V2: arXiv 2312.17217, Submitted PRD "Close Encounters of the Primordial Kind"

close encounter of the primoroial kno

Sarah Geller (in collab. with Ben Lehmann, Tung Tran, & David Kaiser)

Massachusetts Institute of Technology

n, Tung Tran, & David Kaiser) NEHOP 2024, Edinburgh

COLLABORATORS:

Tung Tran (Graduate Student)

Benjamin Lehmann MIT Pappalardo Fellow

Sarah R. Geller Scipp SANTA CRUZ INSTITUTE for PARTICLE PHYSICS UC SANTA CRUZ

Professor David Kaiser

to constitute as much as $\mathcal{O}(1)$ fraction of the dark matter... none have been detected.

Sarah R. Geller

Massachusetts Institute of Technology

Main Science Question: Can precision modeling & measurements of Solar System ephemerides be used to detect the passage of a PBH through our solar system?

Sarah R. Geller

The problem: There could be enough PBHs in the asteroid mass range ($\sim 10^{17} - 10^{22}$ grams)

Main Science Question: Can precision modeling & measurements of Solar System ephemerides be used to detect the passage of a PBH through our solar system? how close do these encounters have to be?

Sarah R. Geller

Main Science Question: Can precision modeling & measurements of Solar System ephemerides be used to detect the passage of a PBH through our solar system?

how close do these encounters have to be?

how long is the observation time?

Sarah R. Geller

Main Science Question: Can precision modeling & measurements of Solar System ephemerides be used to detect the passage of a PBH through our solar system?

how close do these encounters have to be? how long is the observation time?

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in the orbital trajectories of solar system objects. — Proposed observable is Earth-Mars distance. Can potentially detect a PBH and/or derive constraints from absence of an encounter

Sarah R. Geller

Massachusetts Institute of Technology

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. **Detection is hard, especially for PBHs within asteroid mass range!**

Sarah R. Geller

Massachusetts Institute of Technology

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. **Detection is hard, especially for PBHs within asteroid mass range!**

Solar System Ephemerides: highly accurate models of *positions* and *trajectories* of solar system bodies.

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. **Detection is hard, especially for PBHs within asteroid mass range!**

bodies.

Sarah R. Geller

Solar System Ephemerides: highly accurate models of *positions* and *trajectories* of solar system

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. **Detection is hard, especially for PBHs within asteroid mass range!**

Solar System Ephemerides: highly accurate models of *positions* and *trajectories* of solar system bodies.

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. **Detection is hard, especially for PBHs within asteroid mass range!**

Solar System Ephemerides: highly accurate models of *positions* and *trajectories* of solar system bodies.

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc. **Detection is hard, especially for PBHs within asteroid mass range!**

Solar System Ephemerides: highly accurate models of *positions* and *trajectories* of solar system bodies.

Sarah R. Geller

Massachusetts Institute of Technology

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{ mm})$ precision since 2007

Sarah R. Geller

Massachusetts Institute of Technology

Sarah R. Geller

Massachusetts Institute of Technology

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{ mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{M_{\text{Earth}}} \sim 10^{-2}$ r_{E-M}

Other (un-modeled) effects to consider that can damp orbital perturbations:

Sarah R. Geller

Massachusetts Institute of Technology

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{M_{\text{Earth}}} \sim 10^{-2}$ r_{E-M}

Other (un-modeled) effects to consider that can damp orbital perturbations:

Inclusion of additional bodies

Sarah R. Geller

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{M_{\text{Earth}}} \sim 10^{-2}$ r_{E-M}

- **Other (un-modeled) effects to consider that can damp orbital perturbations:**
- Inclusion of additional bodies
- Finite size Newtonian corrections (tidal forces, solar radiation pressure)

Sarah R. Geller

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{M_{\text{Earth}}} \sim 10^{-2}$ r_{E-M}

- **Other (un-modeled) effects to consider that can damp orbital perturbations:**
- Inclusion of additional bodies
- Finite size Newtonian corrections (tidal forces, solar radiation pressure)
- Relativistic point mass effects (EIHDL/post-Newtonian acceleration)

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{M_{\text{Earth}}} \sim 10^{-2}$ r_{E-M}

- **Other (un-modeled) effects to consider that can damp orbital perturbations:**
- Inclusion of additional bodies
- Finite size Newtonian corrections (tidal forces, solar radiation pressure)
- Relativistic point mass effects (EIHDL/post-Newtonian acceleration)
- Relativistic finite size effects (Lense-Thirring effect)

Sarah R. Geller

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{2} \sim 10^{-2}$ r_{E-M}

- **Other (un-modeled) effects to consider that can damp orbital perturbations:**
- Inclusion of additional bodies

n

- Finite size Newtonian corrections (tidal forces, solar radiation pressure)
- Relativistic point mass effects (EIHDL/post-Newtonian acceleration)
- Relativistic finite size effects (Lense-Thirring effect)

PBH flyby perturbs the orbit of a SSO*, changes distance r between Earth and SSO by residual $\delta r = \delta r_0 + \sum \delta r_n (\delta r_{n-1})$

initial pert.

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 **Biggest problem:** Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{2} \sim 10^{-2}$ r_{E-M}

All have small effect on residual: $\sum \frac{\delta r_n}{\delta r_0} < <1$

*SSO \equiv solar system object

A proposed observable of PBH dark matter

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{ mm})$ precision since 2007 Problem: Finite-size effects too big for simplified simulation b/c $\frac{R_{\rm Earth}}{M_{\rm Earth}} \sim 10^{-2}$ r_{E-M}

Proposed observable is the Earth-Mars distance

Sarah R. Geller

A brief history of Mars ephemeris

 r_{E-M}

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 Problem: Finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{M_{\text{Earth}}} \sim 10^{-2}$

Proposed observable is the Earth-Mars distance

Mars ephemeris informed by > 20 years of ranging data, $\mathcal{O}(10 \text{ cm})$ since early 2000's

1996-2006: Mars Global Surveyor

Sarah R. Geller

Massachusetts Institute of Technology

A brief history of Mars ephemeris

 r_{E-M}

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 Problem: Newtonian finite-size effects too big for simplified simulation b/c $\frac{R_{\rm Earth}}{2} \sim 10^{-2}$

Proposed observable is the Earth-Mars distance

Mars ephemeris informed by > 20 years of ranging data, $\mathcal{O}(10 \text{ cm})$ since early 2000's

1996-2006: Mars Global Surveyor

2006-Present: Mars Reconnaissance Orbiter

Sarah R. Geller

Massachusetts Institute of Technology

A brief history of Mars ephemeris

 r_{E-M}

Ideal observable: Earth-Moon distance: > 50 years of ranging data, $\mathcal{O}(1\text{mm})$ precision since 2007 Problem: Newtonian finite-size effects too big for simplified simulation b/c $\frac{R_{\text{Earth}}}{2} \sim 10^{-2}$

Proposed observable is the Earth-Mars distance

Mars ephemeris informed by > 20 years of ranging data, $\mathcal{O}(10 \text{ cm})$ since early 2000's

1996-2006: Mars Global Surveyor

2006-Present: Mars Reconnaissance Orbiter

Sarah R. Geller

Massachusetts Institute of Technology

Radio tracking (Doppler)

Very Long Baseline Interferometry (VLBI)

Use orbiters like

- * Mars Odessy
- * Mars Express
- * MAVEN
- * Mars Rovers

It's a beautiful PBH in the neighborhood!

Similar to dark matter density calculation If $f_{\text{PBH}} \sim 1$, $\rho_{\text{PBH}} \simeq .4 \text{ GeV/cm}^3$

Sarah R. Geler Scipp SANTA CRUZ INSTITUTE OF PARTICLE PHYSICS UNC SANTA CRUZ

Rate of detectable flybys: an analytic estimate vs (simplified) numerical simulation 60

Similar to dark matter density calculation

Expectation for flybys:

Simplification: assume monochromatic mass spectrum

Comparing flyby time to orbital time \implies Impulse model

Sarah R. Geller

If $f_{PBH} \sim 1$ (local pbh density ~ local dark matter density), $\rho_{PBH} \simeq .4$ GeV/cm³

$$N_{\text{PBH}} \sim 1.4 \left(\frac{M_{\text{PBH}}}{10^{18} \text{gm}} \right)^{-1}$$
 with $\langle v_{PBH} \rangle \sim 220 \text{ km}$

Proposed observable is the Earth-Mars distance

Sarah R. Geller

Massachusetts Institute of Technology

Proposed observable is the Earth-Mars distance

Sarah R. Geller

Massachusetts Institute of Technology

Proposed observable is the Earth-Mars distance

Sarah R. Geller

Massachusetts Institute of Technology

Sarah R. Geller

Massachusetts Institute of Technology

Proposed observable is the Earth-Mars distance

Sarah R. Geller

Massachusetts Institute of Technology

Proposed observable is the Earth-Mars distance

Proposed observable is the Earth-Mars distance

Proposed observable is the Earth-Mars distance

$$\delta v \equiv \frac{p_{\perp}}{M_{\rm SSO}} =$$

Ideal observable: Earth-Moon distance $\longrightarrow \mathcal{O}(1\text{ mm})$ precision, > 50 years of ranging data Problem: Newtonian finite-size effects too big for simplified simulation b/c $\frac{R_{\rm Earth}}{M_{\rm Earth}} \sim 10^{-2}$ r_{E-M}

$$\delta v \equiv \frac{p_{\perp}}{M_{\rm SSO}} =$$

net impulse velocity imparted to SSO

Ideal observable: Earth-Moon distance $\longrightarrow \mathcal{O}(1\text{ mm})$ precision, > 50 years of ranging data Problem: Newtonian finite-size effects too big for simplified simulation b/c $\frac{R_{\rm Earth}}{M_{\rm Earth}} \sim 10^{-2}$ r_{E-M}

$$\delta v \equiv \frac{p_{\perp}}{M_{\rm SSO}} =$$

net impulse velocity imparted to SSO

Condition for detectability: $\delta r \gtrsim \sigma_r$ implies for $\Delta t \simeq 26$ years, there will be $\mathcal{O}(1)$ detectable events within impact parameter $b \simeq 3.3$ Au!!!

Sarah R. Geller

Massachusetts Institute of Technology

7.510.0

Object	Mass [g]	Horizons
Sun	$2.0 imes10^{33}$	10
Mercury	$3.3 imes10^{26}$	199
Venus	$4.9 imes10^{27}$	299
Earth	$6.0 imes10^{27}$	399
Moon / (Earth)	$7.3 imes10^{25}$	301
Mars	$6.4 imes10^{26}$	499
Phobos	$1.1 imes 10^{19}$	401
Deimos	$1.8 imes 10^{18}$	402
Jupiter	$1.9 imes10^{30}$	599
IO	$8.9 imes10^{25}$	501
Europa	$4.8 imes 10^{25}$	502
Ganymede	$1.5 imes10^{26}$	503
Callisto	$1.1 imes 10^{26}$	504
Saturn	$5.7 imes10^{29}$	699
Titan	$1.3 imes 10^{26}$	606
Uranus	$8.7 imes10^{28}$	799
Neptune	$1.0 imes10^{29}$	899
Pluto	$1.5 imes 10^{25}$	999
Ceres	$9.4 imes10^{23}$	2000001
Vesta	$2.6 imes10^{23}$	2000004

Sarah R. Geller

Massachusetts Institute of Technology

On a timescale of $\,\sim\,10$ yr from PBH closest approach

Impulse model: linear growth of distance

Envelope tracks impulse model + many other bodies- grows linearly

On much longer timescales (>10 yr, < instability timescale of solar sys.) slope of impulse model switches sign.

Acts as a guide: where do we look? Is δr viable observable?

Sarah R. Geller

Massachusetts Institute of Technology

On a timescale of $\,\sim\,10$ yr from PBH closest approach

Impulse model: linear growth of distance

Envelope tracks impulse model + many other bodies- grows linearly

On much longer timescales (>10 yr, < instability timescale of solar sys.) slope of impulse model switches sign.

Acts as a guide: where do we look? Is δr viable observable?

Sarah R. Geller

Massachusetts Institute of Technology

On a timescale of $\,\sim\,10$ yr from PBH closest approach

Impulse model: linear growth of distance

Envelope tracks impulse model + many other bodies- grows linearly

On much longer timescales (>10 yr, < instability timescale of solar sys.) slope of impulse model switches sign.

Acts as a guide: where do we look? Is δr viable observable?

Correlations amongst gravitational orbital perturbations!

Because of the distinct temporal pattern, one could exploit matched filter analysis to boost SNR! (LIGO achieves $q_0 \sim 10^{-4}$) We get ~1 event at $q_0 \sim 10^{-2}$

Sarah R. Geller

Massachusetts Institute of Technology

COMPETING BACKGROUNDS

If future observations do find $\delta r_{\text{Mars}} > \sigma_r$, could we distinguish a PBH from other possible sources of such perturbations?

Trajectory characteristics: $v_{pbh} \sim 200$ km/s, whereas $v_{sso} \sim O(10)$ km/s.

In addition, SSOs are **co-planar**, whereas PBHs are likely to come from throughout a *spherical region* centered on the Milky Way galactic core.

Massachusetts

Institute of **Technology**

Sarah R. Geller

CNEOS database: 17,828 NEOs since 1900. $v_{avg} = 10.29 \pm 5.17$ km/s; $v_{max} = 42.92$ km/s. The *interstellar object* 'Oumuamua has $v_{asymptotic} = 26.4$ km/s and $v_{perihelion} = 87.7$ km/s.

credit: D.I.Kaiser

COMPETING BACKGROUNDS

And....

(Lack of a) visual component: NASA, ESA, and other agencies continually monitor for small NEOs.

The interstellar object 'Oumuamua has $M = 10^{12}$ g, with dimensions ~ 100 m x 30 m x 10 m, and it was *nonetheless* **detected** by multiple Earthbound telescopes (first identified at r = 0.22 AU). Of course, abense of evidence is not evidence of absence.... but it could lend additional support. credit: D.I.Kaiser

To do:

- Lensing?
- Upcoming LNPOP collaboration
- Triggering of event capture/monitoring?

