New Mass Window for light Primordial Black Holes as a Dark Matter candidate

Valentin Thoss, Andreas Burkert, Kazunori Kohri

arXiv:2402.17823

NEHOP 24, Edinburgh, 06/2024

Constraints on the dark matter fraction of PBH

Constraints on the dark matter fraction of PBH

Constraints on evaporated PBH

Black Hole Metamorphosis and Stabilization by Memory Burden

Gia Dvali,^{1,2,*} Lukas Eisemann,^{1,2,†} Marco Michel,^{1,2,‡} and Sebastian Zell^{3,1,2,§}

¹Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München, Germany ²Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany ³Institute of Physics, Laboratory for Particle Physics and Cosmology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland (Dated: July 18, 2022)

Systems of enhanced memory capacity are subjected to a universal effect of *memory burden*, which suppresses their decay. In this paper, we study a prototype model to show that memory burden can be overcome by rewriting stored quantum information from one set of degrees of freedom to another one. However, due to a suppressed rate of rewriting, the evolution becomes extremely slow compared to the initial stage. Applied to black holes, this predicts a metamorphosis, including a drastic deviation from Hawking evaporation, at the latest after losing half of the mass. This raises a tantalizing question about the fate of a black hole. As two likely options, it can either become extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.

extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.

Black Hole Metamorphosis and Stabilization by Memory Burden

Gia Dvali,^{1,2,*} Lukas Eisemann,^{1,2,†} Marco Michel,^{1,2,‡} and Sebastian Zell^{3,1,2,§}

¹Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München, Germany ²Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany ³Institute of Physics, Laboratory for Particle Physics and Cosmology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland (Dated: July 18, 2022)

Systems of enhanced memory capacity are subjected to a universal effect of *memory burden*, which suppresses their decay. In this paper, we study a prototype model to show that memory burden can be overcome by rewriting stored quantum information from one set of degrees of freedom to another one. However, due to a suppressed rate of rewriting, the evolution becomes extremely slow compared to the initial stage. Applied to black holes, this predicts a metamorphosis, including a drastic deviation from Hawking evaporation, at the latest after losing half of the mass. This raises a tantalizing question about the fate of a black hole. As two likely options, it can either become extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.

extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.

1.5

2.0

- Quantum backreaction of the Hawking radiation on the BH Large information capacity stabilises black hole
- Effect sets in at latest when the black hole loses half of its initial mass
- Decay no longer self-similar

- Quantum backreaction of the Hawking radiation on the BH Large information capacity stabilises black hole
- Effect sets in at latest when the black hole loses half of its initial mass
- Decay no longer self-similar

- Quantum backreaction of the Hawking radiation on the BH Large information capacity stabilises black hole
- Effect sets in at latest when the black hole loses half of its initial mass
- Decay no longer self-similar

- Quantum backreaction of the Hawking radiation on the BH Large information capacity
- stabilises black hole
- Effect sets in at latest when the black hole loses half of its initial mass
- Decay no longer self-similar

	Coffee
15:00	National Galleries of Scotland
	Characterising spacetime during cosmological colla
	National Galleries of Scotland
	Consequence of vorticity in merging black hole pro-
	National Galleries of Scotland
	Scalar-Induced Gravitational Waves and its impact i
	National Galleries of Scotland

16:00

	15:50 - 16:00
in understanding cosmology	Ms Anjali Abirami Kugarajh 🥝
	15:30 - 15:50
ototype	Michael Zantedeschi
	15:10 - 15:30
lapse	Robyn Munoz
	14:40 - 15:10

	Coffee
15:00	National Galleries of Scotland
	Characterising spacetime during cosmological colla
	National Galleries of Scotland
	Consequence of vorticity in merging black hole pro-
	National Galleries of Scotland
	Scalar-Induced Gravitational Waves and its impact i
	National Galleries of Scotland

16:00

	14:40 - 15:10
lapse	Robyn Munoz
	15:10 - 15:30
ototype	Michael Zantedeschi
	15:30 - 15:50
in understanding cosmology	Ms Anjali Abirami Kugarajh 🎸
	15:50 - 16:00

Semiclassical : $(for M > qM_0)$

 $\frac{\mathrm{d}^2 N}{\mathrm{d}E\mathrm{d}t} = \frac{g}{2\pi\hbar} \frac{\Gamma(E,s,T)}{e^{E/k_BT} - (-1)^s}$

 $k_B T = \frac{\hbar c^3}{8\pi G M}$

Semiclassical : $(\text{for } M > qM_0)$

 $\frac{\mathrm{d}^2 N}{\mathrm{d}E\mathrm{d}t}\Big|_{\mathrm{SC}}$

Memory burden : $(\text{for } M \leq qM_0)$

 $= \frac{g}{2\pi\hbar} \frac{\Gamma(E,s,T)}{e^{E/k_BT} - (-1)^s}$

 $SC, M = qM_0$

 $S_0 = \frac{4\pi (qM_0)^2 G}{\hbar c}$

Semiclassical : $(\text{for } M > qM_0)$

Memory burden : $(\text{for } M \leq qM_0)$

 $S = 10^{10} \left(\frac{M}{1g}\right)^2$ Entropy is huge :

 $\frac{\mathrm{d}^2 N}{\mathrm{d}E\mathrm{d}t} = \frac{g}{2\pi\hbar} \frac{\Gamma(E, s, T)}{e^{E/k_B T} - (-1)^s}$

 $\frac{\mathrm{d}^2 N}{\mathrm{d}E\mathrm{d}t} \begin{vmatrix} \mathrm{d}^2 N \\ \mathrm{m}B \end{vmatrix} = \frac{1}{\frac{\mathrm{d}^2 N}{\delta_0^k \,\mathrm{d}E\mathrm{d}t}} \begin{vmatrix} \mathrm{d}^2 N \\ \mathrm{sc}_{\mathcal{M}=qM_0} \end{vmatrix} \qquad S_0 = \frac{4\pi (qM_0)^2 G}{\hbar c}$

Three parameters : $f_{\text{PBH}}, M_0, \text{and } k$

Semiclassical : $(\text{for } M > qM_0)$

 $\frac{\mathrm{d}^2 N}{\mathrm{d}E\mathrm{d}t} = \frac{g}{2\pi\hbar} \frac{\Gamma(E,s,T)}{e^{E/k_BT} - (-1)^s}$

Memory burden : $(\text{for } M \leq qM_0)$

 $S = 10^{10} \left(\frac{M}{1g}\right)^2$ Entropy is huge :

Three parameters :

 $f_{\rm PBH}, M_0, \text{and } k$

Constraints on evaporated PBH

 $10g_{10}(M/g)$

14 10

TO

 M_0 [g]

 M_0 [g]

 M_0 [g]

Full map of constraints

Galactic γ ray Extragalactic γ ray CMB anisotropies BBN

• The "memory burden" can open open up a new window of light PBH ($M_0 < 10^{10}$ g) as dark matter candidates if $k \ge 1.0.$

- The "memory burden" can open open up a new window of light PBH ($M_0 < 10^{10}$ g) as dark matter candidates if $k \ge 1.0.$
- The upper bound is set by the onset of big bang nucleosynthesis

- The "memory burden" can open open up a new window of light PBH ($M_0 < 10^{10}$ g) as dark matter candidates if $k \ge 1.0.$
- The upper bound is set by the onset of big bang nucleosynthesis
- The lower bound of this mass window depends on the strength of the memory burden

- The "memory burden" can open open up a new window of light PBH ($M_0 < 10^{10}$ g) as dark matter candidates if $k \ge 1.0.$
- The upper bound is set by the onset of big bang nucleosynthesis
- The lower bound of this mass window depends on the strength of the memory burden
- If the memory burden sets in much earlier than half-decay then the constraints for $M_0 > 10^{10}$ g will also be affected

- The "memory burden" can open open up a new window of light PBH ($M_0 < 10^{10}$ g) as dark matter candidates if $k \ge 1.0.$
- The upper bound is set by the onset of big bang nucleosynthesis
- The lower bound of this mass window depends on the strength of the memory burden
- If the memory burden sets in much earlier than half-decay then the constraints for $M_0 > 10^{10}$ g will also be affected
- Only rough guide since we do not understand the full evaporation process beyond half-decay

arXiv:2402.17823

13

Secondary emission

- Branching ratios can be obtained from PYTHIA, Herwig, Hazma (within the code BlackHawk) and HDMSpectra
- Huge differences between hadronization schemes, mainly due to focus on different energy ranges
- We choose Hazma for $k_B T < 0.1$ GeV, Herwig for 0.1 GeV < $k_B T < 100$ GeV and HDMSpectra for $k_B T > 100$ GeV
- For $E/k_BT < 10^{-6}$ we use the primary emission only

Secondary emission

 E/k_BT

 10_{-2} 10_{-0} 10_{-1}

17 TO

IO.

Galactic γ ray emission

 $\frac{f_{\text{PBH}}}{4\pi M_t \Delta \Omega} \frac{d^2 N_{\gamma}}{dE dt} \int_{\Delta \Omega}$ Φ_{PBH} Flux is given by

 Using observational data from INTEGRAL, COMPTEL, EGRET, Fermi-LAT and LHAASO

$d^2 N_{\gamma}$ d Ω d $r\rho_{\rm DM}(R(r,l,b))$

Extragalactic γ ray emission

Flux is given by

 $\Phi_{\text{PBH}} = \frac{cn_t}{4\pi} \int_0^{z_{\text{rec}}} dz \,(1+z) \frac{d^2 N_{\gamma}}{dE dt} \Big(E(1+z), M(z(t)) \Big)$

Using observational data from HEAO, COMPTEL, EGRET, Fermi-LAT and LHAASO

CMB anisotropies

- Energy deposition after recombination will change the ionization fraction in the "Dark Ages"
- Small scale anisotropies (CMB angular power spectrum) will be damped through rescattering of the photons
- Existing code EXOCLASS to model effect of PBH evaporation on the CMB anisotropies

$$\frac{\mathrm{d}^{2}E}{\mathrm{d}t\mathrm{d}V} \begin{vmatrix} z \\ z \\ \mathrm{d}ep,\alpha \end{vmatrix} \left| (z) = h_{\alpha}(z) \frac{\mathrm{d}^{2}E}{\mathrm{d}t\mathrm{d}V} \right|_{\mathrm{inj}} \left| (z) = \frac{h_{\alpha}(z)f_{\mathrm{PBH,0}}\rho_{\mathrm{DM,t}}(1+z)^{3}\dot{M}}{M_{0}} \right|_{\mathrm{inj}}$$

- Modification of the code to include the memory burden effect
 - Issue 1: Transfer functions do not extend to the energy range of light PBH. For k>0.5 one needs to rely on extrapolation.
 - Issue 2: No secondary emission implemented (yet)
 - Alternative: Rough estimation by rescaling $\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}$

 $\log(M(z=\infty))$ [g]

13.5

) T5.U

One more caveat:

For full (correct) treatment one needs to sample all cosmological parameters e.g. with Montepython

For simplicity (yet) we only set f_{PBH} by requiring $\chi^2_{red} < 1.5$ as an approximation

This produces too mild constraints for $f \sim 1$

 $M(z = \infty 54[g])$