

Contribution ID: 32

Type: not specified

Quantum tunneling in the early universe: Stable magnetic monopoles from metastable cosmic strings

Tuesday, 18 June 2024 17:05 (20 minutes)

We discuss a novel mechanism for producing topologically stable monopoles (TSMs) from the quantum mechanical decay of metastable cosmic strings in the early universe. For a dimensionless string tension parameter $G\mu \approx 10^{-9} - 10^{-5}$, the monopoles are superheavy with masses of order $10^{15} - 10^{17}$ GeV. The stochastic gravitational wave emission arises from metastable strings with $G\mu \sim 10^{-9} - 10^{-5}$ and should be accessible at HLVK and future detectors, including the Einstein Telescope and Cosmic Explorer. Monopoles with masses of order $10^8 - 10^{14}$ GeV arise from metastable strings for $G\mu$ values from $\sim 10^{-22}$ to 10^{-10} . We discuss the parameter space for producing these monopoles at an observable level with detectors such as Ice-Cube, KM3NeT, Pierre Auger, and ANITA. This mechanism yields TSMs that carry two units $(4\pi/e)$ of Dirac magnetic charge and some screened color magnetic charge in an SO(10) model.

Primary author: Dr MAJI, Rinku (Institute for Basic Science, Center for Theoretical Physics of the Universe)

Presenter: Dr MAJI, Rinku (Institute for Basic Science, Center for Theoretical Physics of the Universe)

Session Classification: Session 8