Black Holes

as New Dark Matter Factories

Volodymyr Takhistov

QUP & Theory Center, KEK & SOKENDAI & Kavli IPMU, U. Tokyo

SOKENDAI

Primordial Black Holes (PBHs)

PBHs as Dark Matter (DM)

\rightarrow importantly, BHs definitively **exist**

many great reviews

[Sasaki+, 2018; Green, Kavanagh, 2020; Carr, Kuhnel, 2020, 2022; Carr, Kohri, Sendouda, Yokoyama, 2020; Escriva, Kuhnel, Tada, 2022 ...]

In early Universe, just roughly take scoop of ~ 50% overdensity to make BH

~ 50 years ago

Myriad Formation Scenarios, Distinct Features Possible

- Conventional picture: big perturbations ($\delta \sim 1$) enter horizon \rightarrow collapse
- Distinct PBH features possible in different scenarios

novel early Universe probes distinct from CMB

[Cotner, Kusenko, **VT**, *PRD*, (2018) 1801.03321; Cotner, Kusenko, Sasaki, **VT**, *JCAP*, (2019) 1907.10613]

numerical/simulation progress [Amin, Lim, Serpico, ...], but need more

 *** new induced GWs from solitons isocurvature [Lozanov, Sasaki, VT, (2023), 2304.06709; Lozanov, Sasaki, VT, (2023), PLB, 2309.14193; Lozanov, Pi, Sasaki, VT, Wang, (2023), 2310.03594]

Aside: Induced GWs from Early Evaporating PBHs

- Consider rapid Hawking evaporation of PBHs dominating early Universe
- Rapid transition of matter to radiation era from decays
 - \rightarrow strong induced GWs

 $\Omega_{
m GW} \propto f(\Phi_{
m grav}' \Phi_{
m grav}')$

[Sasaki, Domenech, Kohri, Inomata, Terada, Yanagida, Kawasaki...]

Probing Spin, Mass Distributions of Evaporating PBHs with GWs

• Evaporating PBHs also emit gravitons \rightarrow GWs Δ Neff [Hooper+, 2020; Arbey, 2021; Masina, 2021]

→ coincidence with induced GWs can probe many scenarios over broad mass/spin range

* spin modifies emission and induced GWs [Domenech, VT, Sasaki, *Phys.Lett.B*, (2021), 2105.06816]

(further studies [Cheek, Heurtier, Perez-Gonzalez, Turner, 2022])

Volodymyr Takhistov (QUP, KEK)

Myriad Formation Scenarios, Distinct Features Possible

- Conventional picture: big perturbations ($\delta \sim 1$) enter horizon \rightarrow collapse
- Distinct PBH features possible in different scenarios
- Ex.)

scalar fragmentation to (inflaton) oscillons

PBHs peaked in mass + big spin possible

[Cotner, Kusenko, **VT**, *PRD*, (2018) 1801.03321; Cotner, Kusenko, Sasaki, **VT**, *JCAP*, (2019) 1907.10613]

numerical/simulation progress [Amin, Lim, Serpico,...], but need more

vacuum bubble "multiverse"

PBHs broadly distributed in mass

see also [Deng, Vilenkin, Sasaki...] [Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, *Phys.Rev.Lett.*, (2020) 2001.09160]

PBH DM from Bubble Multiverse: Detected by HSC ?!

- PBH DM from bubble multiverse consistent with detected HSC event
- Can probe open parameter space with extended tail [Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, Phys.Rev.Lett., (2020) 2001.09160]

PBH DM can Help Probe New Fundamental Force Regimes

- QCD strong force tested in limited regimes, in Standard Model (SM) confines ≲GeV
- Dynamics readily modified in BSM theories, high-T transitions (1st order) natural from scalars

$$\mathcal{L} \supset -\frac{1}{4} \Big(\frac{1}{g_{s0}^2} + \frac{S}{M} \Big) G^a_{\mu
u} G^{\mu
u}_a + \dots \quad \Lambda(\langle S \rangle) = \Lambda_0 \mathrm{Exp} \Big[\frac{24\pi^2}{2N_f - 33} \frac{\langle S \rangle}{M} \Big]$$

• How to test? PBHs, enhanced collapse

$$M_{\rm H} \sim 5 \times 10^{-10} M_{\odot} \left(\frac{T}{10 \text{ TeV}}\right)^{-2}$$

 \rightarrow can be **ALL DM**, unlike SM QCD PBHs \rightarrow explain observational hints? (microlensing...)

*** *PBHs from high-T QCD cross-over also possible* [Escriva, Subils, 2023; Escriva, Tada, Yoo, 2023]

[Lu, VT, Fuller, Phys.Rev.Lett, (2023) 2212.00156]

[lpek. Tait. PRL. 2018]

Volodymyr Takhistov (QUP, KEK)

PBH DM in Intriguing "Windows": Asteroid-mass BHs

- PBH can be all DM in asteroid-mass window ~10¹⁷-10²² g remains poorly constrained *recent reviews* [Gorton, Green, 2024; Tinyakov, 2024], *multitude of proposals for future*
- Compact stars as PBH laboratories possible link to major puzzles and unusual signatures (active field, many insights [Tinyakov+, 2014; Bramante, Graham, Kouvaris, Kaiser, Bertone....])

[Fuller, Kusenko, **VT**, *Phys.Rev.Lett.*, (2017), 1704.01129; **VT**, *Phys.Lett.B.*, (2018), 1710.09458; **VT**, *Phys.Lett.B* (2018), 1707.05849; **VT**+ *Phys.Rev.Lett.*, (2021), 2008.12780]

Volodymyr Takhistov (QUP, KEK)

PBH DM in Intriguing "Windows": Heating LIGO BHs

- PBH mergers linked with LIGO GW observations? [Bird, Byrnes, Cholis, Muñoz, Ali-Haïmoud, Kamionkowski, Kovetz, Raccanelli, Riess, Sasaki, Clesse, Garcia-Bellido, Sasaki, Suyama, Hütsi, Raidal, Vaskonen, Veermäe + many]
- Important to look for additional independent tests
- Broad cosmology-independent probe: gas heating
- Gas heating mechanisms:
 - gravitational drag (dynamical friction)
 - accretion disk photons
 - accretion outflows / winds
 - relativistic jets (especially for spinning PBHs)
- Great testing site: dwarf galaxies (Leo T)

[Lu, VT+, ApJ Lett., (2020) 2007.02213; VT+, JCAP, (2021) 2105.06099; VT+ MNRAS Lett., (2022) 2111.08699]

If PBH DM & Particles Mixed, General Test? Dressed PBHs

- Stellar-mass PBHs relevant for LIGO can only comprise subdominant DM
 → engulfed in massive halos of other DM (e.g. axions/WIMPs..) [Mack+, 2007; Ricotti+, 2008, Silk+]
- Strong cosmological lensing (e.g. FRBs) can test population of dressed PBHs
- Already start exploring regions with survey data, method applicable to other lenses

[Oguri, VT, Kohri, Phys.Lett.B., (2023), 2208.05957]

Direct Individual Probe of Mixed PBH DM? Diffractive GW Lensing

- Diffractive GW lensing by PBHs allows distinguishing *individual* DM halos
 → general "direct test" of primordial BH origin and scenarios with particle DM
- Can break degeneracy of PBH vs halo-dressed PBH on even-by-event basis

GWs "scan" objects over wide frequency range

[Choi, Jung, Lu, VT, (2023) 2311.17829]

(other estimates w/o degeneracy or diffraction [Urutia, Vaskonen, Vermae, 2023])

PBHs as Unique DM factories: Sterile Neutrinos

- Besides comprising DM, PBH can serve as unique DM factories → unusual DM production via Hawking emission (e.g. [Krnjaic, Hooper, Munoz, Turner, Yuber-Perez, Cheek, Heurtier, McDermott])
- Sterile neutrinos well motivated (e.g. v-mass, anomalies, leptogenesis), $sin(\theta)$ active-v mixing
- Rich cosmology, at O(keV) typical warm DM candidate e.g. [Boyarsky+, Fuller, Abazajian...]
 - Ex.) Hubble tension and decaying sterile [Gelmini, Kusenko, VT, JCAP, (2019) 1906.10136]

Sterile-v as probes of early Universe [Gelmini, Lu, VT, *PLB* (2019) 1909.04168; Gelmini, Lu, VT, *JCAP* (2019) 1909.13328; Gelmini, Lu, VT, *JCAP* (2020) 1911.03398;

Conventional sterile-v DM mechanisms
 (e.g. [Dodelson, Widrow, 1993]) sensitively rely on v-mixing
 → very different story for PBH neutrinogenesis

PBH Neutrinogenesis: Sterile-v DM Independent of Coupling

- Unlike conventional mechanisms, PBHs can make sterile-v DM with arbitrary small mixing
- **Distinct spectrum**, in some cases can be effectively low-reheating scenario

very distinct hotter spectrum

[Chen, Gelmini, Lu, **VT**, (2023), *PLB*, 2309.12258; Chen, Gelmini, Lu, **VT**, (2023), 2312.12136] ** *PBH axion emission gives new diffuse axion background* [Eby, **VT**, (2024), 2402.00100]

Conceptually New DM from Old PBHs

conventional particle DM relies on interactions

Ex.) WIMP "Miracle"

abundance set by annihilation

new general idea: Regurgitated DM

BH "scrambles", re-emits DM with new properties, doesn't rely on interactions

[Kim, Lu, Marfatia, VT, (2023), 2309.05703]

Regurgitated DM

• Concrete realization within minimal model, dark sector with scalar/fermion, Yukawa force and Higgs portal $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{\mu^{2}}{2}\phi^{2} - \frac{\kappa}{2}\phi^{2}(\mathcal{H}^{\dagger}\mathcal{H}) - V(\phi)$

 $+ \bar{\chi} i \partial \chi - y_{\chi} \phi \bar{\chi} \chi$,

[Kim, Lu, Marfatia, VT, (2023), 2309.05703]

Conclusions

- PBHs ~ "Standard Model" DM candidate BHs exist, very different from particle DM
- Distinct realizations and intriguing features possible, connections to puzzles and novel signals
- PBHs can relate to DM in more than one way, including as novel DM factories distinct from conventional particle DM production mechanisms

Bright Future for Exploration and Discoveries

... Dark Matter ?