Can primordial black holes form without fine-tuning?

2304.01997; JCAP **2023(08)** (2023) 031

Andrew Gow (+Pippa Cole, Chris Byrnes, Subodh Patil)

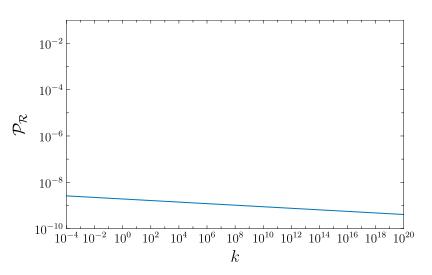
NEHOP, 19 June 2024

Overview

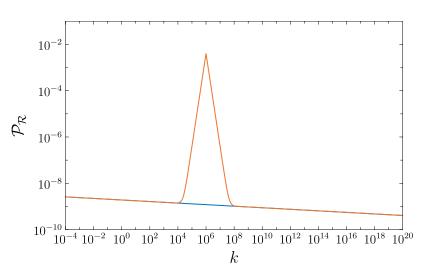
PBHs from inflation

Fine-tuning

Overdensities seeded by inflation



- Overdensities seeded by inflation
- ► Slow-roll inflation explains CMB

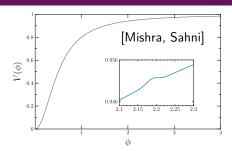


- Overdensities seeded by inflation
- ► Slow-roll inflation explains CMB
- Nearly scale-invariant power spectrum

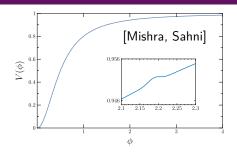
Inflaton potential

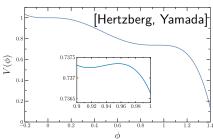
▶ Inflation driven by scalar field ϕ

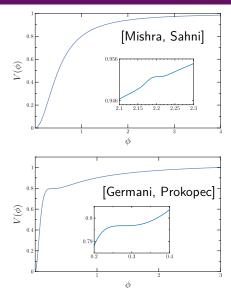
Inflaton potential

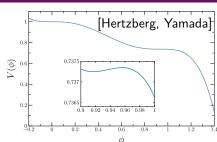

- lacktriangle Inflation driven by scalar field ϕ
- ▶ Governed by potential $V(\phi)$

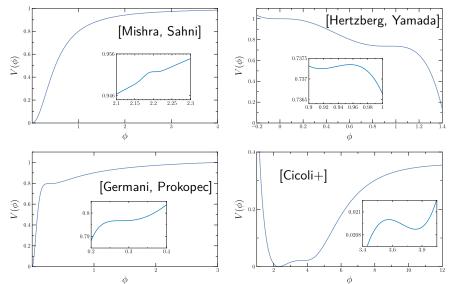
Inflaton potential




- ▶ Inflation driven by scalar field ϕ
- lacktriangle Governed by potential $V(\phi)$
- ► Need some feature in potential







	n_s	r
Mishra & Sahni	0.9648	0.0026
Hertzberg & Yamada	0.9820	4.8×10^{-7}
Hertzberg & Yamada Germani & Prokopec	0.9567	0.0063
Cicoli et al.	0.9400	0.018

Planck constraint:

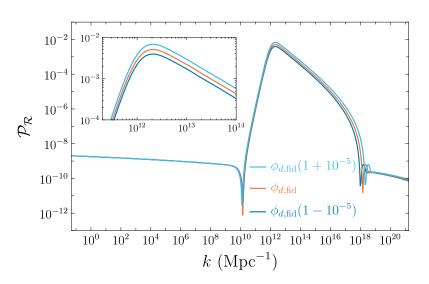
- $n_s = 0.9649 \pm 0.0042$
- r < 0.032

Overview

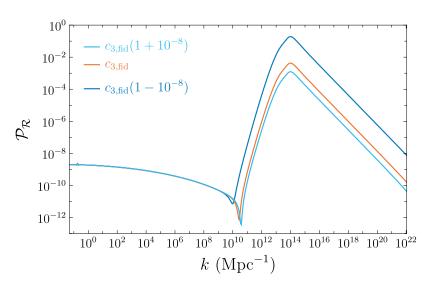
PBHs from inflation

Fine-tuning

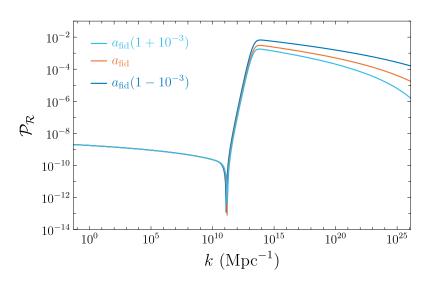
Power spectrum fine-tuning

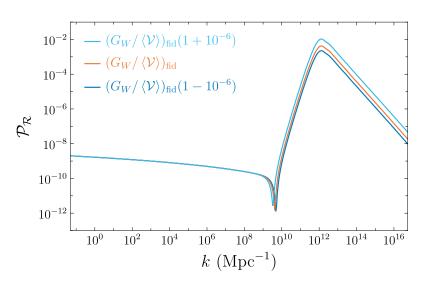

► Solve Mukhanov–Sasaki equation for each potential

Power spectrum fine-tuning



- ► Solve Mukhanov–Sasaki equation for each potential
- Perturb potential parameters and compare power spectra





Andrew Gow ICG Portsmouth

Fine-tuning measure

Quantify fine-tuning using differential measure [Azhar, Loeb]

$$\epsilon_{\mathcal{O}} = \frac{\mathsf{d}\log\mathcal{O}}{\mathsf{d}\log p}$$

▶ Quantify fine-tuning using differential measure [Azhar, Loeb]

$$\epsilon_{\mathcal{O}} = \frac{\mathsf{d} \log \mathcal{O}}{\mathsf{d} \log p}$$

Model	$\epsilon_{\mathcal{P}_{peak}}$	$\epsilon_{f_{PBH}}$	ρ
Mishra & Sahni	2.7×10^{4}	6.2×10^{5}	23
Hertzberg & Yamada	-1.8×10^{8}	-4.7×10^9	27
Germani & Prokopec	-6.0×10^2	-2.2×10^{4}	37
Cicoli et al.	7.5×10^5	2.2×10^7	29

► PBHs from single-field inflation require a potential feature

- ► PBHs from single-field inflation require a potential feature
- ► Might be difficult to explain from particle physics

- ▶ PBHs from single-field inflation require a potential feature
- Might be difficult to explain from particle physics
- Typical potentials seem to be quite fine-tuned

- ▶ PBHs from single-field inflation require a potential feature
- Might be difficult to explain from particle physics
- Typical potentials seem to be quite fine-tuned
- Total PBH fine-tuning actually dominated by power spectrum fine-tuning

- ► PBHs from single-field inflation require a potential feature
- Might be difficult to explain from particle physics
- Typical potentials seem to be quite fine-tuned
- Total PBH fine-tuning actually dominated by power spectrum fine-tuning
- Could we be saved by non-Gaussianity?

2304.01997 JCAP **2023(08)** (2023) 031

