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The nano-Hertz stochastic GW background found with PTA
might be interpreted with a population of SMBH binaries
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The observations with JWST have discovered lots
of early SMBHs at high redshift
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» Could the SMBHSs be primordial?
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Motivations

» Explaining SMBHs via supermassive primordial black holes (SMPBHSs) is challenging,
primarily because of tight cosmic -distortion constraints.
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» non-Gaussian perturbations & other PBH formation mechanisms?
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> PBH formed in a multiverse scenario
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» Initial clustering of SMPBHs

» Multiple neighboring metastable vacua
a multi-peaks spectrum
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> Initial clustering of SMPBHSs = T i
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SMPBH binaries for nano-Hertz GWSs
» GWs from SMPBH binary merges:

» The SMPBH pair comes into being only when their comoving separation < max = —
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SMPBH binaries for nano-Hertz GWs
» GWs from SMPBH binary merges:

1/3

» The SMPBH pair comes into being only when their comoving separation < . = 8i :q
» The SMPBH pair forms a binary inspiraling in a highly eccentric elliptic orbit
. ® * 4 o . ® ° e
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SMPBH binaries for nano-Hertz GWs

» The spectral density of GWs from unresolved SMPBH binaries :
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SMPBH binaries for nano-Hertz GWs

» The spectral density of GWs from unresolved SMPBH binaries :
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SMPBH binaries for nano-Hertz GWs

» The spectral density of GWs from unresolved SMPBH binaries :
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SMPBH binaries for nano-Hertz GWs

» The spectral density of GWs from unresolved SMPBH binaries :
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Conclusions

» The supercritical bubbles that nucleated during slow-roll inflation
can develop into SMPBHs, specially the mass of SMPBHs can

naturally have a peak at 10° — 1018

» The rolling of inflaton might not only be multiple-paths, but also
pass by multiple neighboring vacua, so that the resulting multiverse
PBHs would not only be massive and supermassive with a multi-
peaks mass spectrum, but also cluster initially at different levels.

» The merging of initial clustering SMPBHs is likely to explain recent
NANOGrav signal.
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Thank youl!



