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(σaH)−1

super-σH

sub-σH

k−1

N = log a

Effective theory for the long-wavelength part of quantum fields during inflation, which are coarse grained 
above the Hubble radius

Φ = (ϕ1, π1, …ϕn, πn) πi = dϕi/dN
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N𝒩1 𝒩2

Φend

Duration of inflation becomes a stochastic variable: 𝒩

dPFPT,Φ(𝒩)
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FP(Φ) ⋅ PFPT,Φ(𝒩) PFPT,Φ=Φend

(𝒩) = δ(𝒩)

First-passage time problem: 

PFPT,Φ(𝒩) ∝ e−Λ0𝒩 for large values of 𝒩
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Statistics of the duration of inflation (first passage time problem) gives the statistics of the coarse-grained 
curvature perturbation in a non-perturbative way:

ζcg(x) = 𝒩 − N

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]
Vennin, Starobinsky [2015]
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𝒫0

ρend

!*

𝒫*

𝒫*

𝒫1
𝒫2

𝒫0

ζcg,Ri
( ⃗x i) ≡ ζRi

( ⃗x i) = 𝔼V
𝒫i

[𝒩𝒫0
( ⃗x )] − 𝔼V

𝒫0
[𝒩𝒫0

( ⃗x )]

𝒩𝒫0
( ⃗x i) = 𝒩𝒫0→𝒫*

( ⃗x ) + 𝒩𝒫*→𝒫i
( ⃗x i) + 𝒩𝒫i

( ⃗x i)
Shared history
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∫ ∞
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(𝒩) e3𝒩

P(ζcg |Φ0) = PV
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(ζcg + 𝔼V
𝒫0

(𝒩𝒫0
))ζcg( ⃗x ) = 𝒩𝒫0

( ⃗x ) − 𝔼V
𝒫0

(𝒩𝒫0
)

7



Extracting cosmological observables

8



Extracting cosmological observables
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V
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Applications: quantum well

v(ϕ)

absorbing  
boundary

reflective  
boundary 

ϕend ϕend + Δϕwell ϕ

quantum well

v = v0 (1 + α
ϕ

MPl )
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Two-point distributions: tilted-well model
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P(ζR1
, ζR2

) = P(ζR1
) P(ζR1

)
aV(x*, x1)
aV(x0, x1)

aV(x*, x2)
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FPT,x0→x*
(𝒩x0→x*

)e [ μ2d2
2 + π2

μ2(1 − x1)2
+ π2

μ2(1 − x2)2
−6]𝒩x0→x*

Two-point distributions & clustering: tilted-well model
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aV(x) = a0(x)/⟨e3𝒩x⟩
lowest residue of the  
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PBHs can be created with spatial correlation across longer distances if quantum diffusion is included.

Physical distances (measured by a local observer on the end-of-inflation hypersurface) and patches 
during inflation linked by the emerging volume.

Different regions inflate by different amount: statistics are volume weighted.

14 

Final remarks

On the tail, the reduced correlation does not depend of the threshold of formation: 
universal clustering profile.

Next?

Two-point distribution of the compaction function. 

Numerical approaches (recursive sampling algorithm).

Phenomenological consequences, more realistic scenarios…
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Final remarks

On the tail, the reduced correlation does not depend of the threshold of formation: 
universal clustering profile.

Next?

Two-point distribution of the compaction function. 

Numerical approaches (recursive sampling algorithm).

Phenomenological consequences, more realistic scenarios…
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PBHs may originate from peaks of the density perturbations generated in the early universe  

Inflationary epoch Inflation end 
(reheating)

time
Hot Big Bang

ζ
̂ζ ⃗k

δ

(aH)−1

λPBH

λCMB

radiation era matter era

PBH

comoving 
scales

δ ∼
δρ
ρ

k=aH

∼ ζ > ζc ∼ 𝒪(1)

Primordial Black Holes (PBHs) from inflation Hawking [1971] 
Carr & Hawking [1974]

Black holes which could have formed in the early Universe through a non-stellar way

Zel’dovich & Novikov [1967]

1

B. Carr, A. Green, 
The History of Primordial Black Holes
[2024]



Primordial black holes as dark matter candidates
PBHs are good candidates of dark matter: stable, non-baryonic, cold, could be formed in the right 
abundance to be the dark matter

PBHs evaporate emitting Hawking radiation but they are stable if the initial mass  Min ≳ 1015g
Not a new particle, but they require some physics beyond the standard model (e.g. inflation)

Current constraints

From A. Green 2024, Primordial 
black holes as a dark matter 
candidate - a brief overview

Asteroid mass range:  
PBHs could be the totality of DM, i.e., 

1017g ≲ M ≲ 1022g
fPBH = 1



Extracting cosmological observables

N

(aH)−1

k−1

NendNend − Nbw

Nbw

Inflationary era Hot Big Bang

comoving 
scales Scale  crosses the Hubble radius at  k

N* = Nend − Nbw = Nend − log(aendH/k)

Φ

N

Φend

Φ*(k)

NendNend − Nbw

Nbw

classical problem

 one-to-one correspondence between  and k Φ*(k)

Φ

N𝒩1 𝒩2

Φend

𝒩1 − Nbw 𝒩2 − Nbw

Φ*(k)
Φ*(k)

stochastic problem

 is a random quantity endowed  with a backward distributionΦ*(k)



Extracting cosmological observables

W ≡ 𝔼V
𝒫* [𝒩𝒫*

( ⃗x )] =
∫

𝒫*
e3𝒩𝒫*

( ⃗x )𝒩𝒫*
( ⃗x )d ⃗x

∫
𝒫*

e3𝒩𝒫*( ⃗x )d ⃗x
=

V*

V
𝔼𝒫* [e3𝒩𝒫*

( ⃗x )𝒩𝒫*
( ⃗x )]Volume-averaged number of -folds:e

Distributions  and  can be numerically sampledP(V |Φ*) P(V, W |Φ*)

P(Φ* |V, Φ0) =
P(V |Φ*)P(Φ* |Φ0)

P(V )
=

P(V |Φ*)P(Φ* |Φ0)
∫ dΦ* P(V |Φ*)P(Φ* |Φ0)

Backward distribution:

Relation between field values and physical distances encoded in the structure  of a universe which inflates stochastically

V

𝒫0 Φ0

ρend

!*

𝒫*
Φ*

V* = (σH)−3

𝒫0

V

V
V*

=
∫

𝒫*
d ⃗x e3𝒩𝒫*

( ⃗x )

∫
𝒫*

d ⃗x
= 𝔼𝒫* [e3𝒩𝒫*

( ⃗x )]Final volume:



Stochastic-  formalism: coarse-graining at arbitrary scaleδN

ρend

!* 𝒫0

𝒫*

ζcg,R( ⃗x 0) ≡ ζR( ⃗x 0) = 𝔼V
𝒫*

[ζcg( ⃗x )] = 𝔼V
𝒫*

[𝒩𝒫0
( ⃗x )] − 𝔼V

𝒫0
[𝒩𝒫0

( ⃗x )]

ζcg,R( ⃗x 0) ≡ ζR( ⃗x 0) = 𝒩𝒫0→𝒫*
( ⃗x 0) + W(𝒫*) − 𝔼V

𝒫0
[𝒩𝒫0

( ⃗x )]

𝒩𝒫0
( ⃗x ) = 𝒩𝒫0→𝒫*

( ⃗x ) + 𝒩𝒫*
( ⃗x )

Shared history
Solutions of Fokker-Planck,  
adjoint Fokker-Planck eqs., etc

PV(𝒩𝒫0→𝒫*
, W |V, Φ0) = ∫ dΦ*PV(𝒩𝒫0→𝒫*

)PV
FP(Φ*, 𝒩𝒫0→𝒫*

|Φ0)
P(V, W |Φ*)

P(V ) Can be numerically sampled



Large-volume approximation

R3 ≫ (σH)−3

Ensemble average over the set of final leaves Stochastic average of a single element within the ensemble

P(V |Φ*) ≃ δD(V − V*⟨e3𝒩Φ*⟩) ⟨e3𝒩Φ*⟩ = ∫
∞

0
PFPT,Φ*

(𝒩)e3𝒩d𝒩

W → ⟨W⟩ W ≃ ⟨𝒩Φ*
⟩V =

⟨𝒩Φ*
e3𝒩Φ*⟩

⟨e3𝒩Φ*⟩

V → ⟨V⟩

ζR( ⃗x 0) = 𝒩𝒫0→𝒫*
( ⃗x 0) + W(𝒫*) − 𝔼V

𝒫0
[𝒩𝒫0

( ⃗x )]

 : hypersurface of constant mean 
       forward volume 
𝒮*

⟨e3𝒩Φ*⟩ = R3

ζR ≃ 𝒩𝒫0→𝒮*
+ ⟨𝒩Φ*

⟩V − ⟨𝒩Φ0
⟩V

P(ζR |Φ0) = ∫𝒮*

dΦ*PV
FPTL,Φ0→𝒮*

(𝒩𝒫0→𝒮*
= ζR − ⟨𝒩Φ*

⟩V + ⟨𝒩Φ0
⟩V, Φ* |Φ0)

PV
FPTL,Φ0→𝒮*

(𝒩Φ0→𝒮*
, Φ* |Φ0) = PV

FPT,Φ0→𝒮*
(𝒩Φ0→𝒮*

)P(Φ* |𝒩Φ0→𝒮*
)

first-passage time and location distribution



Two-point statistics of the coarse-grained curvature perturbation
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𝒫0

ρend

!*

𝒫*

𝒫*

𝒫1
𝒫2

𝒫0
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Two-point statistics of the coarse-grained curvature perturbation
How the curvature perturbations coarse grained at two different locations are correlated?

𝒫0

ρend

!*

𝒫*

𝒫*

𝒫1
𝒫2

𝒫0

The distance between two patches is encoded in the time at which they become statistically independent K. Ando, V. Vennin [2021] 

Extension to multiple-point statistics

Large-volume approximation: ζRi
= 𝒩𝒫0→𝒮i

+ ⟨𝒩Φi
⟩V − ⟨𝒩Φ0

⟩V = 𝒩𝒫0→𝒮*
+ 𝒩Φ*→𝒮i

+ ⟨𝒩Φi
⟩V − ⟨𝒩Φ0

⟩V

P(ζR1
, ζR2

|Φ0) = ∫ dΦ* dΦ1 dΦ2 d𝒩Φ0→𝒮*
PV

FPTL,Φ0→𝒮*
(𝒩Φ0→𝒮*

, Φ*)

PV
FPTL,Φ*→𝒮1

(ζR1
− 𝒩Φ0→𝒮*

+ ⟨𝒩Φ0
⟩V − ⟨𝒩Φ1

⟩V, Φ1)

PV
FPTL,Φ*→𝒮2

(ζR2
− 𝒩Φ0→𝒮*

+ ⟨𝒩Φ0
⟩V − ⟨𝒩Φ2

⟩V, Φ2)

𝒮* : field-space hypersurface where  ⟨e3𝒩Φ*⟩ = (r̃/2)3

𝒮i : field-space hypersurfaces where  ⟨e3𝒩Φi⟩ = (Ri)3

shared between the two regions: correlation



Single-clock models

Φ → ϕ : single-field models of inflation along a dynamical attractor (slow roll)

Hypersurfaces  of fixed mean final volume reduce to single points 𝒮*

Backward fields become deterministic quantities

P(ζR) = PV
FPT,ϕ0→ϕ* (ζR − ⟨𝒩ϕ*

⟩V + ⟨𝒩ϕ0
⟩V)

P(ζR1
, ζR2

) = ∫ d𝒩ϕ0→ϕ*
(𝒩ϕ0→ϕ*

)PV
FPT,ϕ*→ϕ1 (ζR1

− 𝒩ϕ0→ϕ*
+ ⟨𝒩ϕ0

⟩V − ⟨𝒩ϕ1
⟩V) PV

FPT,ϕ*→ϕ2 (ζR2
− 𝒩ϕ0→ϕ*

+ ⟨𝒩ϕ0
⟩V − ⟨𝒩ϕ2

⟩V)

ϕ

V(ϕ) classical drift

quantum diffusion



Power spectrum from the two-point statistics
Two-point correlation function of coarse-grained fields:

⟨ζR1
ζR2

⟩ = ∫ dζR1 ∫ dζR2
P(ζR1

, ζR2
)ζR1

ζR2
= ⟨𝒩2

ϕ0→ϕ*
⟩V − ⟨𝒩ϕ0→ϕ*

⟩2
V ≡ ⟨δ𝒩2

ϕ0→ϕ*
⟩V = ⟨δ𝒩2

ϕ0
⟩V − ⟨δ𝒩2

ϕ*
⟩V

no dependence on the coarse-graining scales R1, R2

In Fourier space: ζRi
( ⃗x i) = ∫

d ⃗k
(2π)3/2

ζ ⃗k ei ⃗k ⋅ ⃗x i W̃ ( kRi

a )
⟨ζR1

ζR2
⟩ = ∫

∞

0
d ln k𝒫ζ(k)W̃ ( kr

a )r > R1, R2
⟨ζR1

ζR2
⟩ = ∫

∞

0
d ln k 𝒫ζ(k)W̃ ( kR1

a ) W̃ ( kR2

a ) W̃ ( kr
a )

Differentiation w.r.t. :r

𝒫ζ(k) = −
∂

∂ ln r
⟨ζR1

ζR2
⟩ r=aend/k =

∂
∂ ln r

⟨δ𝒩ϕ*
⟩2

r=aend/k

𝒫ζ(k) =
r
r̃ [ 1

3
∂

∂ϕ*
ln⟨e3𝒩ϕ*⟩ −

∂
∂ϕ*

ln H(ϕ*)]
−1 ∂

∂ϕ*
⟨δ𝒩2

ϕ*
⟩V ⟨e3𝒩ϕ*⟩1/3= 1

2
r
r̃

aendσH(ϕ*)
k

V. Vennin and A. A. Starobinsky [2015]
T. Fujita, M. Kawasaki, Y. Tada and T. Takesako [2013]c.f.r. Same expression at l.o. in slow roll neglecting volume weighting 

 and defining  via  and not via ϕ* ⟨𝒩⟩ ⟨e3𝒩⟩

r̃ = r + R1 + R2

r ≫ R1, R2 →
r
r̃

≃ 1

∂ ln N/∂ϕ ≃ ϵ1/2 /MPl



   vanishes⟨ζR⟩V

Lemma:  such that , then it is possible to split  

where  are first-passage times, and independent random variables (Markovianity)

ϕ1, ϕ2, ϕ3 ϕ1 > ϕ2 > ϕ3 𝒩ϕ1→ϕ3
= 𝒩ϕ1→ϕ2

+ 𝒩ϕ2→ϕ3

𝒩ϕ1→ϕ2
, 𝒩ϕ2→ϕ3

𝒩ϕ0
= 𝒩ϕ0→ϕ*

+ 𝒩ϕ* ⟨𝒩ϕ0
⟩ = ⟨𝒩ϕ0→ϕ*

⟩ + ⟨𝒩ϕ*
⟩

⟨ζR⟩V = 0

Consistency checks

PFPT,ϕ0
(𝒩ϕ0

) = ∫
𝒩ϕ0

0
d𝒩ϕ*

PFPT,ϕ0→ϕ*
(𝒩ϕ0

− 𝒩ϕ*
)PFPT,ϕ*

(𝒩ϕ*
)

PV
FPT,ϕ0

(𝒩ϕ0
) ∝ PFPT,ϕ0

(𝒩ϕ0
) e3𝒩ϕ0 = ∫

𝒩ϕ0

0
d𝒩ϕ*

PV
FPT,ϕ0→ϕ*

(𝒩ϕ0
− 𝒩ϕ*

)PV
FPT,ϕ*

(𝒩ϕ*
)

⟨𝒩ϕ0
⟩V = ⟨𝒩ϕ0→ϕ*

⟩V + ⟨𝒩ϕ*
⟩V

Convolution structure also applies to the volume-weighted statistics:

Therefore:



Power spectrum from the one-point distribution

Second moment of  is consistent with the calculation of the power spectrum from the two-point statisticsζR

⟨ζ2
R ⟩ = ∫ ζ2

RP(ζR) dζR = ∫ dζRPV
FPT,ϕ0→ϕ* (ζR + ⟨𝒩ϕ0

⟩V − ⟨𝒩ϕ*
⟩V) ζ2

R = ⟨𝒩2
ϕ0

⟩V − ⟨𝒩2
ϕ*

⟩V − ⟨𝒩ϕ0
⟩2

V + ⟨𝒩ϕ*
⟩2

V

= ⟨δ𝒩2
ϕ0

⟩V − ⟨δ𝒩2
ϕ*

⟩V

In Fourier space: ⟨ζ2
R⟩ = ∫ 𝒫ζ(k)W̃2 ( kR

a ) d ln k

differentiation w.r.t. R:
𝒫ζ(k) = −

∂
∂ ln R

⟨ζ2
R⟩

R=aend/k

=
∂

∂ ln R
⟨δ𝒩2

ϕ*
⟩

R=aend/k

Consistency checks:



Marginalisation

One-point statistics can be obtained from the two-point statistics upon marginalisation:

∫ dζR2
P(ζR1

, ζR2
) = ∫ dζR2 ∫ d𝒩ϕ0→ϕ*

PV
FPT,ϕ0→ϕ*

(𝒩ϕ0→ϕ*
)PV

FPT,ϕ*→ϕ1
(ζR1

− 𝒩ϕ0→ϕ*
+ ⟨𝒩ϕ0

⟩V − ⟨𝒩ϕ1
⟩V)

× PV
FPT,ϕ*→ϕ2

(ζR2
− 𝒩ϕ0→ϕ*

+ ⟨𝒩ϕ0
⟩V − ⟨𝒩ϕ2

⟩V) =

∫ d𝒩ϕ0→ϕ*
PV

FPT,ϕ0→ϕ*
(𝒩ϕ0→ϕ*

)PV
FPT,ϕ*→ϕ1

(ζR1
− 𝒩ϕ0→ϕ*

+ ⟨𝒩ϕ0
⟩V − ⟨𝒩ϕ1

⟩V)

Consistency checks

normalisation of the  
FPT distribution

ϕ1 < ϕ* < ϕ0 𝒩ϕ0→ϕ1
= 𝒩ϕ0→ϕ*

+ 𝒩ϕ*→ϕ1
Lemma: independent

∫ dζR2
P(ζR1

, ζR2
) = PV

FPT,ϕ0→ϕ1 [ζR1
+ ⟨𝒩ϕ0

⟩V − ⟨𝒩ϕ1
⟩V] ≡ P(ζR1

)

∫ d𝒩ϕ0→ϕ*
PV

FPT,ϕ0→ϕ*
(𝒩ϕ0→ϕ*

) PV
FPT,ϕ*→ϕ1

(𝒩ϕ0→ϕ1
− 𝒩ϕ0→ϕ*

) = PV
FPT,ϕ0→ϕ1

(𝒩ϕ0→ϕ1
)



Applications

v(ϕ)

absorbing  
boundary

reflective  
boundary 

ϕend ϕend + Δϕwell ϕ

quantum well

v = v0 (1 + α
ϕ

MPl )

Single-field slow-roll models of inflation
∂ϕ
∂N

= −
V′ 

3H2
+

H
2π

ξ ℒ†
FP(ϕ) = − M2

Pl
v′ 

v
∂

∂ϕ
+ v

∂2

∂ϕ2
v ≡ V/(24π2M4

Pl)

ϕend ϕend + Δϕwell

v(ϕ)

quantum well
v0

reflective 
 boundary

absorbing  
boundary

ϕ

quantum wells:

v = v0
exact analytical  solution

approx. solution in the  
almost-constant regime:  
αΔϕwell/MPl ≪ 1

χ𝒩(t, ϕ) = ⟨eit𝒩⟩ = ∫
∞

−∞
d𝒩eit𝒩PFPT,ϕ(𝒩) ℒ†

FP(ϕ)χ𝒩(t, ϕ) = − itχ𝒩(t, ϕ) χ(t, ϕend) = 1
∂

∂ϕ
χ(t, ϕ) |ϕend+Δϕwell

= 0

χ𝒩(t, ϕ) =
cos[ it μ (x − 1)]

cos[ it μ]

χV
𝒩(t,ϕ) =

χ𝒩(t − 3i, ϕ)
χ𝒩(−3i, ϕ)

⟨𝒩n
ϕ⟩V =

i−n

χ𝒩(−3i, ϕ)
∂
∂t

χ𝒩(t, ϕ) t=−3i

PFPT,ϕ(𝒩) = −
π

2μ2
ϑ′ 2 ( π

2
x, e− π2

μ2 𝒩)
x = (ϕ − ϕend)/Δϕwell

μ2 =
Δϕ2

well

v0M2
Pl



One-point distributions

Tail behaviour: P(ζR) ≃
π cos [ 3(1 − x*) μ]

(1 − x*)2 μ2
e [3− π2

4(1 − x*)2μ2 ]{ζR + μ
2 3

(1 − x*)tan [ 3μ (1 − x*)]}
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αΔϕwell /(v0MPl) ≡ dμ2 → ∞ :

classical limit

dμ2 = 125 dμ2 = 50.7

v = v0(1 + αϕ/MPl)v = v0(1 + αϕ/MPl)

 decreasesR
Tails become heavier

PBHs mostly form at scales emerging close to the end of the well  
(mass fraction tilted towards smaller masses)



Two-point distributions: flat-well model
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From numerical integration of exact analytical formula of the 2-pt distribution 



Tail behaviour: P(ζR1
, ζR2

) ≃ P(ζR1
)P(ζR2

)
cos ( π

2
1 − x*
1 − x1 ) cos ( π

2
1 − x*
1 − x2 )

cos [ 3μ(1 − x*)] cosh { 3μ(1 − x*) 1 − π2

12μ2 [ 1
(1 − x1)2 + 1

(1 − x2)2 ]}
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tail expansion

For  the joint distribution factorises: x* → 1 P(ζR1
, ζR2

) = P(ζR1
) P(ζR1

)

ρend

!*

𝒫1

𝒫2

ζR1
ζR2

The two final regions do not share any parent node : 
 they cannot be correlated

Two-point distributions: flat-well model



Clustering: flat-well model

For simplicity, we consider that a PBH forms when  where  is a threshold value of order unity ζR > ζc , ζc

ξM1,M2
(r) ≃

cos ( π
2

1 − x*
1 − x1 ) cos ( π

2
1 − x*
1 − x2 )

cos [ 3μ(1 − x*)] cosh { 3μ(1 − x*) 1 − π2

12μ2 [ 1
(1 − x1)2 + 1

(1 − x2)2 ]}
− 1

For small values of :  reaches a maximum when   
( for smaller values one enters the exclusion zone)

x* ξM1,M2
r ≃ R1 + R2

For  the two-point distribution factorises:  x* → 1 ξM1,M2
→ 0
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tail expansion

pM = ∫
∞

ζc

P(ζR) dζR

pM1,M2
(r) = ∫

∞

ζc

P(ζR1
, ζR2

) dζR1
dζR2

1-pt probability:

2-pt probability:

ξM1,M2
(r) =

p(M1, M2, r)
pM1

pM2

− 1reduced correlation:



Two-point distributions: tilted-well model dμ2 = 125
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Stochastic-  formalismδN
Full  PDF of the first passage time: characteristic function

χ(t, ϕ) ≡ ⟨eit𝒩⟩ = ∫
∞

−∞
eit𝒩P(𝒩, ϕ) d𝒩

χ(t, ϕend) = 1

Useful trick: pole expansion

χ(t, ϕ) = ∑
n

an(ϕ)
Λn − i t

+ g(t, ϕ) P(𝒩, ϕ) = ∑
n

an(ϕ) e−Λn 𝒩

0 < Λ0 < Λ1 < ⋯Λn

Tail expansion: higher  terms suppressed at large  n 𝒩

Main task: find poles and residues of the characteristic function

Poles: zeros of the inverse characteristic function 

Residues: an(ϕ) = − i [ ∂
∂t

χ−1(t = − iΛn, ϕ)]
−1

Tail of the PDF for  has an exponential fall-off behaviourζ

ℒ†
FP ⋅ χ(t, ϕ) = − i t χ(t, ϕ)

P(𝒩, ϕ) =
1

2π ∫
+∞

−∞
e−it𝒩 χ(t, ϕ) dt

[J.M. Ezquiaga, J. Garcia-Bellido, V. Vennin (2020)]



Comparison with the classical limit

Leading order in perturbation theory:  
curvature perturbation  (and also its coarse-grained version ) features Gaussian statisticsζ ζR

σ2
R ≡ ⟨ζ2

R⟩ = ∫
a/R

0
d ln k𝒫ζ(k) 𝒫ζ = 2v0/α2variance: in the titled-well model

kIR = aendHe−1/d

pM =
1
2

erfc
ζc

2σ2
R

1-pt probability:

covariance: σ2
R1

, σ2
R2

, τ2
r = ⟨ζR1

( ⃗x ) ζR2
( ⃗x + ⃗r )⟩ = ∫

a/r

0
d ln k𝒫ζ(k)

kIR = aendHe−1/d

pM,M(r) =
1

2π ∫
∞

0
dxe−x2/2 erfc

ζc

σ2
R + τ2

r

1 +
σ2

R − τ2
r

2
x
ζc

2-pt probability:



Analytical results in the flat-well model

1-pt distribution:

2-pt distribution:

Volume-averaged number of -folds:e

Field values - coarse-graining size relation:



Analytical results in the tilted-well model

FPT distribution:

Mean volume:

Characteristic function:

Volume-averaged number of -folds:e

Mean number of -folds:e



“Eternal ” inflation

⟨e3𝒩ϕ⟩ =
cos [ 3μ(1 − x)]

cos ( 3μ)
Mean volume well defined only for μ < μc ≡ π/(2 3) PFPT,ϕ(𝒩) = −

π
2μ2

ϑ′ 2 ( π
2

x, e− π2
μ2 𝒩)

If μ ≪ μc the mean volume is order 1 (in -Hubble units): large-volume approximation does not applyσ

Flat well

Need to work at values of  close to (but smaller than )  μ μc

Consequence:  
for small  the tails of the 1-pt distributions  are almost flat and  peaks at rather large, negative values of . 
In the large-volume approx. , also the 2-pt distribution peaks at large negative values of 

x* P(ζR) P(ζR) ζR
R1, R2 ≪ r → x1, x2 ≪ 1 ζR1

, ζR2

Tilted well

PFPT,ϕ(𝒩) ∝ e−(π2/μ2 + μ2d2/4)𝒩 for large 𝒩

Convergence conditions:  or  and α2 > 12v0 α2 < 12v0 μ < π/ 3 − α2/(4v0)

For  and  the volume-weighted distribution is not well-definedPFPT,Φ0
(𝒩) ∝ e−Λ𝒩 Λ ≤ 3


