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Introduction: A potential new observable of PBH dark matter

The problem: There could be enough PBHs in the asteroid mass range ( ) 
to constitute as much as  fraction of the dark matter… none have been detected.

∼ 1017 − 1022 grams
𝒪(1)

Main Science Question: Can precision modeling & measurements of Solar System (SS) 
ephemerides be used to detect the passage of a PBH through our solar system? 

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in 
the orbital trajectories of solar system objects.	
Can potentially detect a PBH and/or derive constraints from absence of an encounter

how close do these encounters have to be?
how long is the observation time? 

Sarah R. Geller

2a



Sarah R. Geller

Introduction: A potential new observable of PBH dark matter

The problem: There could be enough PBHs in the asteroid mass range ( ) 
to constitute as much as  fraction of the dark matter… none have been detected.

∼ 1017 − 1022 grams
𝒪(1)

Main Science Question: Can precision modeling & measurements of Solar System ephemerides 
be used to detect the passage of a PBH through our solar system? 

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in 
the orbital trajectories of solar system objects.	
Can potentially detect a PBH and/or derive constraints from absence of an encounter

how close do these encounters have to be?
how long is the observation time? 

Sarah R. Geller Black Holes and Cosmology, Nassau, Bahamas, March 2024

2b



Sarah R. Geller

Introduction: A potential new observable of PBH dark matter

The problem: There could be enough PBHs in the asteroid mass range ( ) 
to constitute as much as  fraction of the dark matter… none have been detected.

∼ 1017 − 1022 grams
𝒪(1)

Main Science Question: Can precision modeling & measurements of Solar System ephemerides 
be used to detect the passage of a PBH through our solar system? 

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in 
the orbital trajectories of solar system objects.	
Can potentially detect a PBH and/or derive constraints from absence of an encounter

how close do these encounters have to be?
how long is the observation time? 

Sarah R. Geller

2c



Sarah R. Geller

Introduction: A potential new observable of PBH dark matter

The problem: There could be enough PBHs in the asteroid mass range ( ) 
to constitute as much as  fraction of the dark matter… none have been detected.

∼ 1017 − 1022 grams
𝒪(1)

Main Science Question: Can precision modeling & measurements of Solar System ephemerides 
be used to detect the passage of a PBH through our solar system? 

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in 
the orbital trajectories of solar system objects.	
Can potentially detect a PBH and/or derive constraints from absence of an encounter

how close do these encounters have to be?
how long is the observation time? 

Sarah R. Geller

2d



Sarah R. Geller

Introduction: A potential new observable of PBH dark matter

The problem: There could be enough PBHs in the asteroid mass range ( ) 
to constitute as much as  fraction of the dark matter… none have been detected.

∼ 1017 − 1022 grams
𝒪(1)

Main Science Question: Can precision modeling & measurements of Solar System ephemerides 
be used to detect the passage of a PBH through our solar system? 

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in 
the orbital trajectories of solar system objects.— Proposed observable is Earth-Mars distance.	
Can potentially detect a PBH and/or derive constraints from absence of an encounter

how close do these encounters have to be?
how long is the observation time? 

Sarah R. Geller

2e



Sarah R. Geller

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. 	
Detection is hard, especially for PBHs within asteroid mass range!  
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To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. 	
Detection is hard, especially for PBHs within asteroid mass range!  

History and Current state of PBH direct detection and Solar System Ephemerides

Solar System Ephemerides: highly accurate models of positions and trajectories of solar system 
bodies. 

INPOP21a model

DE441 model
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Ideal observable: Earth-Moon distance:  years of ranging data,  precision since 2007> 50 𝒪(1mm)

Other (un-modeled) effects to consider that can damp orbital perturbations:  

*SSO  solar system object≡

PBH flyby perturbs the orbit of a SSO*, changes distance r between Earth and SSO by residual 
 δr = δr0 + ∑

n

δrn(δrn−1)

•Finite size Newtonian corrections (tidal forces, solar radiation pressure)

•Relativistic point mass effects (EIHDL/post-Newtonian acceleration)

•Relativistic finite size effects (Lense-Thirring effect)

•Inclusion of additional bodies
All have small effect	
on residual:	

  ∑
n

δrn

δr0
< < 1

initial pert. 
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A proposed observable of PBH dark matter
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Proposed observable is the Earth-Mars distance 

Problem: Finite-size effects too big for simplified simulation b/c 
REarth
rE−M

∼ 10−2
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Ideal observable: Earth-Moon distance:  years of ranging data,  precision since 2007> 50 𝒪(1mm)
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A brief history of Mars ephemeris
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1996-2006: Mars Global Surveyor

Proposed observable is the Earth-Mars distance 

Problem: Finite-size effects too big for simplified simulation b/c 
REarth
rE−M

∼ 10−2

4c

Ideal observable: Earth-Moon distance:  years of ranging data,  precision since 2007> 50 𝒪(1mm)

Mars ephemeris informed by  years of ranging data, 	
 since early 2000’s 

> 20
𝒪(10 cm)
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1996-2006: Mars Global Surveyor

2006-Present: Mars Reconnaissance Orbiter

Proposed observable is the Earth-Mars distance 

Problem: Newtonian finite-size effects too big for simplified simulation b/c 
REarth
rE−M

∼ 10−2
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1996-2006: Mars Global Surveyor

Mars ephemeris informed by  years of ranging data, 	
 since early 2000’s 

> 20
𝒪(10 cm)

2006-Present: Mars Reconnaissance Orbiter

Proposed observable is the Earth-Mars distance 

Problem: Newtonian finite-size effects too big for simplified simulation b/c 
REarth
rE−M

∼ 10−2

Radio tracking (Doppler)

Very Long Baseline 	
     Interferometry (VLBI)

Use orbiters like 	
* Mars Odessy	
* Mars Express	
* MAVEN	
* Mars Rovers

Ideal observable: Earth-Moon distance:  years of ranging data,  precision since 2007> 50 𝒪(1mm)

A brief history of Mars ephemeris 4d
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It’s a beautiful PBH in the neighborhood!

Sarah R. Geller

Similar to dark matter density calculation


If , fPBH ∼ 1 ρPBH ≃ .4 GeV/cm3
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Rate of detectable flybys: an analytic estimate vs (simplified) numerical simulation

Sarah R. Geller

6c

Similar to dark matter density calculation


If  (local pbh density ~ local dark matter density), fPBH ∼ 1 ρPBH ≃ .4 GeV/cm3

d=5.2 AU
Expectation 

for flybys: 

NPBH ∼ 1.4 (
MPBH
1018gm )

−1

⟨vPBH⟩ ∼ 220 km/swith
sun

Comparing flyby time to orbital time  Impulse model⟹

Simplification: assume monochromatic mass spectrum
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Ideal observable: Earth-Moon distance

Proposed observable is the Earth-Mars distance 

 precision,  years of ranging data𝒪(1mm) > 50

Problem: Newtonian finite-size effects too big for simplified simulation b/c 
REarth
rE−M

∼ 10−2

MarsEarth

sun

The Solar System as a Compact Object Detector 5a
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The Solar System as a Compact Object Detector
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Ideal observable: Earth-Moon distance

Proposed observable is the Earth-Mars distance 

 precision,  years of ranging data𝒪(1mm) > 50

Problem: Newtonian finite-size effects too big for simplified simulation b/c 
REarth
rE−M

∼ 10−2

MarsEarth

sun

Δt δr ≈ δv Δt

δv ≡
p⊥

MSSO
=

net impulse velocity 

imparted to SSO

Condition for detectability: 

 implies for ,  

there will be  detectable events  

within impact parameter !!!

δr ≳ σr Δt ≃ 26 years

𝒪(1)

b ≃ 3.3 Au

5b
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The Solar System itself as a new PBH telescope: 
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On a timescale of  from PBH

 closest approach

∼ 10 yr

Envelope tracks impulse model + many 

other bodies- grows linearly 

Impulse model: linear growth of distance

On much longer timescales (>10 yr, 

< instability timescale of solar sys.)

 slope of impulse model switches sign. 

Acts as a guide: where do we look? Is 

viable observable?
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The Solar System itself as a new PBH telescope: 
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Envelope tracks impulse model + many 

other bodies- grows linearly 

Impulse model: linear growth of distance

On much longer timescales (>10 yr, 

< instability timescale of solar sys.)

 slope of impulse model switches sign. 

Acts as a guide: where do we look? Is 

viable observable?
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8Correlations amongst gravitational orbital perturbations! 

Because of the distinct temporal pattern, one could exploit 

matched filter analysis to boost SNR! (LIGO achieves ) 

We get ~1 event at 

q0 ∼ 10−4

q0 ∼ 10−2
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COMPETING BACKGROUNDS 

credit: D.I.Kaiser
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COMPETING BACKGROUNDS 

And…. 

To do: 

- Lensing?

- Upcoming LNPOP collaboration

- Triggering of event capture/monitoring?

credit: D.I.Kaiser


