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Central question: characterise the initial clustering which then determines the clustering evolution
throughout cosmic history
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Primordial black holes: clustering

Clustering: measures how much the spatial locations of PBHs are correlated

X X
Joint probability:  p(M;, X3 M, x5) ‘ r=|%,— X
r
M1’R1 M29 R2
If the positions are statistically independent: p(My, X' ; My, X)) = pp (X )Py, (X3)  Poisson distribution
.. . p(Mh?aMZa?_l_?)
Deviations from Poisson: éMl,Mz(r ) = 1 reduced correlation N. Kaiser [1984]
Py, Pm,
¢ > 0: positive clustering ; ¢ < 0: negative clustering
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Goal: clustering in the stochastic-oN formalism
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Stochastic-o/N formalism ..

Duration of inflation becomes a stochastic variable: 4/
\t’&” \
First-passage time problem: w NM "
S A W
dPgpr o(H) ;
dﬂ/ — gFP(q)) ) PFPT,(I)(‘/’/) PFPT,(I):(I)end('/V) — 5(e/V) ‘/’/1 /’/2

Prpr.o(A) x e for large values of A

ON(X, 1)
flat i
= (/TI\A\/ 6p =0 Lifshitz, Khalatnikov [1960]
{(t,x) = N(t, X)) — N(t) = 6N Starobinsky [1983]
N(x, 1) N(?) SN formalism Wands, Malik, Lyth, Liddle [2000]
wflza(t) v v Lin

Statistics of the duration of inflation (first passage time problem) gives the statistics of the coarse-grained

curvature perturbation in a non-perturbative way: [Enqvist, Nurmi, Podolsky, Rigopoulos [2008]

q Cg(X) =N —-N Vennin, Starobinsky [2015]
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Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the patch at which they become statistically independent K. Ando, V. Vennin [2021]

Extension to multiple-point statistics
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*
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Different regions of the universe inflate by different amounts ./
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface
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Distributions with respect to which observable quantities are defined should be volume weighted
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Extracting cosmological observables

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically
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Backward distribution: P(®@«|V, @) =
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Large-volume approximation

Ensemble average over the set of final leaves » Stochastic average of a single element within the ensemble
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Applications: quantum well
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Two-point distributions: tilted-well model
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Two-point distributions & clustering: tilted-well model
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— stochastic

35 - classical
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~—$ Larger distances r are covered in the stochastic calculation than in its classical counterpart

class 1/d

different relation between scales and field values: rodss = e versus ploch — 2313
maX

PBHs are correlated over longer distances once quantum diffusion is taken into account
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Final remarks

o Physical distances (measured by a local observer on the end-of-inflation hypersurface) and patches
during inflation linked by the emerging volume.

2 Different regions inflate by different amount: statistics are volume weighted.
** PBHs can be created with spatial correlation across longer distances if quantum diffusion is included.

%* On the tail, the reduced correlation does not depend of the threshold of formation:
universal clustering profile.

Next?

* Two-point distribution of the compaction function.

7S . . . .
** Numerical approaches (recursive sampling algorithm).

o . . .
* Phenomenological consequences, more realistic scenarios...
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Primordial Black Holes (PBHs) from inflation

Black holes which could have formed in the early Universe through a non-stellar way

Zel’dovich & Novikov [1967]
Hawking [1971]
Carr & Hawking [1974]

B. Carr, A. Green,

The History of Primordial Black Holes
[2024]

PBHs may originate from peaks of the density perturbations generated in the early universe

comoving
scales

(aH)™

| AcmB
S 6 |
W NV e
(T PBH™
. /IPBH
radiation era matter era
Inflation end “time

Inflationary epoch

(reheating) Hot Big Bang

~ ¢ > ¢~ 0(1)
k=aH



Primordial black holes as dark matter candidates

PBHs are good candidates of dark matter: stable non-baryonic, cold, could be formed in the right
abundance to be the dark matter

1015g

Not a new particle, but they require some physics beyond the standard model (e.g. inflation)

PBHs evaporate emitting Hawking radiation but they are stable if the initial mass M, 2

Current constraints

MpgH [g]
1015 1018 1021 1024 1027 1030 1033 1036
100 B ! ' | ! ! | ! ' | ! ' | ! ' | ! ' | ! ' | '_
S 10—1 =
E Microlensing 1 Asteroid mass range: 1017g <M< 1022g
|T~10—2— \3 PBHSs could be the totality of DM, i.e., fpgy = 1
) :
M
oy
10—3_
! | From A. Green 2024, Primordial
o4l black holes as a dark matter

1071 107 10712  10°° 10~° 1073
My [Mg)

candidate - a brief overview



Extracting cosmological observables

Inflationary era

A : Hot Big Bang
(aH)—l :
comoving
scales Scale k crosses the Hubble radius at
Ni = Nend o wa — Nend _ log(aendH/k)
classical problem stochastic problem
D 4 O

0 TS .-
: D,.(k) .
D.(k) -
(Dend (I)end
E< N bw > g
N, end N bw N, end N

one-to-one correspondence between k and @..(k) D..(k) is a random quantity endowed with a backward distribution



Extracting cosmological observables

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Pend
O (O, (R (2
oNe O—) O t\\ /’D

— 3N 5 (%)

v |, dx e B

Final volume: — =~ — = Egp, [e3/V@*(X)] @
V. J@ dx

Volume-averaged number of e-folds: W = Er, [/V %(7)] = N =—LEg, [63%9 (O @*(7)]

Distributions P(V| ®.) and P(V, W| ®..) can be numerically sampled

P(V|Q)P(@:| D) P(V[P)P(P | D)
P(V) | dD. P(V| ©.)P(D+ | D)

Backward distribution: P(®«|V,®,) =



Stochastic-o/NV formalism: coarse-graining at arbitrary scale

Pond IV A obs. universe B, (1t pena) T

.
ve®
"

- >
Lo 0 Po (cH) -1 physical scales

ch,R(Yo) = (p(X) = [E;*[ch(y)] = E;*[/Vgo(y)] — [E;O[/V@O(?)]

./V@O(X)=./V@O_>@*(X)+./V@*(X) .
Solutions of Fokker-Planck,

ch,R(YO) = (p(X) = /Vgsoﬁg;*(yo) + W(P.) — [E;JO[/V@O(Y)] adjoint Fokker-Planck eqs., etc

| | P(V,W|®.) |
PV('/V@O—M@* ) W‘ Va (D()) — d(D*PV('/V@O—)g’*)PP“/P((D*9 '/V@O_)@* ‘ (I)O) P(V) |

i )




Large-volume approximation

Ensemble average over the set of final leaves

r OO

» Stochastic average of a single element within the ensemble

Vo(V)  P(V|®.) =5y (V— V(e o)) (eo) = | Pppp g (N)e™"dN
J0
(N> )
W — (W) W (Np )y = <;I)3/V¢*>

CR(X ) = N g 0. (X ) + W(Px) — [E;O[/V@()(Y)]

» 2 Np s+ (Na)v— Ny

\\

P(CR‘(D()) —
J &

APty 5. (N s, = Cr = (N o)y + (N o)y P | Py)
\

\ &« 1 hypersurface of constant mean

forward volume

& first-passage time and location distribution

4 _ pV
PFPTL,(I)O—NS)*('/V(I)O—M\S)*’ (I)* ‘ (I)O) o PFPT,(I)O—>(§°*('/V(I)O—>S*)P((D* ‘ ‘/V(I)O—n\?*)

<63,/V¢*> — R3



Two-point statistics of the coarse-grained curvature perturbation
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How the curvature perturbations coarse grained at two different locations are correlated?
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Two-point statistics of the coarse-grained curvature perturbation
How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent K. Ando, V. Vennin [2021]

Extension to multiple-point statistics



Two-point statistics of the coarse-grained curvature perturbation
How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent K. Ando, V. Vennin [2021]

Extension to multiple-point statistics

Do N A obs. universe = —é pend
(O 2 )
(‘ ‘ (D 2
/ (D 7)2
P1
by
P
00
P — >
0 0 Po (0‘ H ) 1 physical scales



Two-point statistics of the coarse-grained curvature perturbation

How the curvature perturbations coarse grained at two different locations are correlated?
The distance between two patches is encoded in the time at which they become statistically independent K. Ando, V. Vennin [2021]

Extension to multiple-point statistics

N A obs. universe -

pend m—é pend
% 2% )
(‘ ‘ (2 2
/ D 7)2
P1
D/
P,
P
P — y
0 0 Po (0‘ H ) 1 physical scales

Large-volume approximation: g = N g s + (N ao)v = (No)v=Np s+ Noos, + {No)v—Na)v

* shared between the two regions: correlation

| P(r Cr, | D) = | dD.dD, dD,dN o, _ 5 P,

N , D,
FPTL,®0—>CS’*( @y P) &'« . field-space hypersurface where (63/'/‘1’*) = (’7/2)3

PF‘/laTL,®*—>51(CR1 —Nopns. T AN ao v — N )vs P

PIYI’TL,CD*—>¢S°2(CR2 o /V(I)O—>CS’* + <'/VCI)0>V o <‘/V(I)2>Va (DZ) :

&1 field-space hypersurfaces where (83/’/‘1%') = (Ri)3




Single-clock models
V()4

classical drift

® — ¢ : single-field models of inflation along a dynamical attractor (slow roll)
¥/ quantum diffusion

Hypersurfaces &'« of fixed mean final volume reduce to single points

Backward fields become deterministic quantities

Pep) = P F‘/PT,¢O—>¢* (z:R — (N gy

z A R R P T R R e s s = —ETTE CESEEIARETTEE = CEE = e SR & o e e - Y >

P(CRp CRz) — Jd*/’/¢0—>¢*(‘/’/¢0—>¢*)P}YPT,¢*—>¢1 (CRI o ‘/ngo—wﬁ* T <‘/V¢O>V o <‘/’/¢1>V> Pl}{PT,qb*—)gbz (CRQ - /V¢O_>¢* T </V¢O>V N <ﬂ/¢2>v> i

v _ P - R—— . —— . o




Power spectrum from the two-point statistics

Two-point correlation function of coarse-grained fields:

<CR1§R2> = dCRl dCRQP (CRlaCRz)CRICRz — <=/V Po— D+ Yv— AN Po— P+ = (6.4 0_>¢*>V = (6N 20>V <5=/V 2V

no dependence on the coarse-graining scales R, R,

In Fouri : — - dk TR A
n Fourier space: CR,-(xi):u o) Cpe " W

r OO

— (kR \ ~ [ kR,\ ~ { kr oo — [ kr
(Créry) = | dInkPOW{ — ) W | — | W{— e (Gl) = | dINkP O W (;>

J() Jo

Differentiation w.r.t. r:

_ _ 2
@é’(k) — a]n " <CRICRZ> ‘ r=a,,/k — aln r(é/ng*) ‘ r=a.,q/k r=r+ Rl + R2
| rf1 o L, 0 o . |
(@C(k) — = |3 a¢* 1n<€ 4’*) a¢* In H(¢>x< a¢* <5/V >V‘< 3N >1/3 1r endd;f(¢) 91n N/&gb /—61 /MPI
o fr V. Venninand A. A. Starobinsky [2015] Same expression at |l.o. in slow roll neglecting volume weighting

T. Fujita, M. Kawasaki, Y. Tada and T. Takesako [2013] and defining ¢ via (/) and not via <€3/V>



Consistency checks

(Cp)y vanishes

Lemma: ¢, ¢,, 5 such that ¢, > ¢, > ¢, then it is possible to split /V¢1—>¢3 = ﬂ/¢1_>¢2 + /V¢2_>¢3

,‘ where ¥ ., . N, 4, are first-passage times, and independent random variables (Markovianity)

/Vﬁbo

P FPT,c,bO(/V ¢0) = J dAy » L FPT,¢O—>¢*('/V bo N gb*)P FPT,q/)*('/V q/)*)
0

Convolution structure also applies to the volume-weighted statistics:

W,

3N
FPT Cbo(‘/’/%) X PFPT 450('/’/450) e P = J;) d,/ng PF‘J/PT o qb*('/’/ﬁbo ./V¢ ) FPT. . (,/V¢ )

Therefore:

N o= N gy T N4,

p N p) = N pop) TN ) = ANy dv =N gp v+ (Vv

(CrIv=0



Consistency checks:

Power spectrum from the one-point distribution

(6) = | PG = | APl gy (Ge+ F by = (D) = I = Dy = )+ )}

— <5/V20>V ~ <5/’/2*>V

- n_ | = (kR
In Fourier space: () = | PA)W= | — | dInk

A

— 0 2
Pk) = ———(C3)

differentiation w.r.t. R: R=a, /k

Second moment of {j is consistent with the calculation of the power spectrum from the two-point statistics



Consistency checks

Marginalisation

One-point statistics can be obtained from the two-point statistics upon marginalisation:

JdCRzp(CRI Z.:R) — JdCszd/V¢ — @ VPT ¢o—>¢*('/’/¢o_>¢) FPT, - _>¢1(CR '/ngo—>gb* + <'/ng0>V o <‘/’/¢1>V)
X PIXPTgb _>¢2(CR2 ,/V¢0_>¢* + (/V¢ >V (/V¢ >V) — ) normalisation of the

FPT distribution
Vv
'[de/’/gb()—%b PFPT Po— P+ (/V¢O—>¢ ) FPT, - _>¢1(Z:R1 — A/¢O_>¢* + <A/¢O>V — <‘/’/§/)1>V)

Lemma: ¢ < e <Py ——p Ny 4 =Ny p.t Vs independent

v
d'/VCbo — - PFPT Po— P+ ('/VCb — - ) FPT N2 —>¢1(°/V¢0—>¢1 - °/V¢o—>¢ ) o FPT ¢o—>¢1(°/’/¢0—>¢1)

dCRzp(CRl CR) = FPT Po— Py [CRI T </V¢0>V B <'/V¢1>V] = P((:Rl)




Applications

| | S O G | ; , V' 0 0* B o
Single-field slow-roll models of inflation TR 27[5 LpplP) = = M, v ¢ + VT# v = VI(24n"Mp)

quantum wells:
V)] 2

V=V Yy = VO (1
— 70
absorbing ——— exact analytical solution .
boundary absorbmg
. N boundary
0 - AN

. reflective
' boundary

quantum well 1 reflective

: boundary approx. solution in the
' almost-constant regime: 4

quantum well

5 5 R AD P/ Mp < 1
Dend Dend T Adyen ¢ : : .
¢end ¢end + A¢well ¢
. r‘m . . a
xt, ) = (™) = dNe™ Pepy (W) LDyt ) = — ity (1, D) X, Peng) = 1 @X 6P g, =Y

! COS[\/i—fﬂ (x—1)] T T 2y '
)(/V(ta @) = : PFPT,(/;(/V) = 5 21% (5% e w )
| cos[/it u] H X = (¢ = Pend)! Ay
| 2t = 3, ) n i 9 : AB2,
)()l//(t,gb) = (N )y = Xt )| _ .. ? p’ = 211
f ff VoM,

X (=30, ) (=31, ) or




One-point distributions

v

Vo

10? 5

10! E

1072 E

A
1
1
I s
\

—— 2,=038

Ty = 0.0

=04 | } Tails
—— z.=02
----- analytical PB I—

100 .

R decreases

become heavier

(mass fraction tilted towards smaller masses)

I

s mostly form at scales emerging close to the end of the well

Cr +2”?(1 — X )tan [\/5/4(1 —x*)] }

exponential-tail profile

wcos V3L —x)pu| [, 2
\ . . 3 —
Tail behaviour:  p(£,) ~ : p L 40 —x0%u
T T ‘ I\\_ | \\\ | (:_ —_— x*)z ”2
—0.5 0.0 0.5 1.0 1.5 2.0
CR
v =vy(1 + ap/Mp) v = vl + ag/Mp)
9 —t— 2.=0.8 ' 2 —— 2. =08
dy 125 . = 0.6 10° du~ = 50.7 zy = 0.6
Ty = 0.4 R A T, = 0.4
analytical /(,«:::- -----:::“_ ---------- analytical
z”’// ~~~~~~~~~~~~
/E 1071 - /// /I/ \\\’::::Z~~\ aA¢
i\_ﬁ/ ,I/ IIII \*\:: \\\\\\\\\\
/ / \\\\ RN
\\ Qi‘ ,// :'"l " o
\ \\\\ 10—2 _ III ,l’ Wli \,
\\ N ; / I “ '
™ \‘\ II l, AN
\ N ] I N
N N / [ \\
! \\ " l'
¢ N I 1
k \\ \\ 10—3 J" " L
-2 —1 0 1 2 3 -3 —2 —1 0 1 2 3
CR CR

wel

I (VoMpy) = du* — oo :

classical limit



Two-point distributions: flat-well model

From numerical integration of exact analytical formula of the 2-pt distribution

L 0.08

T 0.07
T 0.06
T 0.05
T 0.04
T 0.03
T 0.02

T 0.01
~ 0.00

- 107!
1072
=
= 3
S U
I
oy
[\)
N—
103
104
R =R,
- 0.08 htj
T 0.08 —
o
T 0.06 0.06 =
I
T 0.04 oy
[\
N——
T 0.02 0.04
0.02 6




Two-point distributions: flat-well model

<7r1—x*> <7T1—x*)
COS 2 1—x cOS 2 1-x
) 1 | 1
COS [\/g,u(l—x*)] cosh{\/gﬂ(l—x*)\/l 1272 [(l_xl)z | (1x2)2]}

Tail behaviour:  P(Cg,Cr) = P(Cg)P(CR)

— (g, =2
— (g, =1
- CR2 = 0.1
N — (g, =—1
@ ----- tail expansion
= The two final regions do not share any parent node :
1072 - they cannot be correlated

For x. — 1 the joint distribution factorises: P(CRI, CRz) = P(CRl) P(CRl)




Clustering: flat-well model

For simplicity, we consider that a PBH forms when {, > {., where (. is a threshold value of order unity

o0
1-pt probability: Py = | P(Cr) dlg | p(M,, M,, )
e reduced correlation: Sy, 1) =
~ 00 Pwm, Pm,
2-pt probability: Py, (") = | PCg>Cr,) dCg dCp,
N Z:c
71— x k4 I — x.
cos | 37— ) cos (37,
5M1,M2(”) = — 1
T2 1 1
SR T Y e e |
0.0030 exact
----- tail expansion
0.0025
gra For x. — 1 the two-point distribution factorises: ¢y, 5, — 0
g 0.0015
=
L 0.0010
- For small values of x.: gy, , reaches a maximum when r ~ R + R,
( for smaller values one enters the exclusion zone)
0.0000

0.5 0.6 0.7 0.8 0.9 1.0



Two-point distributions: tilted-well model du? = 125

100

analytical approx.

numerical simulations
L, results

104
~
I~ ~
oy >
; 5
I =
10—6{53 N
N I
X
N
~—
1078
| —— ¢p >~ 118
1 —— (g, ~ —0.86
+ 05 | —— ¢r, ~0.03 , 7
4 —l— CRQ ~ 0.43 (- 1z e ‘\~
- — - analytical 3

1[)(<:f%17 (:f%2

—2.0 —-1.5 —-1.0 -0.5 0.0 0.5




Stochastic-0/N formalism

Full PDF of the first passage time: characteristic function

= Gios oo e Gips ool oo .- s PP es: AR AN P AN SNg e, = SR _ o TR 2 ages ey s

| ) = () = [ e PN, ) dN

Loatd)=—ityt. )  x(t Popg) = 1

e Useful trick: pole expansion

2ty =) Aa ”@t + g(t, @)

n 1

b PV =) ap)e ™"

n

O<A0<A1 < "'An

n

e Main task: find poles and residues of the characteristic function

Poles: zeros of the inverse characteristic function

| o _ NN
Residues: a,(¢p) = —1 — X (t=—iA,, ¢)




Comparison with the classical limit

Leading order in perturbation theory:
curvature perturbation ¢ (and also its coarse-grained version () features Gaussian statistics

»a/R

variance:  ox = () = | dInkPuk) Pr=2vyla* in the titled-well model
Jo . |
kIR — aendH e_l/d
o] | 1 é’c
I-pt probability:  {p,, = —ertc
: 9) 5
207
~alr
covariance: 01%1 , 01%2 T = (G () (X 4+ 7)) =|  dInkPy(k)
Jo

_ —1/d
kir = aopngHe

2-pt probability:




Analytical results in the flat-well model

I-pt distribution: P (CR) —

mcos [V3 (1 — zy)p] o (w

( 5 5| = _(1—;*2)2“2 {CR#' 2%(1—m*)tan[ﬁu(l—m*)]})

9
o 63{§R | 2%(1—x*)tan[ﬁu(1—x*)]}

3 cos [V3 (1 — z1)] cos [V3 (1 — a2)]

2-pt distribution:  P((g,,(R,) = 816(1 — 7,)2(1 — 71)2(1 — x2)2 COS [ﬂu(l — :B*)]

2
T ——5= Noo—sbs
/d/\/(,)ﬁqs*ﬁ’g (5,6 2a—an2 %0 ¢>

21— L1
2
/2 (ﬂ-x* — 2 _u2(17r z9)? (CR2 Noo— ¢+ <N¢0>V_<N¢2>V))
21— i)

Volume-averaged number of e-folds: Ny = _H {tan (\/i?,u) — (1 —z) tan [@,u (1 — a:)] }

1
V3w

arccos [(O'RH )3 cos (\/§ ,u)]

Field values - coarse-graining size relation: xz4+(R) =1



Analytical results in the tilted-well model
\/4zt — d?u? cos (”’ L\/4it — d?p? ,u) dp sin ("’T_l\/élz't — d?p? ',u)

\V4it — d?p? cos (%\/42'15 — d?p? ,u) + dp sin (%\/42'15 — d?p? ',u)

Characteristic function: — xn(t, @) = "7

T z_ p?d? T —IN
FPT distribution: Prpr,g(N) = zuzeﬂ% B N%(?x ° )

\/12 2112 cos("" =1, /12 — @22 u) dy sin (%1\/12—d2u2p)

Mean volume: ; 3w,
€
< > \/12—d2,u COS (%\/12—d2u )-|-d,usin (%\/12—d2,u2')

2
21—6d“x

Mean number of e-folds:  (Ny) = g + e~ 2,2

Volume-averaged number of e-folds: Noly :{x (@4 ~ 6) sin [ 2)V12 -~ dip 2] T 2(d =3z +6)sin ( o/12 — d%y” )
- d2u2x\/d222 1 cos [ 2912 — d2p ] }
(d%ﬂ\/m — 242 |sin (‘21\/12 — 2 ) + \/ 121 cos (g\/u — 2 )]

d2 2

| 1
{\/d;iz 1 cos | £ (z—1)v/12— 2% | —sin | £ (2 - 1)\/12—d2ﬂ2]}>




‘“Eternal ” inflation

For Pepr ¢ (W) e ™ and A < 3 the volume-weighted distribution is not well-defined

Flat well

Mean volume well defined only for y < p. = ﬂ/(2\/§) (e4) =

COS J7;

If 4 << u. the mean volume is order 1 (in o-Hubble units): large-volume approximation does not apply

e 3 Need to work at values of u close to (but smaller than ) 4, }

Consequence:
for small x: the tails of the 1-pt distributions P({y) are almost flat and P({3) peaks at rather large, negative values of (5.
In the large-volume approx. R}, R, <r — x1,x, < 1, also the 2-pt distribution peaks at large negative values of Cg , Cg.

Tilted well

Prpr g(N) e~ (W H )N for |arge N

Convergence conditions: a > 12v, or a* < 12vy and u < 71'/\/3 — a’/(4vy)



