equation gives the spherical collapse model.

PRELIMINARY

Simulation vs Top-Hat model

Gravito-electromagnetism

Gravito-electromagnetism

Gauge invariant at 1st order

Following from the Stewart-Walker lemma

Physically meaningful

- + At first order
- + In terms of the *fluid*
- + With the complex *Weyl scalars* $\Psi_{0...4}$

Gravitational pull

 $E^{\alpha\beta} = \Re(\Psi_{2})e_{C}^{\alpha\beta} + \frac{1}{2}\Re(\Psi_{0} + \Psi_{4})e_{T+}^{\alpha\beta} + \frac{1}{2}\Im(\Psi_{0} - \Psi_{4})e_{T\times}^{\alpha\beta} - 2\Re(\Psi_{1} - \Psi_{3})e_{1}^{(\alpha}e_{2}^{\beta)} - 2\Im(\Psi_{1} + \Psi_{3})e_{1}^{(\alpha}e_{3}^{\beta)}$ $B^{\alpha\beta} = -\Im(\Psi_{2})e_{C}^{\alpha\beta} - \frac{1}{2}\Im(\Psi_{0} + \Psi_{4})e_{T+}^{\alpha\beta} + \frac{1}{2}\Re(\Psi_{0} - \Psi_{4})e_{T\times}^{\alpha\beta} + 2\Im(\Psi_{1} - \Psi_{3})e_{1}^{(\alpha}e_{2}^{\beta)} - 2\Re(\Psi_{1} + \Psi_{3})e_{1}^{(\alpha}e_{3}^{\beta)}$ Frame Dragging
Gravitational Waves

Gravito-electromagnetism with EBWeyl

At the peak of the over-density, the <u>spherical collapse</u> <u>model is an excellent approximation</u>.

Non-negligeable gravito-magnetic effects arise surrounding "gravitational currents".

r.l.munoz@sussex.ac.uk

Backup slides

Constrainst

Gravito-electromagnetism with EBWeyl

What EBWeyl does:

Instead of computing the Weyl tensor in full from the metric, you can use the extrinsic curvature.

$$\begin{split} E_{ij}^{\{n\}} &= {}^{(3)}R_{ij} + K_{ij}K - K_i^k K_{kj} - \frac{1}{3}\gamma_{ij} \left({}^{(3)}R + K^2 - K^{kl} K_{kl} \right) - \frac{\kappa}{2} \left(S_{ij} - \frac{1}{3}\gamma_{ij} S \right) \\ B_{ij}^{\{n\}} &= \epsilon^{kl}{}_j \left(D_k K_{li} + \frac{1}{2}\gamma_{ik} \left(D_l K - D_m K_l^m \right) \right) \end{split}$$

However, E and B have been projected along n^{μ} and not u^{μ} .

$$C_{\alpha\beta\mu\nu} = 2\left(l_{\alpha[\mu}E_{\nu]\beta}^{\{n\}} - l_{\beta[\mu}E_{\nu]\alpha}^{\{n\}} - n_{[\mu}B_{\nu]\lambda}^{\{n\}}\epsilon_{\alpha\beta}^{\lambda} - n_{[\alpha}B_{\beta]\lambda}^{\{n\}}\epsilon_{\mu\nu}^{\lambda}\right) \text{ with } l_{\mu\nu} = g_{\mu\nu} + 2n_{\mu}n_{\nu}$$

Classification of Petrov type with EBWeyl

Robyn L. Munoz - University of Sussex, UK - NEHOP 19th June 2024

robynlm

Classification of Petrov type with EBWeyl

Transition from

 $\mathbf{O} \rightarrow \mathbf{N} \rightarrow \mathbf{D} \rightarrow \mathbf{II} \rightarrow \mathbf{I}.$

- Strong presence of type N, that of gravitational wave spacetimes.
- In the very centre of the overdensity, it is type O. This is consistent with the spherical collapse model.
- Mostly D along the filaments.
- O remains in the under-density as it is conformally flat.

