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Systems of enhanced memory capacity are subjected to a universal effect of memory burden, which
suppresses their decay. In this paper, we study a prototype model to show that memory burden
can be overcome by rewriting stored quantum information from one set of degrees of freedom to
another one. However, due to a suppressed rate of rewriting, the evolution becomes extremely slow
compared to the initial stage. Applied to black holes, this predicts a metamorphosis, including a
drastic deviation from Hawking evaporation, at the latest after losing half of the mass. This raises
a tantalizing question about the fate of a black hole. As two likely options, it can either become
extremely long lived or decay via a new classical instability into gravitational lumps. The first option
would open up a new window for small primordial black holes as viable dark matter candidates.
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Full map of constraints

e Galactic y ray

e® Extragalactic y ray

e CMB anisotropies
e BBN
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Summary

® [he ,memory burden” can open open up a new window of

light PBH (M, < 10'° g) as dark matter candidates if

k> 1.0.
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Summary

® [he ,memory burden” can open open up a new window of
light PBH (M, < 10'° g) as dark matter candidates if

k> 1.0.

® [ he upper bound is set by the onset of big bang

nucleosynthesis
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Summary

® [he ,memory burden” can open open up a new window of
light PBH (M, < 10'° g) as dark matter candidates if

k> 1.0.
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Summary

® [he ,memory burden” can open open up a new window of
light PBH (M, < 10'° g) as dark matter candidates if

k> 1.0.

® [ he upper bound is set by the onset of big bang
nucleosynthesis

® [he lower bound of this mass window depends on the
strength of the memory burden

® |f the memory burden sets in much earlier than half-decay
then the constraints for M, > 10'° g will also be affected
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Summary

® [he ,memory burden” can open open up a new window of
light PBH (M, < 10'° g) as dark matter candidates if
k> 1.0.

® [ he upper bound is set by the onset of big bang
nucleosynthesis

® [he lower bound of this mass window depends on the
strength of the memory burden

® |f the memory burden sets in much earlier than half-decay
then the constraints for M, > 10'° g will also be affected

® Only rough guide since we do not understand the full
evaporation process beyond half-decay
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Constraints from extragalactic v ray emission

HEAO-+baloon
COMPTEL
1.50 RN\ R |

N FERMI-LAT
- LHAASO

1.00 7 Evaporated by now
0.75 . N =

1.75 B

1.25

0.20
0.25

0.00 ! ! SVR '
10° 108 101 104 1017

My |g|

15




Secondary emission

Flux of particle of type i JdE B (ETE
® P yP JEds ( )

d*N, d*N,
o J Une dE'ds

e Branching ratios can be obtained from PYTHIA, Herwig, Hazma (within the code
BlackHawk) and HDMSpectra

e Huge differences between hadronization schemes, mainly due to focus on different
energy ranges

® \We choose Hazma for kzT < 0.1 GeV, Herwig tor 0.1 GeV < kzT < 100 GeV and
HDMSpectra for kzT > 100 GeV

® For E/k;T < 107° we use the primary emission only
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Secondary emission

M= 1.2e+13 g
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Galactic y ray emission

2
fPBH d N}’

Flux is given b () —
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® Using observational data from INTEGRAL, COMPTEL, EGRET, Fermi-LAT and
LHAASO

(Galactic center (Galactic center v ray emission

\

INTEGRAL
COMPTEL
EGRET
FERMI-LAT
LHAASO

— M;=10"g, fppr =10""

[—
-
DO

d®/dE [GeV 's lem “sr ']

.

\

z
‘_‘U
w

\
>

D)
O
9
®)
~—
KA
®)




Extragalactic y ray emission

B o g rmd (1 + )dzNy
UX IS glven == % %
. S el 4 dEds

® Using observational data from HEAO, COMPTEL, EGRET, Fermi-LAT and LHAASO

(E(l 1 7), M(Z(t)))
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Constraints from extragalactic v ray emission

\ (Only primary emission, k=0.5)
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Constraints from extragalactic v ray emission
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CMB anisotropies

® Energy deposition after recombination will change the ionization fraction in the ,,Dark Ages”
® Small scale anisotropies (CMB angular power spectrum) will be damped through rescattering of the photons

e Existing code EXOCLASS to model effect of PBH evaporation on the CMB anisotropies

d?E d?E ha(z)fPBH,OpDM,t(l ar Z)3M

—3/) —=
drdV f) D gav| @ M,
ep,a inj

e Modification of the code to include the memory burden effect

® Issue 1: Transfer functions do not extend to the energy range of light PBH. For k>0.5 one needs to rely
on extrapolation.

® Issue 2: No secondary emission implemented (yet)

dE
drdV

e Alternative: Rough estimation by rescaling
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—  With secondaries One more caveat:
Without secondaries

For full (correct) treatment one
needs to sample all cosmological
parameters e.g. with Montepython

For simplicity (yet) we only set

fppy by requiring )(rzed < 1.5 as an
approximation

Stocker et. al. 2018 This produces too mild

140 145 150 155 160  16.5 constraints for f ~ 1
log(M(z=00)) |g]
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Constraints from CMB anisotropies (k=0.5)

- —e— EXOCLASS
Rescaled

—— Rescaled (only photons)
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f(k, M) constraint map
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