AMPM

Asteroid-Mass Primordial Black Hole Microlensing

Renee Key Swinburne University of Technology, Melbourne Australia with Ken Freeman, Alan Duffy, Edward Taylor, Anais Moller NEHOP, 2024

AMPM (DECam) LMC (50kpc) 500,000+ stars VR filter (626 nm) **40** hours **1** min cadence

Microlensing with finite sources

$$\rho = \frac{\theta_*}{\theta_E} = \frac{R_* D_L}{R_E D_S}$$

$$A_{FS}(u,
ho) = rac{1}{\pi
ho} \int_{|oldsymbol{y}| \leq
ho} A_{PS}(|oldsymbol{u} - oldsymbol{y}|) \ d^2y$$

$$t_E \propto \sqrt{M_{PBH}}$$

on average, lower mass lenses produce ~minutes

faster events: asteroid-mass events are

The theoretical limit of AMPM

'wave optics' - when the Einstein ring radius is comparable to the wavelength of light

1.8 $\pi\omega$ wo1.7 max 1.6 1.5 Amplification 1. $8\pi GM_{PBH}$ 1.2 1.1 1.0 10^{-13}

Generating events to test pipeline

22.64

22.66

22.68

0.55

0.60

0.65

0.70

HJD

0.75

100000 lenses per mass step

All manner of velocities, stellar radii, lens distances

0.85

Number of Expected Events for December 18th, 2019

Weighted in Stellar radii bins (MIST photometry)

NFW profile with MW only dark matter

Lots of asteroid mass events, no sub-solar/jupiter mass events

Generated with PBHBounds B. Kavanagh