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ØObservational hints for supermassive black holes (SMBHs):

The nano-Hertz stochastic GW background found with PTA 
might be interpreted with a population of SMBH binaries
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The observations with JWST have discovered lots 
of early SMBHs at high redshift

[Jeon, J., Bromm, V., Liu, B., & Finkelstein, S. L. (2024)]

ØCould the SMBHs be primordial?
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Motivations
ØExplaining SMBHs via supermassive primordial black holes (SMPBHs) is challenging, 

primarily because of tight cosmic �-distortion constraints. 

[Bagui, E. et al. (2023)]

CMB distortions

Ønon-Gaussian perturbations & other PBH formation mechanisms?
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SMPBHs sourced from supercritical bubbles

During inflation, bubble nucleation may occur by 
quantum tunneling

These supercritical bubbles (with an inflating baby universe 
inside it) evolve into PBHs in our observable Universe

�(�) ≡
�
�pbh

��pbh
��

∝ ��−32

ØPBH formed in a multiverse scenario

ØAssuming that tunneling happens with nearly constant probability per unit time and 
volume: �~�����

�~���
2 ��the PBH mass the PBH mass function  negligible at supermassive band!
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SMPBHs sourced by supercritical bubbles

Ø In the thin wall limit, assuming that the radius of the nucleating bubble �~��
−1:

ØThe nucleation rate of the CDL bubble:
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Ø The wall tension :
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Ø In a slow-roll inflation model (e.g. �eff~�1
�), the mass distribution would inevitably have a peak-like spetrum:
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SMPBHs sourced by supercritical bubbles

Ø  Initial clustering of SMPBHs

Ø In the thin wall limit, assuming that the radius of the nucleating bubble �~��
−1:

Ø The wall tension :

Ø In a slow-roll inflation model (e.g. �eff~�1
�), the mass distribution would inevitably have a peak-like spetrum:

ØThe nucleation rate of the CDL bubble:

Ø Multiple neighboring metastable vacua 
⟶ a multi-peaks spectrum
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SMPBHs sourced by supercritical bubbles

Ø  Initial clustering of SMPBHs

Ø In the thin wall limit, assuming that the radius of the nucleating bubble �~��
−1:

Ø The wall tension :

Ø In a slow-roll inflation model (e.g. �eff~�1
�), the mass distribution would inevitably have a peak-like spetrum:

ØThe nucleation rate of the CDL bubble:

Ø Multiple neighboring metastable vacua 
⟶ a multi-peaks spectrum

Ø Multiple paths ⟶ cluster initially at different levels

�PBH ≡
�PBH
�DM

= ��
�PBH�

�DM
= ���PBH�
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ØGWs from SMPBH binary merges:

SMPBH binaries for nano-Hertz GWs

Ø The SMPBH pair comes into being only when their comoving separation � < �max =  
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ØGWs from SMPBH binary merges:

SMPBH binaries for nano-Hertz GWs

Ø The SMPBH pair comes into being only when their comoving separation

Ø The SMPBH pair forms a binary inspiraling in a highly eccentric elliptic orbit 
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Ø The differential merger rate per unit volume at the time t 

ℛ ��, ��, � ≈
1.02 × 108

Gpc3yr
�2  
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[Huang, H. L., Jiang, J. Q., & Piao, Y. S. (2024)]
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SMPBH binaries for nano-Hertz GWs
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ØThe spectral density of GWs from unresolved SMPBH binaries :
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Conclusions

ØThe supercritical bubbles that nucleated during slow-roll inflation 
can develop into SMPBHs, specially the mass of SMPBHs can 
naturally have a peak at 105 − 1018�⨀.

ØThe rolling of inflaton might not only be multiple-paths, but also 
pass by multiple neighboring vacua, so that the resulting multiverse 
PBHs would not only be massive and supermassive with a multi-
peaks mass spectrum, but also cluster initially at different levels.

Ø  The merging of initial clustering SMPBHs is likely to explain recent 
NANOGrav signal.
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ØThe supercritical bubbles that nucleated during slow-roll inflation 
can develop into SMPBHs, specially the mass of SMPBHs can 
naturally have a peak at 105 − 1018�⨀.

ØThe rolling of inflaton might not only be multiple-paths, but also 
pass by multiple neighboring vacua, so that the resulting multiverse 
PBHs would not only be massive and supermassive with a multi-
peaks mass spectrum, but also cluster initially at different levels.

Ø  The merging of initial clustering SMPBHs is likely to explain recent 
NANOGrav signal.

Thank you!
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