Antonio Junior Iovino

Timekeepers of the Universe: The recent gravitational wave observation by PTA and PBH

NEHOP

SAPIENZA Università di Roma NEW HORIZONS IN PRIMORDIAL BLACK HOLE PHYSICS

PBH and SGWB

Several PTA collaborations show that the correlations follow the Hellings–Downs pattern expected for a stochastic gravitational-wave background.

0.8 0.8 Correlation coeefficient 0.6 0.6 0.4 0.4 $\Gamma(\xi_{ab})$ 0.2 0.2 0.0 0.0 -0.2 -0.4-0.2 $\gamma = 13/3$ -0.6-0.4 100 120 140 160 180 20 40 60 80 0 120 30 90 150 180 60 Angular separation (deg) Separation Angle Between Pulsars, ξ_{ab} [degrees] DR2full DR2new HD

EPTA – arXiv:2306.16214

NANOGrav – arXiv:2306.16213 arXiv:2306.16219

What is the PTA source? arXiv:2308

arXiv:2308.08546 J. Ellis A.J.I. et al (PRD)

All the PTA possible sources: Astro vs Cosmo

PBH and SGWB

SGWB are produced by a second-order effect when scalar perturbations re-enter the horizon.

Log-likelihood analysis Fitting the posterior distributions

$$\mathcal{P}_{\zeta}^{\text{BPL}}(k) = A \frac{(\alpha + \beta)^{\gamma}}{\left(\beta \left(k/k_{*}\right)^{-\alpha/\gamma} + \alpha \left(k/k_{*}\right)^{\beta/\gamma}\right)^{\gamma}}$$

$$\mathcal{P}_{\zeta}^{\mathrm{LN}}(k) = \frac{A}{\sqrt{2\pi}\Delta} \exp\left(-\frac{1}{2\Delta^2}\ln^2(k/k_*)\right)$$

arXiv:2306.17149 *(PRL)* G.Franciolini, <u>A.J.I.</u>, V. Vaskonen, H. Veermae

Log-likelihood analysis Fitting the posterior distributions

$$\mathcal{P}_{\zeta}^{\text{BPL}}(k) = A \frac{(\alpha + \beta)^{\gamma}}{\left(\beta \left(k/k_{*}\right)^{-\alpha/\gamma} + \alpha \left(k/k_{*}\right)^{\beta/\gamma}\right)^{\gamma}}$$

$$\mathcal{P}_{\zeta}^{\mathrm{LN}}(k) = \frac{A}{\sqrt{2\pi}\Delta} \exp\left(-\frac{1}{2\Delta^2}\ln^2(k/k_*)\right)$$

Results: The casuality tail is not good:

$$\Omega_{\rm GW}(k \ll k_*) \propto k^3 (1 + \tilde{A} \ln^2(k/\tilde{k}))$$

 $\Omega_{\rm GW}(k \ll k_*) \propto k^3 (1 + \tilde{A} \ln^2(k/\tilde{k}))$

Log-likelihood analysis Fitting the posterior distributions

$$\mathcal{P}_{\zeta}^{\text{BPL}}(k) = A \frac{(\alpha + \beta)^{\gamma}}{\left(\beta \left(k/k_{*}\right)^{-\alpha/\gamma} + \alpha \left(k/k_{*}\right)^{\beta/\gamma}\right)^{\gamma}}$$

$$\mathcal{P}_{\zeta}^{\mathrm{LN}}(k) = \frac{A}{\sqrt{2\pi}\Delta} \exp\left(-\frac{1}{2\Delta^2}\ln^2(k/k_*)\right)$$

Results:

Position of the peak at higher frequencies. Broad spectrum does not fit so well.

Improvement respect to NANOGrav analysis. NANOGrav collaboration arXiv:2306.16219 Power spectrum <> Abundance <> GWs

- Non-Gaussianities in the abundance.
- Dependency of the PBH formation parameters on the PS shape.
- QCD impact on threshold.

Abundance of PBHs: The role of NGs.

Threshold statistics on the compaction function

G.Ferrante, G. Franciolini, A.J.I. A.Urbano.–arXiv:2211.01728 A.Gow *et al*– arXIv:2211:08348

NON-LINEARITIES (NL)

$$\delta(r,t) = -\frac{2}{3}\Phi\left(\frac{1}{aH}\right)^2 e^{-2\zeta(r)} \left[\zeta''(r) + \frac{2}{r}\zeta'(r) + \frac{1}{2}\zeta'(r)^2\right]$$

T. Harada, C. M. Yoo, T. Nakama and Y. Koga, – arXiv:1503.03934

PRIMORDIAL NG IN $\zeta = F(\zeta_G)$

$$\zeta = \log \left[X(r_{\rm dec}, \zeta_{\rm G}) \right] \qquad \zeta = -\frac{2}{\beta} \log \left(1 - \frac{\beta}{2} \zeta_{\rm G} \right) \qquad \zeta = \zeta_{\rm G} + \frac{3}{5} f_{\rm NL} \zeta_{\rm G}^2$$

curvaton case

Inflection-point (IP or USR) case

Quadratic approx.

Abundance of PBHs: *See Musco's Talk* Shape dependencies

I. Musco, V. De Luca, G. Franciolini, A.Riotto.- arXiv:2011.03014

QCD phase transitions

I. Musco, K.Jedamzik, S.Young.- arXiv:2303.07980

Tension between NANOGrav and PBHs

13

A potential issue

When we compute the threshold using the average value for the compaction, non-linear effects not included in the linear transfer function lead to different super-horizon threshold conditions. V. De Luca, A. Kehagias, A. Riotto.– arXiv:2307.13633

Going beyond the average profile

arXiv:2402.11033 A.Ianniccari, <u>A.J.I.</u>, A. Kehagias, D. Perrone, A. Riotto (PRD)

In realistic cases, threshold is determined by the broadest possible compaction function.

We need to reduce the amplitude of a factor O(2-3), so PTA-PBH tension is exacerbated $_{15}$

Conclusions

Negative NGs to alleviate the tension between PTA and PBH overproduction.

There is still a lot of uncertainties in the way we compute the PBH abundance and on the possibility that they maybe the PTA explanation*.

*<u>A.J.I.</u>, G.Perna, A. Riotto and H. Veermae to appear

Thank you

Threshold statistics on the Compaction: Mathematical formulation

By integrating δ over the radial coordinate *r* we get the compaction function *C*

 $\mathcal{C}(r) = -2\Phi \, r \, \zeta'(r) \left[1 + \frac{r}{2} \zeta'(r) \right] = \mathcal{C}_1(r) - \frac{1}{4\Phi} \mathcal{C}_1(r)^2 \,, \qquad \qquad \mathcal{C}_1(r) \coloneqq -2\Phi \, r \, \zeta'(r)$

In the presence of NG C_1 takes the form

$$\mathcal{C}_{1}(r) = -2\Phi \, r \, \zeta_{\mathrm{G}}'(r) \, \frac{dF}{d\zeta_{\mathrm{G}}} = \mathcal{C}_{\mathrm{G}}(r) \, \frac{dF}{d\zeta_{\mathrm{G}}} \,, \qquad \text{with} \quad \mathcal{C}_{\mathrm{G}}(r) \coloneqq -2\Phi \, r \, \zeta_{\mathrm{G}}'(r)$$

From the two-dimensional joint PDF of ζ_G and C_G , called P_G

NG PBH mass fraction-distribution adopting threshold statistics on the compaction function

$$\begin{split} \beta_{\rm NG} &= \int_{\mathcal{D}} \mathcal{K}(\mathcal{C} - \mathcal{C}_{\rm th})^{\gamma} \mathcal{P}_{\rm G}(\mathcal{C}_{\rm G}, \zeta_{\rm G}) d\mathcal{C}_{\rm G} d\zeta_{\rm G} \,, \\ \mathcal{D} &= \{\mathcal{C}_{\rm G}, \, \zeta_{\rm G} \in \mathbb{R} \; : \; \mathcal{C}(\mathcal{C}_{\rm G}, \zeta_{\rm G}) > \mathcal{C}_{\rm th} \; \wedge \; \mathcal{C}_{1}(\mathcal{C}_{\rm G}, \zeta_{\rm G}) < 2\Phi\} \,, \\ f_{\rm PBH}(M_{\rm PBH}) &= \frac{1}{\Omega_{\rm DM}} \int_{M_{\rm H}^{\rm min}(M_{\rm PBH})} d\log M_{\rm H} \left(\frac{M_{\rm eq}}{M_{\rm H}}\right)^{1/2} \left[1 - \frac{\mathcal{C}_{\rm th}}{\Phi} - \frac{1}{\Phi} \left(\frac{M_{\rm PBH}}{\mathcal{K}M_{\rm H}}\right)^{1/\gamma}\right]^{-1/2} \frac{\mathcal{K}}{\gamma} \left(\frac{M_{\rm PBH}}{\mathcal{K}M_{\rm H}}\right)^{\frac{1+\gamma}{\gamma}} \\ &\times \int d\zeta_{\rm G} P_{\rm G}(\mathcal{C}_{\rm G}(M_{\rm PBH}, \zeta_{\rm G}), \zeta_{\rm G}|M_{\rm H}) \left(\frac{dF}{d\zeta_{\rm G}}\right)^{-1} \,. \end{split}$$

Quadratic gives wrong result

Failure of the perturbative approach (Narrow) • $\zeta_N = \sum c_n(r_{dec})\zeta_G^n$

 $\zeta = \log \left[X(r_{\rm dec}, \zeta_{\rm G}) \right]$

NG generic features

NG generic features

FIG. S4. Two dimensional PDF as a function of (C_G, ζ_G) compared to the over-threshold condition $C > C_{th}$. In all panels, we considered the BPL power spectrum with an amplitude A = 0.05. The red lines indicates the contour lines corresponding to $\log_{10}(P_G) = -45, -35, -25, -15, -5$. The collapse of type-I PBHs take place between the black solid and dashed lines (see more details in Ref. [195]). Left panel: Example of a very narrow power spectrum with $\alpha = \beta = 8$. The abundance is suppressed in the presence of negative f_{NL} by the strong correlation between C_G and ζ_G obtained for narrow spectra. Center panel: Example of negative non-Gaussianity and representative BPL spectrum. The PBH formation is sourced by regions of small ζ_G and positive C_G or both negative C_G and ζ_G . Right panel: Example with positive f_{NL} , showing the region producing PBHs populates the correlated quadrants of the plot, at odds with that is found in the other panels.

PBH and SGWB

Several PTA collaborations show that the correlations follow the Hellings–Downs pattern expected for a stochastic gravitational-wave background.

IPTA – arXiv:2309.00693

NANOGrav – arXiv:2306.16213 arXiv:2306.16219

