Clustering of primordial black holes from quantum diffusion during inflation

Chiara Animali
Tuesday 18 June 2024

work with Vincent Vennin arXiv:

Primordial black holes: clustering

Primordial black holes: clustering

If primordial black holes (PBHs) form in the early universe, they may have important astrophysical and cosmological roles (fraction or totality of dark matter, seeds for supermassive black holes, progenitors for black-hole merger events...)

Primordial black holes: clustering

If primordial black holes (PBHs) form in the early universe, they may have important astrophysical and cosmological roles (fraction or totality of dark matter, seeds for supermassive black holes, progenitors for black-hole merger events...)

Distribution of PBHs in space has an important role
If PBH s are organised in clusters:

clustered vs non-clustered spatial distribution

Primordial black holes: clustering

If primordial black holes (PBHs) form in the early universe, they may have important astrophysical and cosmological roles (fraction or totality of dark matter, seeds for supermassive black holes, progenitors for black-hole merger events...)

Distribution of PBHs in space has an important role
If PBH are organised in clusters:

PBH merger rates

[^0]
clustered vs non-clustered spatial distribution

Primordial black holes: clustering

If primordial black holes (PBHs) form in the early universe, they may have important astrophysical and cosmological roles (fraction or totality of dark matter, seeds for supermassive black holes, progenitors for black-hole merger events...)

Distribution of PBHs in space has an important role
If PBH s are organised in clusters:
\rightarrow PBH merger rates
M. Raidal, V. Vaskonen, H. Veermäe [2017]
G. Ballesteros, P. Serpico, M. Taoso (2018)
S. Young, C. Byrnes [2019]

clustered vs non-clustered spatial distribution
\rightarrow interpretation of observational constraints (microlensing)

J. Calcino, J. Garcia-Bellido, T.M. Davis [2018]
M. Petač, J. Lavalle, K. Jedamzik [2022]
M. Gorton, A. M. Green [2022]
V. De Luca, G. Franciolini, A. Riotto, H. Veermäe [2022]

Primordial black holes: clustering

If primordial black holes (PBHs) form in the early universe, they may have important astrophysical and cosmological roles (fraction or totality of dark matter, seeds for supermassive black holes, progenitors for black-hole merger events...)

Distribution of PBHs in space has an important role
If PBH s are organised in clusters:
\rightarrow PBH merger rates
M. Raidal, V. Vaskonen, H. Veermäe [2017]
G. Ballesteros, P. Serpico, M. Taoso (2018)
S. Young, C. Byrnes [2019]

clustered vs non-clustered spatial distribution
\rightarrow interpretation of observational constraints (microlensing)
J. Calcino, J. Garcia-Bellido, T.M. Davis [2018]
M. Petač, J. Lavalle, K. Jedamzik [2022]
M. Gorton, A. M. Green [2022]
V. De Luca, G. Franciolini, A. Riotto, H. Veermäe [2022]
structure formation
B. Carr, J. Silk [2018]
V. I. Dokuchaev, Y. N. Eroshenko, S.G. Rubin [2018]

Primordial black holes: clustering

If primordial black holes (PBHs) form in the early universe, they may have important astrophysical and cosmological roles (fraction or totality of dark matter, seeds for supermassive black holes, progenitors for black-hole merger events...)

Distribution of PBHs in space has an important role
If PBH are organised in clusters:
$\rightarrow \mathrm{PBH}$ merger rates
M. Raidal, V. Vaskonen, H. Veermäe [2017]
G. Ballesteros, P. Serpico, M. Taoso (2018)
S. Young, C. Byrnes [2019]

clustered vs non-clustered spatial distribution
\rightarrow interpretation of observational constraints (microlensing)
J. Calcino, J. Garcia-Bellido, T.M. Davis [2018]
M. Petač, J. Lavalle, K. Jedamzik [2022]
M. Gorton, A. M. Green [2022]
V. De Luca, G. Franciolini, A. Riotto, H. Veermäe [2022]
structure formation
B. Carr, J. Silk [2018]
V. I. Dokuchaev, Y. N. Eroshenko, S.G. Rubin [2018]
\longrightarrow Central question: characterise the initial clustering which then determines the clustering evolution throughout cosmic history

Primordial black holes: clustering

Primordial black holes: clustering

Clustering: measures how much the spatial locations of PBHs are correlated

Primordial black holes: clustering

Clustering: measures how much the spatial locations of PBH s are correlated

Joint probability: $\quad p\left(M_{1}, \vec{x}_{1} ; M_{2}, \vec{x}_{2}\right)$

Primordial black holes: clustering

Clustering: measures how much the spatial locations of PBH s are correlated

Joint probability: $\quad p\left(M_{1}, \vec{x}_{1} ; M_{2}, \vec{x}_{2}\right)$

If the positions are statistically independent:

$$
p\left(M_{1}, \vec{x}_{1} ; M_{1}, \vec{x}_{2}\right)=p_{M_{1}}\left(\vec{x}_{1}\right) p_{M_{2}}\left(\vec{x}_{2}\right) \quad \text { Poisson distribution }
$$

Primordial black holes: clustering

Clustering: measures how much the spatial locations of PBH s are correlated

Joint probability: $\quad p\left(M_{1}, \vec{x}_{1} ; M_{2}, \vec{x}_{2}\right)$

If the positions are statistically independent:

$$
p\left(M_{1}, \vec{x}_{1} ; M_{1}, \vec{x}_{2}\right)=p_{M_{1}}\left(\vec{x}_{1}\right) p_{M_{2}}\left(\vec{x}_{2}\right) \quad \text { Poisson distribution }
$$

Deviations from Poisson: $\quad \xi_{M_{1}, M_{2}}(r)=\frac{p\left(M_{1}, \vec{x} ; M_{2}, \vec{x}+\vec{r}\right)}{p_{M_{1}} p_{M_{2}}}-1 \quad$ reduced correlation \quad N. Kaiser [1984]
$\xi>0$: positive clustering ; $\quad \xi<0$: negative clustering

Primordial black holes: clustering \& non Gaussianities

Primordial black holes: clustering \& non Gaussianities

PBHs may originate from peaks of the density perturbations generated in the early universe

Primordial black holes: clustering \& non Gaussianities

PBHs may originate from peaks of the density perturbations generated in the early universe

If the field has Gaussian statistics: PBHs are born unclustered
(Press-Schechter, excursion set calculations)

```
Y. Ali-Haïmoud [2018]
V. Desjacques, A. Riotto [2018]
A. Moradinezhad Dizgah, G. Franciolini, A. Riotto [2019]
P. Auclair, B. Blachier [2024]
```


Primordial black holes: clustering \& non Gaussianities

PBHs may originate from peaks of the density perturbations generated in the early universe

If the field has Gaussian statistics: PBHs are born unclustered
(Press-Schechter, excursion set calculations)

```
Y. Ali-Haïmoud [2018]
V. Desjacques, A. Riotto [2018]
A. Moradinezhad Dizgah, G. Franciolini, A. Riotto [2019]
P. Auclair, B. Blachier [2024]
```

Non Gaussianities induce correlation between scales, therefore they could induce correlation in the horizon-size regions over which PBHs form (perturbative parametrisations, $f_{\mathrm{NL}}, g_{\mathrm{NL}} \ldots$)
S. Young and C. T. Byrnes [2020]
G. Franciolini, A. Kehagias, S. Matarrese and A. Riotto [2018]
V. De Luca, G. Franciolini and A. Riotto [2021]
T. Suyama and S. Yokoyama [2019]

Primordial black holes: clustering \& non Gaussianities

PBHs may originate from peaks of the density perturbations generated in the early universe

If the field has Gaussian statistics: PBHs are born unclustered
(Press-Schechter, excursion set calculations)

```
Y. Ali-Haïmoud [2018]
V. Desjacques, A. Riotto [2018]
A. Moradinezhad Dizgah, G. Franciolini, A. Riotto [2019]
P. Auclair, B. Blachier [2024]
```

Non Gaussianities induce correlation between scales, therefore they could induce correlation in the horizon-size regions over which PBHs form (perturbative parametrisations, $f_{\mathrm{NL}}, g_{\mathrm{NL}} \ldots$)
S. Young and C. T. Byrnes [2020]
G. Franciolini, A. Kehagias, S. Matarrese and A. Riotto [2018]
V. De Luca, G. Franciolini and A. Riotto [2021]
T. Suyama and S. Yokoyama [2019]

PBHs form in the heavy tails of distribution functions: non Gaussianities are not under perturbative control
C. Pattison, V. Vennin, H. Assadullahi and D. Wands [2017]

Primordial black holes: clustering \& non Gaussianities

PBHs may originate from peaks of the density perturbations generated in the early universe

If the field has Gaussian statistics: PBH s are born unclustered (Press-Schechter, excursion set calculations)

```
Y. Ali-Haïmoud [2018]
V. Desjacques, A. Riotto [2018]
A. Moradinezhad Dizgah, G. Franciolini, A. Riotto [2019]
P. Auclair, B. Blachier [2024]
```

Non Gaussianities induce correlation between scales, therefore they could induce correlation in the horizon-size regions over which PBHs form (perturbative parametrisations, $f_{\mathrm{NL}}, g_{\mathrm{NL}} \ldots$)
S. Young and C. T. Byrnes [2020]
G. Franciolini, A. Kehagias, S. Matarrese and A. Riotto [2018]
V. De Luca, G. Franciolini and A. Riotto [2021]
T. Suyama and S. Yokoyama [2019]

PBHs form in the heavy tails of distribution functions: non Gaussianities are not under perturbative control
C. Pattison, V. Vennin, H. Assadullahi and D. Wands [2017]
\longrightarrow Goal: clustering in the stochastic $-\delta N$ formalism

Stochastic inflation

A. Starobinsky [1986]

Stochastic inflation

A. Starobinsky [1986]

Effective theory for the long-wavelength part of quantum fields during inflation, which are coarse grained above the Hubble radius

$$
\begin{aligned}
& \Phi=\left(\phi_{1}, \pi_{1}, \ldots \phi_{n}, \pi_{n}\right) \quad \pi_{i}=\mathrm{d} \phi_{i} / \mathrm{d} N \\
& \Phi(x)_{\mathrm{cg}}(N, \vec{x})=\int \frac{d \vec{k}}{(2 \pi)^{3 / 2}} \widetilde{W}\left(\frac{k}{\sigma a H}\right)\left[\Phi_{k}(N) e^{-i \vec{k} \cdot \vec{x}} \hat{a}_{\vec{k}}+\text { h.c. }\right]
\end{aligned}
$$

Stochastic inflation

A. Starobinsky [1986]

Effective theory for the long-wavelength part of quantum fields during inflation, which are coarse grained above the Hubble radius

$$
\begin{aligned}
& \Phi=\left(\phi_{1}, \pi_{1}, \ldots \phi_{n}, \pi_{n}\right) \quad \pi_{i}=\mathrm{d} \phi_{i} / \mathrm{d} N \\
& \Phi(x)_{\mathrm{cg}}(N, \vec{x})=\int \frac{d \vec{k}}{(2 \pi)^{3 / 2}} \widetilde{W}\left(\frac{k}{\sigma a H}\right)\left[\Phi_{k}(N) e^{-i \vec{k} \cdot \vec{x}} \hat{a}_{\vec{k}}+\text { h.c. }\right]
\end{aligned}
$$

Small-wavelength fluctuations act as a random noise on the dynamics of $\Phi_{\text {cg }}$ as they cross the $\sigma-$ Hubble radius and join the coarse-grained sector

Stochastic inflation

A. Starobinsky [1986]

Effective theory for the long-wavelength part of quantum fields during inflation, which are coarse grained above the Hubble radius

$$
\begin{aligned}
& \Phi=\left(\phi_{1}, \pi_{1}, \ldots \phi_{n}, \pi_{n}\right) \quad \pi_{i}=\mathrm{d} \phi_{i} / \mathrm{d} N \\
& \Phi(x)_{\mathrm{cg}}(N, \vec{x})=\int \frac{d \vec{k}}{(2 \pi)^{3 / 2}} \widetilde{W}\left(\frac{k}{\sigma a H}\right)\left[\Phi_{k}(N) e^{-i \vec{k} \cdot \vec{x}} \hat{a}_{\vec{k}}+\text { h.c. }\right]
\end{aligned}
$$

Small-wavelength fluctuations act as a random noise on the dynamics of Φ_{cg} as they cross the $\sigma-$ Hubble radius and join the coarse-grained sector
Stochastic classical theory for $\Phi_{\mathrm{cg}}: \frac{\mathrm{d} \Phi_{\mathrm{cg}}}{\mathrm{d} N}=F_{\mathrm{cl}}\left(\Phi_{\mathrm{cg}}\right)+\xi$ $F_{\mathrm{cl}}\left(\Phi_{\mathrm{cg}}\right)$: classical eom
ξ : white Gaussian noise
$\left\langle\xi_{i}\left(\vec{x}, N_{i}\right) \xi_{j}\left(\vec{x}, N_{j}\right)\right\rangle=\frac{\mathrm{d} \ln (\sigma a H)}{\mathrm{d} N} \mathscr{P}_{\Phi_{i} \Phi_{j}}\left[\sigma a H\left(N_{i}\right), N_{i}\right] \delta\left(N_{i}-N_{j}\right)$

Stochastic- δN formalism

Stochastic- δN formalism

Duration of inflation becomes a stochastic variable: \mathcal{N}
First-passage time problem:
$\frac{\mathrm{d} P_{\mathrm{FPT}, \Phi}(\mathcal{N})}{\mathrm{d} \mathscr{N}}=\mathscr{L}_{\mathrm{FP}}^{\dagger}(\Phi) \cdot P_{\mathrm{FPT}, \Phi}(\mathcal{N}) \quad P_{\mathrm{FPT}, \Phi=\Phi_{\text {end }}}(\mathcal{N})=\delta(\mathcal{N})$

$P_{\mathrm{FPT}, \Phi}(\mathcal{N}) \propto e^{-\Lambda_{0} \mathcal{N}} \quad$ for large values of \mathcal{N}

Stochastic- δN formalism

Duration of inflation becomes a stochastic variable: \mathcal{N}
First-passage time problem:

$$
\frac{\mathrm{d} P_{\mathrm{FPT}, \Phi}(\mathcal{N})}{\mathrm{d} \mathcal{N}}=\mathscr{L}_{\mathrm{FP}}^{\dagger}(\Phi) \cdot P_{\mathrm{FPT}, \Phi}(\mathcal{N}) \quad P_{\mathrm{FPT}, \Phi=\Phi_{\mathrm{end}}}(\mathcal{N})=\delta(\mathcal{N})
$$

$P_{\mathrm{FPT}, \Phi}(\mathcal{N}) \propto e^{-\Lambda_{0} \mathcal{N}} \quad$ for large values of \mathcal{N}

$$
\zeta(t, \mathrm{x})=N(t, \vec{x})-\bar{N}(t) \equiv \delta N
$$

δN formalism

Lifshitz, Khalatnikov [1960]
Starobinsky [1983]
Wands, Malik, Lyth, Liddle [2000]

Stochastic- δN formalism

Duration of inflation becomes a stochastic variable: \mathcal{N}
First-passage time problem:

$$
\frac{\mathrm{d} P_{\mathrm{FPT}, \Phi}(\mathcal{N})}{\mathrm{d} \mathcal{N}}=\mathscr{L}_{\mathrm{FP}}^{\dagger}(\Phi) \cdot P_{\mathrm{FPT}, \Phi}(\mathcal{N}) \quad P_{\mathrm{FPT}, \Phi=\Phi_{\mathrm{end}}}(\mathcal{N})=\delta(\mathcal{N})
$$

$P_{\mathrm{FPT}, \Phi}(\mathcal{N}) \propto e^{-\Lambda_{0} \mathcal{N}} \quad$ for large values of \mathscr{N}

$$
\zeta(t, \mathrm{x})=N(t, \vec{x})-\bar{N}(t) \equiv \delta N
$$

δN formalism

Lifshitz, Khalatnikov [1960]
Starobinsky [1983]
Wands, Malik, Lyth, Liddle [2000]

Statistics of the duration of inflation (first passage time problem) gives the statistics of the coarse-grained curvature perturbation in a non-perturbative way:

$$
\zeta_{c g}(\mathrm{x})=\mathcal{N}-\bar{N}
$$

Two-point statistics of the coarse-grained curvature perturbation

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?

The distance between two patches is encoded in the patch at which they become statistically independent

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?

The distance between two patches is encoded in the patch at which they become statistically independent

Extension to multiple-point statistics

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?

The distance between two patches is encoded in the patch at which they become statistically independent
K. Ando, V. Vennin [2021]

Extension to multiple-point statistics

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?

The distance between two patches is encoded in the patch at which they become statistically independent

Extension to multiple-point statistics

$$
\begin{aligned}
& \zeta_{\mathrm{cg}, R_{i}}\left(\vec{x}_{i}\right) \equiv \zeta_{R_{i}}\left(\vec{x}_{i}\right)=\mathbb{E}_{\mathscr{P}_{i}}^{V}\left[\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})\right]-\mathbb{E}_{\mathscr{P}_{0}}^{V}\left[\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})\right] \\
& \mathcal{N}_{\mathscr{P}_{0}}\left(\vec{x}_{i}\right)=\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}}(\vec{x})+\mathcal{N}_{\mathscr{P}_{*} \rightarrow \mathscr{P}_{i}}\left(\vec{x}_{i}\right)+\mathcal{N}_{\mathscr{P}_{i}}\left(\vec{x}_{i}\right) \text { Shared history }
\end{aligned}
$$

Volume weighting

Volume weighting

Different regions of the universe inflate by different amounts \mathcal{N} :
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

Volume weighting

Different regions of the universe inflate by different amounts \mathcal{N} :
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

Distributions with respect to which observable quantities are defined should be volume weighted

Volume weighting

Different regions of the universe inflate by different amounts \mathcal{N} :
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

Distributions with respect to which observable quantities are defined should be volume weighted

$$
\begin{aligned}
& P_{\mathrm{FPT}, \Phi_{0}}^{V}(\mathcal{N})=\frac{P_{\mathrm{FPT}, \Phi_{0}}(\mathcal{N}) e^{3 \mathcal{N}}}{\int_{0}^{\infty} \mathrm{d} \mathscr{N} P_{\mathrm{FPT}, \Phi_{0}}(\mathcal{N}) e^{3 / \mathcal{N}}} \\
& \zeta_{\mathrm{cg}}(\vec{x})=\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})-\mathbb{E}_{\mathscr{P}_{0}}^{V}\left(\mathcal{N}_{\mathscr{P}_{0}}\right) \quad P\left(\zeta_{\mathrm{cg}} \mid \Phi_{0}\right)=P_{\mathrm{FPT}, \Phi_{0}}^{V}\left(\zeta_{\mathrm{cg}}+\mathbb{E}_{\mathscr{P}_{0}}^{V}\left(\mathcal{N}_{\mathscr{P}_{0}}\right)\right)
\end{aligned}
$$

Extracting cosmological observables

Extracting cosmological observables

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Extracting cosmological observables

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Final volume: $\frac{V}{V_{*}}=\frac{\int_{\mathscr{P}_{*}} \mathrm{~d} \vec{x} e^{3 V_{\mathscr{S}_{*}}(\vec{x})}}{\int_{\mathscr{P}_{*}} \mathrm{~d} \vec{x}}=\mathbb{E}_{\mathscr{P}_{*}}\left[e^{3 V_{\mathscr{P}_{*}}(\vec{x})}\right]$

Extracting cosmological observables

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Final volume: $\frac{V}{V_{*}}=\frac{\int_{\mathscr{P}_{*}} \mathrm{~d} \vec{x} e^{3 V_{\mathscr{S}_{*}}(\vec{x})}}{\int_{\mathscr{P}_{*}} \mathrm{~d} \vec{x}}=\mathbb{E}_{\mathscr{P}_{*}}\left[e^{3 V_{\mathscr{P}_{*}}(\vec{x})}\right]$
Backward distribution: $P\left(\Phi_{*} \mid V, \Phi_{0}\right)=\frac{P\left(V \mid \Phi_{*}\right) P\left(\Phi_{*} \mid \Phi_{0}\right)}{P(V)}=\frac{P\left(V \mid \Phi_{*}\right) P\left(\Phi_{*} \mid \Phi_{0}\right)}{\int \mathrm{d} \Phi_{*} P\left(V \mid \Phi_{*}\right) P\left(\Phi_{*} \mid \Phi_{0}\right)}$

Large-volume approximation

$$
R^{3} \gg(\sigma H)^{-3}
$$

Ensemble average over the set of final leaves \qquad Stochastic average of a single element within the ensemble

$$
V \rightarrow\langle V\rangle \quad P\left(V \mid \Phi_{*}\right) \simeq \delta_{\mathrm{D}}\left(V-V_{*}\left\langle e^{\left.3 \cdot \mathcal{V}_{\Phi_{*}}\right\rangle}\right) \quad\left\langle e^{\left.3 \mathcal{N}_{\Phi_{*}}\right\rangle}=\int_{0}^{\infty} P_{\mathrm{FPT}, \Phi_{*}}(\mathcal{N}) e^{3 \cdot \mathcal{N}} \mathrm{~d} \mathcal{N}\right.\right.
$$

Large-volume approximation

$$
R^{3} \gg(\sigma H)^{-3}
$$

Ensemble average over the set of final leaves

$$
V \rightarrow\langle V\rangle \quad P\left(V \mid \Phi_{*}\right) \simeq \delta_{\mathrm{D}}\left(V-V_{*}\left\langle e^{\left.3 \mathcal{V}_{\Phi_{*}}\right\rangle}\right)\right.
$$

$$
\left\langle e^{3 \mathcal{V}_{\Phi_{*}}}\right\rangle=\int_{0}^{\infty} P_{\mathrm{FPT}, \Phi_{*}}(\mathcal{N}) e^{3 \mathcal{N}^{\prime}} \mathrm{d} \mathcal{N}
$$

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=\int \mathrm{d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{1}}^{V}\left(\zeta_{R_{1}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{1}}\right\rangle_{V}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{2}}^{V}\left(\zeta_{R_{2}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{2}}\right\rangle_{V}\right)
$$

Large-volume approximation

$$
R^{3} \gg(\sigma H)^{-3}
$$

Ensemble average over the set of final leaves \qquad Stochastic average of a single element within the ensemble
$\left\langle e^{\left.3 \mathcal{V}_{\Phi *}\right\rangle}\right\rangle=\int_{0}^{\infty} P_{\mathrm{FPT}, \Phi_{*}}(\mathcal{N}) e^{3 \mathcal{N}} \mathrm{~d} \cdot \mathcal{N}$

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=\int \mathrm{d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{1}}^{V}\left(\zeta_{R_{1}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{1}}\right\rangle_{V}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{2}}^{V}\left(\zeta_{R_{2}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{2}}\right\rangle_{V}\right)
$$

$$
P\left(\zeta_{R}\right)=P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\zeta_{R}-\left\langle\mathcal{N}_{\phi_{*}}\right\rangle_{V}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}\right)
$$

Applications: quantum well

Two-point distributions: tilted-well model

$$
\begin{gathered}
\alpha \Delta \phi_{\mathrm{well}} /\left(v_{0} M_{\mathrm{Pl}}\right) \\
\equiv d \mu^{2} \rightarrow \simeq 51
\end{gathered}
$$

numerical simulations

Two-point distributions \& clustering: tilted-well model

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{1}}\right) \frac{a_{V}\left(x_{x}, x_{1}\right)}{a_{V}\left(x_{0}, x_{1}\right)} \frac{a_{V}\left(x_{*}, x_{2}\right)}{a_{V}\left(x_{0}, x_{2}\right)} \int \mathrm{d} \cdot \mathscr{N} P_{\mathrm{FPT}, x_{0} \rightarrow x_{*}}^{V}\left(\mathcal{N}_{\left.x_{0}+x_{x}\right)} e^{\left[\frac{\mu^{2 x^{2}}}{2}+\frac{\pi^{2}}{\mu^{2}(1-x)^{2}}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{2}\right)^{2}}-6\right] \cdot N_{x_{0}-x * x}}\right.
$$

Two-point distributions \& clustering: tilted-well model

Two-point distributions \& clustering: tilted-well model

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{1}}\right) \frac{a_{V}\left(x_{*}, x_{1}\right)}{a_{V}\left(x_{0}, x_{1}\right)} \frac{a_{V}\left(x_{*}, x_{2}\right)}{a_{V}\left(x_{0}, x_{2}\right)} \int \mathrm{d} \mathscr{N} P_{\mathrm{FPT}, x_{0} \rightarrow x_{*}}^{V}\left(\mathcal{N}_{x_{0} \rightarrow x_{*}}\right) e^{\left[\frac{\mu^{2} d^{2}}{2}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{1}\right)^{2}}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{2}\right)^{2}}-6\right] \mathscr{N}_{x_{0} \rightarrow x_{*}}}
$$

$\Lambda_{0} \simeq \mu^{2} d^{2} / 4+\pi^{2} / \mu^{2}$
lowest pole of the characteristic function
lowest residue of the characteristic function

Two-point distributions \& clustering: tilted-well model

$$
\begin{gathered}
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{1}}\right) \frac{a_{V}\left(x_{*}, x_{1}\right)}{a_{V}\left(x_{0}, x_{1}\right)} \frac{a_{V}\left(x_{*}, x_{2}\right)}{a_{V}\left(x_{0}, x_{2}\right)} \int \mathrm{d} \mathcal{N} P_{\mathrm{FPT}, x_{0} \rightarrow x_{*}}^{V}\left(\mathcal{N}_{\left.x_{0} \rightarrow x_{*}\right)} e^{\left[\frac{\mu^{2} d^{2}}{2}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{1}\right)^{2}}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{2}\right)^{2}}-6\right] \mathcal{N}_{x_{0} \rightarrow x_{*}}}\right. \\
P_{\mathrm{FPT}, x}^{V}(\mathcal{N}) \simeq a_{V}(x) e^{-\left(\Lambda_{0}+3\right), \mathcal{N}} \\
a_{V}(x)=a_{0}(x) /\left\langle e^{3 \mathcal{N}_{x}} \rightarrow\right.
\end{gathered} \begin{aligned}
& \Lambda_{0} \simeq \mu^{2} d^{2} / 4+\pi^{2} / \mu^{2} \\
& \begin{array}{l}
\text { owest pole of the }
\end{array} \\
& \text { characteristic function }
\end{aligned}
$$

$$
\xi(r)=\frac{P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)}{P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{2}}\right)}-1
$$

Two-point distributions \& clustering: tilted-well model

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{1}}\right) \frac{a_{V}\left(x_{*}, x_{1}\right)}{a_{V}\left(x_{0}, x_{1}\right)} \frac{a_{V}\left(x_{*}, x_{2}\right)}{a_{V}\left(x_{0}, x_{2}\right)} \int \mathrm{d} \mathcal{N} P_{\mathrm{FPT}, x_{0} \rightarrow x_{*}}^{V}\left(\mathcal{N}_{x_{0} \rightarrow x_{*}}\right) e^{\left[\frac{\mu^{2} d^{2}}{2}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{1}\right)^{2}}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{2}\right)^{2}}-6\right] \mathcal{N}_{x_{0} \rightarrow x_{*}}}
$$

$$
\begin{array}{ll}
P_{\mathrm{FPT}, x}^{V}(\mathcal{N}) \simeq a_{V}(x) e^{-\left(\Lambda_{0}+3\right) \mathcal{N}} \\
a_{V}(x)=a_{0}(x) /\left\langle e^{3 \mathcal{N}_{x}}\right\rangle \\
\text { lowest residue of the } \\
\text { characteristic function }
\end{array}, \begin{aligned}
& \Lambda_{0} \simeq \mu^{2} d^{2} / 4+\pi^{2} / \mu^{2} \\
& \text { lowest pole of the } \\
& \text { characteristic function }
\end{aligned}
$$

$$
\xi(r)=\frac{P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)}{P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{2}}\right)}-1
$$

Independent on the threshold
of formation

Two-point distributions \& clustering: tilted-well model

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{1}}\right) \frac{a_{V}\left(x_{*}, x_{1}\right)}{a_{V}\left(x_{0}, x_{1}\right)} \frac{a_{V}\left(x_{*}, x_{2}\right)}{a_{V}\left(x_{0}, x_{2}\right)} \int \mathrm{d} \mathscr{N} P_{\mathrm{FPT}, x_{0} \rightarrow x_{*}}^{V}\left(\mathcal{N}_{x_{0} \rightarrow x_{*}}\right) e^{\left[\frac{\mu^{2} d^{2}}{2}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{1}\right)^{2}}+\frac{\pi^{2}}{\mu^{2}\left(1-x_{2}\right)^{2}}-6\right] \mathcal{N}_{x_{0} \rightarrow x_{*}}}
$$

$$
P_{\mathrm{FPT}, x}^{V}(\mathcal{N}) \simeq a_{V}(x) e^{-\left(\Lambda_{0}+3\right) \mathcal{N}} \rightarrow \begin{aligned}
& \Lambda_{0} \simeq \mu^{2} d^{2} / 4+\pi^{2} / \mu^{2} \\
& a_{V}(x)=a_{0}(x) /\left\langle e^{\left.3 \mathcal{N}_{x}\right\rangle} \rightarrow\right.
\end{aligned} \begin{aligned}
& \text { lowest pole of the } \\
& \text { characteristic function }
\end{aligned}
$$

$$
\xi(r)=\frac{P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)}{P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{2}}\right)}-1
$$

Independent on the threshold of formation

Clustering: comparison with the classical limit

Clustering: comparison with the classical limit

Clustering: comparison with the classical limit

\rightarrow Larger distances r are covered in the stochastic calculation than in its classical counterpart different relation between scales and field values:

$$
r_{\max }^{\mathrm{class}}=e^{1 / d}
$$

versus

$$
\tilde{r}_{\max }^{\text {stoch }}=2\left\langle e^{3 \cdot \mathcal{N}}\right\rangle_{x=1}^{1 / 3}
$$

Clustering: comparison with the classical limit

\rightarrow Larger distances r are covered in the stochastic calculation than in its classical counterpart different relation between scales and field values: $\quad r_{\max }^{\text {class }}=e^{1 / d} \quad$ versus $\quad \tilde{r}_{\max }^{\text {stoch }}=2\left\langle e^{3 / \mathcal{V}}\right\rangle_{x=1}^{1 / 3}$
$\rightarrow \mathrm{PBH}$ s are correlated over longer distances once quantum diffusion is taken into account

Final remarks

* Physical distances (measured by a local observer on the end-of-inflation hypersurface) and patches during inflation linked by the emerging volume.
* Different regions inflate by different amount: statistics are volume weighted.
* PBHs can be created with spatial correlation across longer distances if quantum diffusion is included.
* On the tail, the reduced correlation does not depend of the threshold of formation: universal clustering profile.

Next?

* Two-point distribution of the compaction function.
* Numerical approaches (recursive sampling algorithm).
* Phenomenological consequences, more realistic scenarios...

Final remarks

* Physical distances (measured by a local observer on the end-of-inflation hypersurface) and patches during inflation linked by the emerging volume.
* Different regions inflate by different amount: statistics are volume weighted.
* PBHs can be created with spatial correlation across longer distances if quantum diffusion is included.
* On the tail, the reduced correlation does not depend of the threshold of formation: universal clustering profile.

Next?

* Two-point distribution of the compaction function.
* Numerical approaches (recursive sampling algorithm).
* Phenomenological consequences, more realistic scenarios...

Backup slides

Primordial Black Holes (PBHs) from inflation

Black holes which could have formed in the early Universe through a non-stellar way

PBHs may originate from peaks of the density perturbations generated in the early universe

$$
\left.\delta \sim \frac{\delta \rho}{\rho}\right|_{k=a H} \sim \zeta>\zeta_{c} \sim \mathcal{O}(1)
$$

Primordial black holes as dark matter candidates

PBHs are good candidates of dark matter: stable, non-baryonic, cold, could be formed in the right abundance to be the dark matter

PBHs evaporate emitting Hawking radiation but they are stable if the initial mass $M_{\text {in }} \gtrsim 10^{15} \mathrm{~g}$ Not a new particle, but they require some physics beyond the standard model (e.g. inflation)

Current constraints

Extracting cosmological observables

> Scale k crosses the Hubble radius at
> $N_{*}=N_{\mathrm{end}}-N_{\mathrm{bw}}=N_{\mathrm{end}}-\log \left(a_{\mathrm{end}} H / k\right)$

classical problem

stochastic problem

one-to-one correspondence between k and $\Phi_{*}(k)$
$\Phi_{*}(k)$ is a random quantity endowed with a backward distribution

Extracting cosmological observables

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Volume-averaged number of e-folds: $W \equiv \mathbb{E}_{\mathscr{P}_{*}}^{V}\left[\mathcal{N}_{\mathscr{P}_{*}}(\vec{x})\right]=\frac{\int_{\mathscr{P}_{s}} e^{3 \mathcal{N}_{\mathscr{P}_{*}}(\vec{x})} \mathcal{N}_{\mathscr{P}_{*}}(\vec{x}) \mathrm{d} \vec{x}}{\int_{\mathscr{P}_{*}} e^{3 \cdot \mathcal{N}_{\mathscr{P}_{*}}(\vec{x})} \mathrm{d} \vec{x}}=\frac{V_{*}}{V} \mathbb{E}_{\mathscr{P}_{*}}\left[e^{3 \cdot \mathcal{N}_{\mathscr{P}_{*}}(\vec{x})} \mathcal{N}_{\mathscr{P}_{*}}(\vec{x})\right]$
Distributions $P\left(V \mid \Phi_{*}\right)$ and $P\left(V, W \mid \Phi_{*}\right)$ can be numerically sampled
Backward distribution: $P\left(\Phi_{*} \mid V, \Phi_{0}\right)=\frac{P\left(V \mid \Phi_{*}\right) P\left(\Phi_{*} \mid \Phi_{0}\right)}{P(V)}=\frac{P\left(V \mid \Phi_{*}\right) P\left(\Phi_{*} \mid \Phi_{0}\right)}{\int \mathrm{d} \Phi_{*} P\left(V \mid \Phi_{*}\right) P\left(\Phi_{*} \mid \Phi_{0}\right)}$

Stochastic- δN formalism: coarse-graining at arbitrary scale

$$
\zeta_{\mathrm{cg}, R}\left(\vec{x}_{0}\right) \equiv \zeta_{R}\left(\vec{x}_{0}\right)=\mathbb{E}_{\mathscr{P}_{\xi}}^{V}\left[\zeta_{\mathrm{cg}}(\vec{x})\right]=\mathbb{E}_{\mathscr{P}_{\xi}}^{V}\left[\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})\right]-\mathbb{E}_{\mathscr{P}_{0}}^{V}\left[\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})\right]
$$

$$
\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})=\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}}(\vec{x})+\mathcal{N}_{\mathscr{P}_{*}}(\vec{x})
$$

$$
\zeta_{\mathrm{cg}, R}\left(\vec{x}_{0}\right) \equiv \zeta_{R}\left(\vec{x}_{0}\right)=\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}}\left(\vec{x}_{0}\right)+W\left(\mathscr{P}_{*}\right)-\mathbb{E}_{\mathscr{P}_{0}}^{V}\left[\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})\right]
$$

Solutions of Fokker-Planck, adjoint Fokker-Planck eqs., etc

$$
P^{V}\left(\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}}, W \mid V, \Phi_{0}\right)=\int \mathrm{d} \Phi_{*} P^{V}\left(\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}}\right) P_{\mathrm{FP}}^{V}\left(\Phi_{*}, \mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}} \mid \Phi_{0}\right) \frac{P\left(V, W \mid \Phi_{*}\right)}{P(V)}
$$

Large-volume approximation

$$
R^{3} \gg(\sigma H)^{-3}
$$

Ensemble average over the set of final leaves

Stochastic average of a single element within the ensemble

$$
\begin{array}{ll}
V \rightarrow\langle V\rangle \quad P\left(V \mid \Phi_{*}\right) \simeq \delta_{\mathrm{D}}\left(V-V_{*}\left\langle e^{\left.3 \mathcal{N}_{\Phi_{*}}\right\rangle}\right\rangle\right. & \left\langle e^{3 \mathcal{N}_{\Phi_{*}}}\right\rangle=\int_{0}^{\infty} P_{\mathrm{FPT}, \Phi_{*}}(\mathcal{N}) e^{33 \mathcal{N}_{\mathrm{N}}} \mathrm{~N} \\
W \rightarrow\langle W\rangle & W \simeq\left\langle\mathcal{N}_{\Phi_{*}}\right\rangle_{V}=\frac{\left\langle\mathcal{N}_{\Phi_{*}} e^{3 \mathcal{N}_{\Phi_{*}}}\right\rangle}{\left\langle e^{3 \mathcal{N}_{\Phi_{*}}}\right\rangle}
\end{array}
$$

$$
\zeta_{R}\left(\vec{x}_{0}\right)=\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathscr{P}_{*}}\left(\vec{x}_{0}\right)+W\left(\mathscr{P}_{*}\right)-\mathbb{E}_{\mathscr{P}_{0}}^{V}\left[\mathcal{N}_{\mathscr{P}_{0}}(\vec{x})\right] \longrightarrow \zeta_{R} \simeq \mathcal{N}_{\mathscr{P}_{0} \rightarrow \delta_{*}}+\left\langle\mathcal{N}_{\Phi_{*}}\right\rangle_{V}-\left\langle\mathcal{N}_{\Phi_{0}}\right\rangle_{V}
$$

$$
\begin{array}{|c|c|}
\hline P\left(\zeta_{R} \mid \Phi_{0}\right)=\int_{\mathcal{S}_{*}} \mathrm{~d} \Phi_{*} P_{\mathrm{FPTL}, \Phi_{0} \rightarrow \delta_{*}}\left(\mathcal{N}_{\left.\mathscr{P}_{0} \rightarrow \mathcal{S}_{*}=\zeta_{R}-\left\langle\mathcal{N}_{\Phi_{*}}\right\rangle_{V}+\left\langle\mathcal{N}_{\Phi_{0}}\right\rangle_{V}, \Phi_{*} \mid \Phi_{0}\right)} \quad \begin{array}{l}
\mathcal{S}_{*}: \begin{array}{l}
\text { hypersurface of constant mean } \\
\text { forward volume }
\end{array} \\
\\
\left\langle e^{\left.3_{\Phi_{*} *}\right\rangle=R^{3}}\right.
\end{array} \quad \begin{array}{l}
\text { first-passage time and location distribution }
\end{array}\right.
\end{array}
$$

$$
P_{\mathrm{FPTL}, \Phi_{0} \rightarrow \delta_{*}}^{V}\left(\mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}} \Phi_{*} \mid \Phi_{0}\right)=P_{\mathrm{FPT}, \Phi_{0} \rightarrow \delta_{*}}^{V}\left(\mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}}\right) P\left(\Phi_{*} \mid \mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}}\right)
$$

Two-point statistics of the coarse-grained curvature perturbation

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent Extension to multiple-point statistics

Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent

Extension to multiple-point statistics

Large-volume approximation: $\quad \zeta_{R_{i}}=\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathcal{S}_{i}}+\left\langle\mathcal{N}_{\Phi_{i}}\right\rangle_{V}-\left\langle\mathcal{N}_{\Phi_{0}}\right\rangle_{V}=\mathcal{N}_{\mathscr{P}_{0} \rightarrow \mathcal{S}_{*}}+\mathcal{N}_{\Phi_{*} \rightarrow \mathcal{S}_{i}}+\left\langle\mathcal{N}_{\Phi_{i}}\right\rangle_{V}-\left\langle\mathcal{N}_{\Phi_{0}}\right\rangle_{V}$
shared between the two regions: correlation

$$
\begin{aligned}
P\left(\zeta_{R_{1}}, \zeta_{R_{2}} \mid \Phi_{0}\right)= & \int \mathrm{d} \Phi_{*} \mathrm{~d} \Phi_{1} \mathrm{~d} \Phi_{2} \mathrm{~d} \mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}} P_{\mathrm{FPTL}, \Phi_{0} \rightarrow \delta_{*}}^{V}\left(\mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}} \Phi_{*}\right) \\
& P_{\mathrm{FPTL}, \Phi_{*} \rightarrow \delta_{1}}^{V}\left(\zeta_{R_{1}}-\mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}}+\left\langle\mathcal{N}_{\Phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\Phi_{1}}\right\rangle_{V}, \Phi_{1}\right) \\
& P_{\mathrm{FPTL}, \Phi_{*} \rightarrow \delta_{2}}^{V}\left(\zeta_{R_{2}}-\mathcal{N}_{\Phi_{0} \rightarrow \delta_{*}}+\left\langle\mathcal{N}_{\Phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\Phi_{2}}\right\rangle_{V}, \Phi_{2}\right)
\end{aligned}
$$

\mathcal{S}_{*} : field-space hypersurface where $\left\langle e^{3 \mathcal{V}_{\Phi_{*}}}\right\rangle=(\tilde{r} / 2)^{3}$
$\mathcal{S}_{i}:$ field-space hypersurfaces where $\left\langle e^{\left.3 \mathcal{N}_{\Phi_{i}}\right\rangle}\right\rangle=\left(R_{i}\right)^{3}$

Single-clock models

$\Phi \rightarrow \phi$: single-field models of inflation along a dynamical attractor (slow roll)
Hypersurfaces \mathcal{S}_{*} of fixed mean final volume reduce to single points

Backward fields become deterministic quantities

$$
P\left(\zeta_{R}\right)=P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\zeta_{R}-\left\langle\mathcal{N}_{\phi_{*}}\right\rangle_{V}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}\right)
$$

$$
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=\int \mathrm{d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{1}}^{V}\left(\zeta_{R_{1}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{1}}\right\rangle_{V}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{2}}^{V}\left(\zeta_{R_{2}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{2}}\right\rangle_{V}\right)
$$

Power spectrum from the two-point statistics

Two-point correlation function of coarse-grained fields:

$$
\left\langle\zeta_{R_{1}} \zeta_{R_{2}}\right\rangle=\int \mathrm{d} \zeta_{R_{1}} \int \mathrm{~d} \zeta_{R_{2}} P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right) \zeta_{R_{1}} \zeta_{R_{2}}=\left\langle\mathcal{N}_{\phi_{0} \rightarrow \phi_{\psi}}^{2}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right\rangle_{V}^{2} \equiv\left\langle\delta \mathcal{N}_{\phi_{0} \rightarrow \phi_{\psi}}^{2}\right\rangle_{V}=\left\langle\delta \mathcal{N}_{\phi_{0}}^{2}\right\rangle_{V}-\left\langle\delta \mathcal{N}_{\phi_{*}}^{2}\right\rangle_{V}
$$

no dependence on the coarse-graining scales R_{1}, R_{2}
In Fourier space: $\zeta_{R_{i}}\left(\vec{x}_{i}\right)=\int \frac{\mathrm{d} \vec{k}}{(2 \pi)^{3 / 2}} \zeta_{\vec{k}} e^{i \vec{k} \cdot \vec{x}_{i}} \widetilde{W}\left(\frac{k R_{i}}{a}\right)$
$\left\langle\zeta_{R_{1}} \zeta_{R_{2}}\right\rangle=\int_{0}^{\infty} \mathrm{d} \ln k \mathscr{P}_{\zeta}(k) \widetilde{W}\left(\frac{k R_{1}}{a}\right) \widetilde{W}\left(\frac{k R_{2}}{a}\right) \widetilde{W}\left(\frac{k r}{a}\right) \quad r>R_{1}, R_{2} \longrightarrow\left\langle\zeta_{R_{1}} \zeta_{R_{2}}\right\rangle=\int_{0}^{\infty} \mathrm{d} \ln k \mathscr{P}_{\zeta}(k) \widetilde{W}\left(\frac{k r}{a}\right)$
Differentiation w.r.t. r :
$\mathscr{P}_{\zeta}(k)=-\left.\frac{\partial}{\partial \ln r}\left\langle\zeta_{R_{1}} \zeta_{R_{2}}\right\rangle\right|_{r=a_{\text {end }} / k}=\left.\frac{\partial}{\partial \ln r}\left\langle\delta \mathscr{N}_{\phi \sharp}\right\rangle^{2}\right|_{r=a_{\text {end }} / k}$

$$
\mathscr{P}_{\zeta}(k)=\left.\frac{r}{\tilde{r}}\left[\frac{1}{3} \frac{\partial}{\partial \phi_{*}} \ln \left\langle e^{3 \mathcal{N}_{\phi \phi}}\right\rangle-\frac{\partial}{\partial \phi_{*}} \ln H\left(\phi_{*}\right)\right]^{-1} \frac{\partial}{\partial \phi_{*}}\left\langle\delta \mathcal{N}_{\phi_{*}}^{2}\right\rangle_{V}\right|_{\left\langle e^{\left.3 N_{\phi *}\right\rangle^{1 / 3}=\frac{1}{2} \frac{a^{\frac{a}{r}}}{} \frac{a_{\text {end }} \sigma H(\phi *)}{k}}\right.}
$$

$$
\begin{aligned}
& \tilde{r}=r+R_{1}+R_{2} \\
& r \gg R_{1}, R_{2} \rightarrow \frac{r}{\tilde{r}} \simeq 1 \\
& \partial \ln N / \partial \phi \simeq \sqrt{\epsilon_{1} / 2} / M_{\mathrm{Pl}}
\end{aligned}
$$

C.f.r. V. Vennin and A. A. Starobinsky [2015]
T. Fujita, M. Kawasaki, Y. Tada and T. Takesako [2013]

Same expression at l.o. in slow roll neglecting volume weighting and defining ϕ_{*} via $\langle\mathcal{N}\rangle$ and not via $\left\langle e^{3 \mathcal{N}}\right\rangle$

Consistency checks

$\left\langle\zeta_{R}\right\rangle_{V}$ vanishes

Lemma: $\phi_{1}, \phi_{2}, \phi_{3}$ such that $\phi_{1}>\phi_{2}>\phi_{3}$, then it is possible to split $\mathcal{N}_{\phi_{1} \rightarrow \phi_{3}}=\mathcal{N}_{\phi_{1} \rightarrow \phi_{2}}+\mathcal{N}_{\phi_{2} \rightarrow \phi_{3}}$ where $\mathcal{N}_{\phi_{1} \rightarrow \phi_{2}}, \mathcal{N}_{\phi_{2} \rightarrow \phi_{3}}$ are first-passage times, and independent random variables (Markovianity)

$$
P_{\mathrm{FPT}, \phi_{0}}\left(\mathcal{N}_{\phi_{0}}\right)=\int_{0}^{\mathcal{N}_{\phi_{0}}} \mathrm{~d} \mathcal{N}_{\phi_{*}} P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}\left(\mathcal{N}_{\phi_{0}}-\mathcal{N}_{\phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*}}\left(\mathcal{N}_{\phi_{*}}\right)
$$

Convolution structure also applies to the volume-weighted statistics:
$P_{\mathrm{FPT}, \phi_{0}}^{V}\left(\mathcal{N}_{\phi_{0}}\right) \propto P_{\mathrm{FPT}, \phi_{0}}\left(\mathcal{N}_{\phi_{0}}\right) e^{3 \mathcal{N}_{\phi_{0}}}=\int_{0}^{\mathcal{N}_{\phi_{0}}} \mathrm{~d} \mathcal{N}_{\phi_{*}} P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\mathcal{N}_{\phi_{0}}-\mathcal{N}_{\phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*}}^{V}\left(\mathcal{N}_{\phi_{*}}\right)$
Therefore:

$$
\mathcal{N}_{\phi_{0}}=\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\mathcal{N}_{\phi_{*}} \longrightarrow\left\langle\mathcal{N}_{\phi_{0}}\right\rangle=\left\langle\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right\rangle+\left\langle\mathcal{N}_{\phi_{*}}\right\rangle \longrightarrow\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}=\left\langle\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right\rangle_{V}+\left\langle\mathcal{N}_{\phi_{*}}\right\rangle_{V}
$$

$$
\longrightarrow\left\langle\zeta_{R}\right\rangle_{V}=0
$$

Consistency checks:

Power spectrum from the one-point distribution

$$
\begin{aligned}
\left\langle\zeta_{R}^{2}\right\rangle & =\int \zeta_{R}^{2} P\left(\zeta_{R}\right) \mathrm{d} \zeta_{R}=\int \mathrm{d} \zeta_{R} P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\zeta_{R}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{*}}\right\rangle_{V}\right) \zeta_{R}^{2}=\left\langle\mathcal{N}_{\phi_{0}}^{2}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{*}}^{2}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}^{2}+\left\langle\mathcal{N}_{\phi_{*}}\right\rangle_{V}^{2} \\
& =\left\langle\delta \mathscr{N}_{\phi_{0}}^{2}\right\rangle_{V}-\left\langle\delta \mathscr{N}_{\phi_{*}}^{2}\right\rangle_{V}
\end{aligned}
$$

In Fourier space: $\left\langle\zeta_{R}^{2}\right\rangle=\int \mathscr{P}_{\zeta}(k) \widetilde{W}^{2}\left(\frac{k R}{a}\right) \mathrm{d} \ln k$
differentiation w.r.t. R: $\quad \mathscr{P}_{\zeta}(k)=-\left.\frac{\partial}{\partial \ln R}\left\langle\zeta_{R}^{2}\right\rangle\right|_{R=a_{\text {end }} / k}=\left.\frac{\partial}{\partial \ln R}\left\langle\delta \mathcal{N}_{\phi_{*}}^{2}\right\rangle\right|_{R=a_{\text {end }} / k}$

Second moment of ζ_{R} is consistent with the calculation of the power spectrum from the two-point statistics

Consistency checks

Marginalisation

One-point statistics can be obtained from the two-point statistics upon marginalisation:

$$
\begin{aligned}
\int \mathrm{d} \zeta_{R_{2}} P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)= & \int \mathrm{d} \zeta_{R_{2}} \int \mathrm{~d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}} P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{1}}^{V}\left(\zeta_{R_{1}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{1}}\right\rangle_{V}\right) \\
& \times P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{2}}^{V}\left(\zeta_{R_{2}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{2}}\right\rangle_{V}\right)= \\
& \int \mathrm{d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}} P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{1}}^{V}\left(\zeta_{R_{1}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{1}}\right\rangle_{V}\right) \quad \begin{array}{l}
\text { normalisation of the } \\
\text { FPT distribution }
\end{array}
\end{aligned}
$$

Lemma: $\phi_{1}<\phi_{*}<\phi_{0} \longrightarrow \mathcal{N}_{\phi_{0} \rightarrow \phi_{1}}=\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}+\mathcal{N}_{\phi_{*} \rightarrow \phi_{1}} \quad$ independent
$\int \mathrm{d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}} P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{*}}^{V}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right) P_{\mathrm{FPT}, \phi_{*} \rightarrow \phi_{1}}^{V}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{1}}-\mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right)=P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{1}}^{V}\left(\mathcal{N}_{\phi_{0} \rightarrow \phi_{1}}\right)$

$$
\int \mathrm{d} \zeta_{R_{2}} P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P_{\mathrm{FPT}, \phi_{0} \rightarrow \phi_{1}}^{V}\left[\zeta_{R_{1}}+\left\langle\mathcal{N}_{\phi_{0}}\right\rangle_{V}-\left\langle\mathcal{N}_{\phi_{1}}\right\rangle_{V}\right] \equiv P\left(\zeta_{R_{1}}\right)
$$

Applications

Single-field slow-roll models of inflation

$$
\frac{\partial \phi}{\partial N}=-\frac{V^{\prime}}{3 H^{2}}+\frac{H}{2 \pi} \xi \quad \quad \mathscr{L}_{\mathrm{FP}}^{\dagger}(\phi)=-M_{\mathrm{Pl}}^{2} \frac{v^{\prime}}{v} \frac{\partial}{\partial \phi}+v \frac{\partial^{2}}{\partial \phi^{2}}
$$

$$
v \equiv V /\left(24 \pi^{2} M_{\mathrm{Pl}}^{4}\right)
$$ quantum wells:

$$
\chi_{\mathcal{N}}(t, \phi)=\left\langle e^{i t \mathcal{N}}\right\rangle=\int_{-\infty}^{\infty} \mathrm{d} \mathscr{N} e^{i t / \mathcal{N}} P_{\mathrm{FPT}, \phi}(\mathcal{N})
$$

$$
\mathscr{L}_{\mathrm{FP}}^{\dagger}(\phi) \chi_{\mathcal{N}}(t, \phi)=-i t \chi_{\mathcal{N}}(t, \phi)
$$

$$
\chi\left(t, \phi_{\text {end }}\right)=\left.1 \frac{\partial}{\partial \phi} \chi(t, \phi)\right|_{\phi_{\text {end }+\Delta \phi_{\text {well }}}}=0
$$

$$
\begin{array}{ll}
\chi_{\mathcal{N}}(t, \phi)=\frac{\cos [\sqrt{i t} \mu(x-1)]}{\cos [\sqrt{i t} \mu]} & P_{\mathrm{FPT}, \phi}(\mathcal{N})=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right) \\
\chi_{\mathcal{N}(t, \phi)}^{V}=\frac{\chi_{\mathcal{N}}(t-3 i, \phi)}{\chi_{\mathcal{N}}(-3 i, \phi)} & \left\langle\mathcal{N}_{\phi}^{n}\right\rangle_{V}=\left.\frac{i^{-n}}{\chi_{\mathcal{N}}(-3 i, \phi)} \frac{\partial}{\partial t} \chi_{\mathcal{N}}(t, \phi)\right|_{t=-3 i}
\end{array}
$$

$$
\begin{gathered}
x=\left(\phi-\phi_{\text {end }}\right) / \Delta \phi_{\text {well }} \\
\mu^{2}=\frac{\Delta \phi_{\text {well }}^{2}}{v_{0} M_{\mathrm{Pl}}^{2}}
\end{gathered}
$$

One-point distributions

R decreases
Tails become heavier

- PBHs mostly form at scales emerging close to the end of the well (mass fraction tilted towards smaller masses)

Tail behaviour: $P\left(\zeta_{R}\right) \simeq \frac{\pi \cos \left[\sqrt{3}\left(1-x_{*}\right) \mu\right]}{\left(1-x_{*}\right)^{2} \mu^{2}} e^{\left[3-\frac{\pi^{2}}{4\left(1-x_{*}\right)^{2} \mu^{2}}\right]\left\{\zeta_{R}+\frac{\mu}{2 \sqrt{3}}\left(1-x_{*}\right) \tan \left[\sqrt{3} \mu\left(1-x_{*}\right)\right]\right\}}$ exponential-tail profile

Two-point distributions: flat-well model

From numerical integration of exact analytical formula of the 2-pt distribution

Two-point distributions: flat-well model

$$
\text { Tail behaviour: } \quad P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right) \simeq P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{2}}\right) \frac{\cos \left(\frac{\pi}{2} \frac{1-x_{*}}{1-x_{1}}\right) \cos \left(\frac{\pi}{2} \frac{1-x_{*}}{1-x_{2}}\right)}{\cos \left[\sqrt{3} \mu\left(1-x_{*}\right)\right] \cosh \left\{\sqrt{3} \mu\left(1-x_{*}\right) \sqrt{1-\frac{\pi^{2}}{12 \mu^{2}}\left[\frac{1}{\left(1-x_{1}\right)^{2}}+\frac{1}{\left(1-x_{2}\right)^{2}}\right]}\right\}}
$$

The two final regions do not share any parent node :
they cannot be correlated

For $x_{*} \rightarrow 1$ the joint distribution factorises: $P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=P\left(\zeta_{R_{1}}\right) P\left(\zeta_{R_{1}}\right)$

Clustering: flat-well model

For simplicity, we consider that a PBH forms when $\zeta_{R}>\zeta_{c}$, where ζ_{c} is a threshold value of order unity

$$
\text { 1-pt probability: } p_{M}=\int_{\zeta_{c}}^{\infty} P\left(\zeta_{R}\right) \mathrm{d} \zeta_{R} \quad \text { reduced correlation: } \quad \xi_{M_{1}, M_{2}}(r)=\frac{p\left(M_{1}, M_{2}, r\right)}{p_{M_{1}} p_{M_{2}}}-1
$$

$$
\text { 2-pt probability: } p_{M_{1}, M_{2}}(r)=\int_{\zeta_{c}}^{\infty} P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right) \mathrm{d} \zeta_{R_{1}} \mathrm{~d} \zeta_{R_{2}}
$$

$$
\xi_{M_{1}, M_{2}}(r) \simeq \frac{\cos \left(\frac{\pi}{2} \frac{1-x_{*}}{1-x_{1}}\right) \cos \left(\frac{\pi}{2} \frac{1-x_{*}}{1-x_{2}}\right)}{\cos \left[\sqrt{3} \mu\left(1-x_{*}\right)\right] \cosh \left\{\sqrt{3} \mu\left(1-x_{*}\right) \sqrt{1-\frac{\pi^{2}}{12 \mu^{2}}\left[\frac{1}{\left(1-x_{1}\right)^{2}}+\frac{1}{\left(1-x_{2}\right)^{2}}\right]}\right\}}-1
$$

For $x_{*} \rightarrow 1$ the two-point distribution factorises: $\xi_{M_{1}, M_{2}} \rightarrow 0$

For small values of $x_{*}: \xi_{M_{1}, M_{2}}$ reaches a maximum when $r \simeq R_{1}+R_{2}$ (for smaller values one enters the exclusion zone)

Two-point distributions: tilted-well model

Stochastic- δN formalism

Full PDF of the first passage time: characteristic function

$$
\begin{aligned}
& \chi(t, \phi) \equiv\left\langle e^{i t / \mathcal{N}}\right\rangle=\int_{-\infty}^{\infty} e^{i t \cdot \mathcal{V}} P(\mathcal{N}, \phi) d \mathcal{N} \longrightarrow P(\mathcal{N}, \phi)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i t / \mathcal{N}} \chi(t, \phi) d t \\
& \mathscr{L}_{F P}^{\dagger} \cdot \chi(t, \phi)=-i t \chi(t, \phi) \quad \chi\left(t, \phi_{\text {end }}\right)=1
\end{aligned}
$$

- Useful trick: pole expansion

$$
\begin{aligned}
\chi(t, \phi)=\sum_{n} \frac{a_{n}(\phi)}{\Lambda_{n}-i t}+g(t, \phi) \longrightarrow P(\mathcal{N}, \phi)= & \sum_{n} a_{n}(\phi) e^{-\Lambda_{n} \cdot \mathcal{V}} \\
& 0<\Lambda_{0}<\Lambda_{1}<\cdots \Lambda_{n}
\end{aligned}
$$

- Main task: find poles and residues of the characteristic function

[J.M. Ezquiaga, J. Garcia-Bellido, V. Vennin (2020)]
Poles: zeros of the inverse characteristic function
Residues: $\quad a_{n}(\phi)=-i\left[\frac{\partial}{\partial t} \chi^{-1}\left(t=-i \Lambda_{n}, \phi\right)\right]^{-1}$

Tail expansion: higher n terms suppressed at large \mathcal{N}
Tail of the PDF for ζ has an exponential fall-off behaviour

Comparison with the classical limit

Leading order in perturbation theory:
curvature perturbation ζ (and also its coarse-grained version ζ_{R}) features Gaussian statistics
variance: $\quad \sigma_{R}^{2} \equiv\left\langle\zeta_{R}^{2}\right\rangle=\int_{0}^{a / R} \mathrm{~d} \ln k \mathscr{P}_{\zeta}(k) \quad \mathscr{P}_{\zeta}=2 v_{0} / \alpha^{2} \quad$ in the titled-well model

1-pt probability: $p_{M}=\frac{1}{2} \operatorname{erfc}\left(\frac{\zeta_{c}}{\sqrt{2 \sigma_{R}^{2}}}\right)$
covariance: $\quad \sigma_{R_{1}}^{2}, \sigma_{R_{2}}^{2}, \tau_{r}^{2}=\left\langle\zeta_{R_{1}}(\vec{x}) \zeta_{R_{2}}(\vec{x}+\vec{r})\right\rangle=\underset{\int_{0}}{\int_{\text {IR }}^{a / r}}=a_{\text {end }} H e^{-1 / d}$
2-pt probability: $p_{M, M}(r)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \mathrm{d} x e^{-x^{2 / 2}} \operatorname{erfc}\left[\frac{\zeta_{\mathrm{c}}}{\sqrt{\sigma_{R}^{2}+\tau_{r}^{2}}}\left(1+\sqrt{\frac{\sigma_{R}^{2}-\tau_{r}^{2}}{2}} \frac{x}{\zeta_{c}}\right)\right]$

Analytical results in the flat-well model

1-pt distribution: $P\left(\zeta_{R}\right)=-\frac{\pi \cos \left[\sqrt{3}\left(1-x_{*}\right) \mu\right]}{2\left(1-x_{*}\right)^{2} \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2}, e^{-\frac{\pi^{2}}{\left(1-x_{*}\right)^{2} \mu^{2}}\left\{\zeta_{R}+\frac{\mu}{2 \sqrt{3}}\left(1-x_{*}\right) \tan \left[\sqrt{3} \mu\left(1-x_{*}\right)\right]\right\}}\right)$

$$
\times e^{3\left\{\zeta_{R}+\frac{\mu}{2 \sqrt{3}}\left(1-x_{*}\right) \tan \left[\sqrt{3} \mu\left(1-x_{*}\right)\right]\right\}}
$$

2-pt distribution:

$$
\left.\begin{array}{rl}
P\left(\zeta_{R_{1}}, \zeta_{R_{2}}\right)=- & \frac{\pi^{3}}{8 \mu^{6}\left(1-x_{*}\right)^{2}\left(1-x_{1}\right)^{2}\left(1-x_{2}\right)^{2}} \frac{\cos \left[\sqrt{3} \mu\left(1-x_{1}\right)\right] \cos \left[\sqrt{3} \mu\left(1-x_{2}\right)\right]}{\cos \left[\sqrt{3} \mu\left(1-x_{*}\right)\right]} \\
& \int \mathrm{d} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2}, e^{-\frac{\pi^{2}}{\mu^{2}\left(1-x_{*}\right)^{2}}} \mathcal{N}_{\phi_{0} \rightarrow \phi_{*}}\right.
\end{array}\right) .
$$

Volume-averaged number of e-folds: $\langle\mathcal{N}\rangle_{\mathrm{V}}=\frac{\mu}{2 \sqrt{3}}\{\tan (\sqrt{3} \mu)-(1-x) \tan [\sqrt{3} \mu(1-x)]\}$
Field values - coarse-graining size relation:

$$
x_{*}(R)=1-\frac{1}{\sqrt{3} \mu} \arccos \left[(\sigma R H)^{3} \cos (\sqrt{3} \mu)\right]
$$

Analytical results in the tilted-well model

Characteristic function: $\quad \chi_{\mathcal{N}}(t, \phi)=e^{\frac{d \mu^{2} x}{2}} \frac{\sqrt{4 i t-d^{2} \mu^{2}} \cos \left(\frac{x-1}{2} \sqrt{4 i t-d^{2} \mu^{2}} \mu\right)-d \mu \sin \left(\frac{x-1}{2} \sqrt{4 i t-d^{2} \mu^{2}} \mu\right)}{\sqrt{4 i t-d^{2} \mu^{2}} \cos \left(\frac{1}{2} \sqrt{4 i t-d^{2} \mu^{2}} \mu\right)+d \mu \sin \left(\frac{1}{2} \sqrt{4 i t-d^{2} \mu^{2}} \mu\right)}$
FPT distribution: $\quad P_{\mathrm{FPT}, \phi}(\mathcal{N})=-\frac{\pi}{2 \mu^{2}} e^{\mu^{2} d \frac{x}{2}-\frac{\mu^{2} d^{2}}{4} \mathcal{N}} \vartheta_{3}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)$
Mean volume: $\left\langle e^{3 \mathcal{N}_{\phi}}\right\rangle=e^{\frac{d \mu^{2} x}{2}} \frac{\sqrt{12-d^{2} \mu^{2}} \cos \left(\frac{x-1}{2} \sqrt{12-d^{2} \mu^{2}} \mu\right)-d \mu \sin \left(\frac{x-1}{2} \sqrt{12-d^{2} \mu^{2}} \mu\right)}{\sqrt{12-d^{2} \mu^{2}} \cos \left(\frac{\mu}{2} \sqrt{12-d^{2} \mu^{2}}\right)+d \mu \sin \left(\frac{\mu}{2} \sqrt{12-d^{2} \mu^{2}}\right)}$
Mean number of e-folds: $\quad\left\langle\mathcal{N}_{\phi}\right\rangle=\frac{x}{d}+e^{-d \mu^{2}} \frac{1-e^{d \mu^{2} x}}{d^{2} \mu^{2}}$
Volume-averaged number of e-folds: $\quad\left\langle\mathcal{N}_{\phi}\right\rangle_{\mathrm{V}}=\left\{x\left(d^{2} \mu^{2}-6\right) \sin \left[\frac{\mu}{2}(x-2) \sqrt{12-d^{2} \mu^{2}}\right]+2(d-3 x+6) \sin \left(\frac{\mu}{2} x \sqrt{12-d^{2} \mu^{2}}\right)\right.$

$$
\left.-d^{2} \mu^{2} x \sqrt{\frac{12}{d^{2} \mu^{2}}-1} \cos \left[\frac{\mu}{2}(x-2) \sqrt{12-d^{2} \mu^{2}}\right]\right\}
$$

$$
\left(d^{2} \mu^{2} \sqrt{12-d^{2} \mu^{2}}\left[\sin \left(\frac{\mu}{2} \sqrt{12-d^{2} \mu^{2}}\right)+\sqrt{\frac{12}{d^{2} \mu^{2}}-1} \cos \left(\frac{\mu}{2} \sqrt{12-d^{2} \mu^{2}}\right)\right]\right.
$$

$$
\left.\left\{\sqrt{\frac{12}{d^{2} \mu^{2}}-1} \cos \left[\frac{\mu}{2}(x-1) \sqrt{12-d^{2} \mu^{2}}\right]-\sin \left[\frac{\mu}{2}(x-1) \sqrt{12-d^{2} \mu^{2}}\right]\right\}\right)^{-1}
$$

"Eternal " inflation

For $P_{\mathrm{FPT}, \Phi_{0}}(\mathcal{N}) \propto e^{-\Lambda \mathcal{N}}$ and $\Lambda \leq 3$ the volume-weighted distribution is not well-defined
Flat well
Mean volume well defined only for $\mu<\mu_{\mathrm{c}} \equiv \pi /(2 \sqrt{3}) \quad\left\langle e^{\left.3 \cdot \mathcal{N}_{\phi}\right\rangle}=\frac{\cos [\sqrt{3} \mu(1-x)]}{\cos (\sqrt{3} \mu)} \quad P_{\mathrm{FPT}, \phi}(\mathcal{N})=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)\right.$
If $\mu \ll \mu_{\mathrm{c}}$ the mean volume is order 1 (in σ-Hubble units): large-volume approximation does not apply

Need to work at values of μ close to (but smaller than) μ_{c}

Consequence:

for small x_{*} the tails of the 1-pt distributions $P\left(\zeta_{R}\right)$ are almost flat and $P\left(\zeta_{R}\right)$ peaks at rather large, negative values of ζ_{R}. In the large-volume approx. $R_{1}, R_{2} \ll r \rightarrow x_{1}, x_{2} \ll 1$, also the 2-pt distribution peaks at large negative values of $\zeta_{R_{1}}, \zeta_{R_{2}}$

Tilted well
$P_{\mathrm{FPT}, \phi}(\mathcal{N}) \propto e^{-\left(\pi^{2} / \mu^{2}+\mu^{2} d^{2} / 4\right) \cdot \mathcal{N}} \quad$ for large \mathcal{N}
Convergence conditions: $\alpha^{2}>12 v_{0}$ or $\alpha^{2}<12 v_{0}$ and $\mu<\pi / \sqrt{3-\alpha^{2} /\left(4 v_{0}\right)}$

[^0]: M. Raidal, V. Vaskonen, H. Veermäe [2017]
 G. Ballesteros, P. Serpico, M. Taoso (2018)
 S. Young, C. Byrnes [2019]

