# Stable Magnetic Monopoles from Metastable Cosmic Strings

#### Rinku Maji

In collaboration with George Lazarides and Qaisar Shafi



Center for Cosmology, Gravity and Astroparticle Physics

New Horizons in PBH Physics

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

NEHOP'24

1 Topological Defects in BSM symmetries

2 Formation of Metastable Strings

(3) SO(10) symmetry breaking and monopoles

4 Summary



- Topological defects may appear during the SSB of a group  $\mathcal{G}$  down to its subgroup  $\mathcal{H}$ .
- Non-trivial homotopy group  $\Pi_k(\mathcal{M})$  of the vacuum manifold  $(\mathcal{M} = \mathcal{G}/\mathcal{H})$  implies formation of topological defects.
- Various types of topological defects which can be formed are : domain walls (k = 0), cosmic strings (k = 1), monopoles (k = 2) etc.

# Cosmic String



Vachaspati et. al. arXiv:1506.04039

A B + 
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

NEHOP'24

5/24

ъ

### Cosmic String Network

• String tension  $\mu \simeq \pi v^2$ , v is the VEV that form the string.

- Strings inter-commute, form loops, radiate GWs and the evolution of the network enters a 'scaling' regime.
- Scaling energy density  $\rho_s \sim \mu/t^2$ . Critical density:  $\rho_c \sim 1/Gt^2$  in RD and MD.



Image source: ctc.cam.ac.uk

Kibble, NPB 252 (1985) 227; Bennett, Bouchet, PRL 60 (1988) 257 ...



#### Topologically Unstable Cosmic Strings

- Consider  $G \xrightarrow{M_I} H \otimes U(1) \xrightarrow{M_{II}} H$ with G being simply connected and  $\Pi_1(G/H) \cong \Pi_0(H) = I$ .
- Strings formed at  $M_{II}$  connect monopole-antimonopole  $(M\bar{M})$  pairs formed at  $M_I$ .
- Strings are topologically unstable:  $\Gamma_d = \frac{\mu}{2\pi} \exp\left(-\pi m_M^2/\mu\right)$  with  $\mu \sim \pi M_{II}^2$  and  $m_M \sim (4\pi/g)M_I$ .



• However, strings are practically stable unless two breaking scales are very close  $(\sqrt{\kappa} \equiv (m_M^2/\mu)^{1/2} \lesssim 9)$ .

Preskill, Vilenkin, Phys. Rev. D 47 (1993)

- Intermediate scale magnetic monopoles, created prior to the cosmic strings, experience inflation.
- The lifetime of decay of the strings via quantum mechanical tunneling is much smaller than the age of Universe.
- The strings form a network of stable strings before the time  $t_s = 1/\sqrt{\Gamma_d}$ .

Leblond, Shlaer, Siemens, PRD **79** (2009) 123519 Buchmuller, Domcke, Schmitz, JCAP **12** (2021) 006

#### 3 SO(10) symmetry breaking and monopoles

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

NEHOP'24

0/24

æ

SO(10) symmetry breaking and monopoles

$$SO(10) \xrightarrow{M_{\text{GUT}}} SU(4)_c \times SU(2)_L \times SU(2)_R$$
$$\xrightarrow{M_I} SU(3)_c \times U(1)_{B-L} \times SU(2)_L \times U(1)_R$$
$$\xrightarrow{M_{II}} SU(3)_c \times SU(2)_L \times U(1)_Y.$$

• Symmetry breaking  $SU(4)_C \to SU(3)_C \times U(1)_{B-L}$  produces 'Red' monopoles with Coulomb magnetic fluxes

$$X \equiv B - L + 2T_c^8/3 = diag(1, 1, -1, -1).$$

•  $SU(2)_R \to U(1)_R$  generates 'Blue' monopoles with fluxes

$$T_R^3 = diag(1, -1).$$

Lazarides, Shafi, JHEP 10 (2019) 193

# Strings connecting monopoles

- $U(1)_R \times U(1)_{B-L} \to U(1)_Y$  generates topologically unstable strings.
- These strings connects
   a blue monopole to a red monopole: M<sub>R</sub>SM<sub>R</sub>,
  - 2 a monopole to its anti-monopole.
- Red and blue monopoles combined to form stable Schwinger monopoles.

Lazarides, Shafi, JHEP 10 (2019) 193 Lazarides, **RM**, Shafi, JCAP 05 (2024)



# Radiation of massless gauge bosons

• Unconfined Y magnetic flux of the red and blue monopoles:

$$g_{mR} = rac{2}{3} \left( rac{4\pi}{g_1} 
ight)$$
 and  $g_{mB} = rac{1}{3} \left( rac{4\pi}{g_1} 
ight).$ 

- Acceleration of a monopole its instantaneous rest frame:  $a = \mu/m_M$ . Berezinsky, Martin, Vilenkin, PRD 56 (1997)
- Rate of energy loss from both monopoles:

$$\frac{dE}{dt} = -\frac{1}{6\pi}(g_{mR}^2 + g_{mB}^2)a^2 = -\frac{10}{27\kappa}\frac{1}{\alpha_1(t)}\mu \equiv -j(t)\mu,$$

where  $\alpha_1 = g_1^2 / 4\pi$ ,  $\kappa = m_M^2 / \mu$  and  $j = \frac{10}{27\kappa} \frac{1}{\alpha_1(t)}$ .

• After including the radiation of gravitational wave:

$$\frac{dl}{dt} = -\tilde{\Gamma}G\mu - j(t),$$

where  $\tilde{\Gamma}$  is a numerical factor.

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

# Sub-horizon $M_R S M_B$ from metastable strings

- Sub-horizon string bounded by monopoles segments are produced after time  $t_s$  from the decay of long strings and loops.
- Half of the first generation segments from long strings will constitute of  $M_R S M_B$  structures.
- The first generation of string segments from loops will connect monopoles to their antimonopoles.
- The first generation of segments decay very quickly via the radiation of massless gauge bosons.
- The second generations of the monopoles connected by strings will be highly suppressed.

Lazarides, **RM**, Shafi, JCAP 05 (2024)

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

# Monopoles from $M_R S M_B$ Structures

• The segments at time  $t \ge t_s$  from the long strings after a 'scaling regime' is given by

$$\tilde{n}^{(s)}(l,t) = \frac{4}{\xi^2} \frac{\Gamma_d^2}{4} \frac{(t+t_s)^2}{\sqrt{t^3 t_s}} e^{-\Gamma_d \left[ l(t+t_s) + \frac{1}{2} (\tilde{\Gamma} G \mu + j)(t-t_s)(t+3t_s) \right]},$$

where  $\xi = 0.27$  in RD universe.

• Present day monopole number density is

$$n_{\text{TSM}} = \sum_{i \in \{s,l\}} \int_{t_s}^{t_e} dt \frac{n_{\text{TSM}}^{(i)}(t)}{(1+z(t))^3},$$

where superscripts s, l are for long strings and loops respectively.

•  $t_e$  the time at which the monopole generation ceases to operate.

Lazarides, **RM**, Shafi, JCAP 05 (2024)

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

| Experiment | Monopole mass $(m_{\text{TSM}})$<br>in GeV | Velocity $(v_{\rm TSM})$ | Flux $\mathcal{F}_{TSM} = \frac{n_{TSM}v_{TSM}}{4\pi}$<br>in cm <sup>-2</sup> sec <sup>-1</sup> sr <sup>-1</sup> |
|------------|--------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|
| MACRO      | $5\times 10^8 - 5\times 10^{13}$           | > 0.05                   | $3 \times 10^{-16}$                                                                                              |
|            | $> 5 \times 10^{13}$                       | $> 4 \times 10^{-5}$     | $1.4 \times 10^{-16}$                                                                                            |
| IceCube    | $> 10^8 - 10^{10}$                         | 0.8 - 0.995              | $2 \times 10^{-19}$                                                                                              |

Upper limits on monopole flux from MACRO and IceCube experiments. MACRO EPJC **25** (2002) 511, IceCube PRL **128** (2022) 051101...

• We estimate  $v_{\text{TSM}}$  by [Kolb, Turner]

$$v_{\rm TSM} \simeq \min\left[3 \times 10^{-3} \left(\frac{m_{\rm TSM}}{10^{16} {\rm ~GeV}}\right)^{-1/2}, 1\right].$$

• Threshold for observability:  $\mathcal{F}_{\text{TSM}} \gtrsim 10^{-24} \text{ cm}^{-2} \text{sec}^{-1} \text{sr}^{-1}$ .

# Monopoles from Scaling String Network

• Scaling regime is possible for string network with  $t_s > t_{\rm Pl}/(G\mu)^2$ :  $\sqrt{\kappa} > (-2.19 \log_{10}(G\mu) - 0.58)^{1/2}.$ 

#### Vilenkin, PRD 1991

- Monopoles could be observed for  $G\mu \in [10^{-9}, 10^{-5}],$  $\sqrt{\kappa} \in [4.55, 5.53].$
- Monopole masses  $10^{15} 10^{17}$  GeV.

• BBN bound from GWs for  $G\mu\gtrsim 10^{-5}$ .

Lazarides, RM, Shafi, JCAP 05 (2024)



Rinku Maji (IBS, CTPU-CGA)

NEHOP'24

#### Strings and Gravitational Waves

• Loops of initial length  $l_i = \alpha t_i$  decay via emission of gravity waves.

$$\frac{dE_{\rm GW}^{(k)}}{dt} = \Gamma_k G \mu^2; \quad \Gamma_k \propto k^{-n} \quad \text{with } n = \begin{cases} 4/3 & \text{cusps} \\ 5/3 & \text{kinks} \\ 2 & \text{kink-kink collisions.} \end{cases}$$

• The redshifted frequency of a normal mode k, emitted at time  $\tilde{t}$ , as observed today, is given by Vilenkin, Shellard, 1994, CUP

$$f = \frac{a(\tilde{t})}{a(t_0)} \frac{2k}{\alpha t_i - \Gamma G \mu(\tilde{t} - t_i)}, \text{ with } \Gamma = \sum \Gamma_k$$
  
Redshift  
Loop size at time  $\tilde{t}$ 

NEHOP'24

# High Frequency GWs from String Network in Scaling



Lazarides, RM, Shafi, JCAP 05 (2024)

Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

#### Monopoles in Friction Dominated Era

- For  $t_s < t_F = t_{\rm Pl}/(G\mu)^2$ , sub-horizon segments do not oscillate in the friction dominated era.
- The length of a string segment at time  $t_F$  is given by

$$l \sim \frac{1}{\Gamma_d t_F} = \frac{t_s^2}{t_F}.$$

- We expect a total length of the string network  $pt_F$  within particle horizon at  $t_F$ .
- Present day number density of TSM is

$$n_{\rm TSM} \sim \frac{p}{t_s^2 t_F} \frac{1}{(1+z_F)^3}.$$

#### Monopoles from String in Friction Era

- Intermediate mass monopoles with masses  $\lesssim 10^{11}$  GeV can be relativistic.
- Relativistic and ultra-relativistic monopole fluxes can be observed in future experiments such as IceCube, Pierre Auger, ANITA and KM3NeT.



NEHOP'24



Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

< 17 ▶

 $22 \, / \, 24$ 

2

- Decay of metastable cosmic strings can generate topologically stable monopoles.
- Experimentally observable flux of superheavy (~  $10^{15} 10^{17}$  GeV) monopoles produced from string network in scaling regime for  $G\mu \approx 10^{-9} 10^{-5}$  and  $\sqrt{\kappa} \sim 5$ .
- Very high frequency gravitational wave spectra are generated.
- $G\mu \lesssim 10^{-14}$  can generate relativistic and ultra-relativistic monopole fluxes which can be observed in future experiments such as IceCube, Pierre Auger, ANITA and KM3NeT.



Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

NEHOP'24

Back up slides

2

#### Example : Domain wall



- Stationary solution :  $\phi(z) = \eta \tanh(\sqrt{\frac{\lambda}{2}}\eta z).$
- Energy density :  $\mathcal{E} = \frac{\lambda \eta^4}{2} \operatorname{sech}^4(\sqrt{\frac{\lambda}{2}}\eta z).$
- Energy per unit area :  $\frac{2\sqrt{2}}{3}\sqrt{\lambda}\eta^3$  on xy plane  $\Rightarrow Domain Wall$

• 
$$\mathcal{L} = \frac{1}{2} (\partial_\mu \phi)^2 - \frac{\lambda}{4} (\phi^2 - \eta^2)^2$$

- Vacuum manifold consists of two disconnected elements : (φ) = ±η: Π<sub>0</sub>(M) = Z<sub>2</sub>.
- Boundary conditions :  $\phi \to \pm \eta \text{ as } z \to \pm \infty.$



Rinku Maji (IBS, CTPU-CGA)

Monopoles from MSS

#### Stochastic Gravitational Wave Background



Sousa, Avelino, Guedes, PRD 101 (2020) 10, 103508

NEHOP'24

# Metastable Strings and GWs

- The strings inter-commute and form loops which decay into gravitational waves.
- String loops larger than  $\alpha t_s$  are absent.



• Gravitational wave spectrum in the low frequency region  $(f \leq 1/t_e(1+z_e))$  becomes suppressed.