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Introduction: A potential new observable of PBH dark matter 2a

The problem: There could be enough PBHs in the asteroid mass range ( ~ 1017 — 10%? grams)
to constitute as much as O(1) fraction of the dark matter... none have been detected.

Sarah R. Geller

B B Massachuse
SCI PP I I I I I Institute of
UC SANTA CRUZ Chno

eo
Te logy




Introduction: A potential new observable of PBH dark matter 2b

The problem: There could be enough PBHs in the asteroid mass range ( ~ 1017 — 10%? grams)
to constitute as much as O(1) fraction of the dark matter... none have been detected.

Main Science Question: Can precision modeling & measurements of Solar System ephemerides
be used to detect the passage of a PBH through our solar system?
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Introduction: A potential new observable of PBH dark matter 2C

The problem: There could be enough PBHs in the asteroid mass range ( ~ 1017 — 10%? grams)
to constitute as much as O(1) fraction of the dark matter... none have been detected.

Main Science Question: Can precision modeling & measurements of Solar System ephemerides
be used to detect the passage of a PBH through our solar system?

¥> how close do these encounters have to be?
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Introduction: A potential new observable of PBH dark matter 2d

The problem: There could be enough PBHs in the asteroid mass range ( ~ 1017 — 10%? grams)
to constitute as much as O(1) fraction of the dark matter... none have been detected.

Main Science Question: Can precision modeling & measurements of Solar System ephemerides
be used to detect the passage of a PBH through our solar system?

how close do these encounters have to be?
L how long is the observation time?
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Introduction: A potential new observable of PBH dark matter 2e

The problem: There could be enough PBHs in the asteroid mass range ( ~ 1017 — 10%? grams)
to constitute as much as O(1) fraction of the dark matter... none have been detected.

Main Science Question: Can precision modeling & measurements of Solar System ephemerides
be used to detect the passage of a PBH through our solar system?

how close do these encounters have to be?
L how long is the observation time?

Claim: Close encounters of PBHs with our solar system can produce detectable perturbations in
the orbital trajectories of solar system objects.— Proposed observable is Earth-Mars distance.
Can potentially detect a PBH and/or derive constraints from absence of an encounter
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History and Current state of PBH direct detection and Solar System Ephemerides  3a

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc.
Detection is hard, especially for PBHs within asteroid mass range!
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History and Current state of PBH direct detection and Solar System Ephemerides  3b

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc.
Detection is hard, especially for PBHs within asteroid mass range!

Solar System Ephemerides: highly accurate models of positions and trajectories of solar system
bodies.
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History and Current state of PBH direct detection and Solar System Ephemerides  3c

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc.
Detection is hard, especially for PBHs within asteroid mass range!

Solar System Ephemerides: highly accurate models of positions and trajectories of solar system
bodies.
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History and Current state of PBH direct detection and Solar System Ephemerides  3d

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc.
Detection is hard, especially for PBHs within asteroid mass range!

Solar System Ephemerides: highly accurate models of positions and trajectories of solar system
bodies.

%A Jet Propulsion Laboratory

s Jo  California Institute of Technology

DE441 model
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History and Current state of PBH direct detection and Solar System Ephemerides 3d

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc.
Detection is hard, especially for PBHs within asteroid mass range!

Solar System Ephemerides: highly accurate models of positions and trajectories of solar system
bodies.

Q\sA Jet Propulsion Laboratory

v ) California Institute of Technology

DE441 model

Perrault building, Paris site
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History and Current state of PBH direct detection and Solar System Ephemerides 3e

To date: looked for PBHs using micro-lensing surveys, Hawking radiation searches, etc.
Detection is hard, especially for PBHs within asteroid mass range!

Solar System Ephemerides: highly accurate models of positions and trajectories of solar system
bodies.

%A Jet Propulsion Laboratory

s Jo  California Institute of Technology

DE441 model

Castle, site of Meudon
© Observatoire de Paris - PSL

Sarah R. Geller

SCI PP I I I BB Massachusetts

Institute of
Technology




Introduction: A potential new observable of PBH dark matter 4a
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

: o . g . . REarth _9
Biggest problem: Finite-size effects too big for simplified simulation b/c ~ 10

FE—_Mm
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

: o . g . . REarth _9
Biggest problem: Finite-size effects too big for simplified simulation b/c ~ 10

YE—Mm
Other (un-modeled) effects to consider that can damp orbital perturbations:
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

: o . g . . REarth _9
Biggest problem: Finite-size effects too big for simplified simulation b/c ~ 10

YE—Mm
Other (un-modeled) effects to consider that can damp orbital perturbations:

e|nclusion of additional bodies
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

: o . g . . REarth _9
Biggest problem: Finite-size effects too big for simplified simulation b/c ~ 10

YE—Mm
Other (un-modeled) effects to consider that can damp orbital perturbations:

e|nclusion of additional bodies

*Finite size Newtonian corrections (tidal forces, solar radiation pressure)
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

R
Biggest problem: Finite-size effects too big for simplified simulation b/c Farth 102

YE—Mm
Other (un-modeled) effects to consider that can damp orbital perturbations:

e|nclusion of additional bodies
eFinite size Newtonian corrections (tidal forces, solar radiation pressure)

eRelativistic point mass effects (EIHDL/post-Newtonian acceleration)
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

R
Biggest problem: Finite-size effects too big for simplified simulation b/c Farth 102

YE—M
Other (un-modeled) effects to consider that can damp orbital perturbations:

e|nclusion of additional bodies
eFinite size Newtonian corrections (tidal forces, solar radiation pressure)
eRelativistic point mass effects (EIHDL/post-Newtonian acceleration)

eRelativistic finite size effects (Lense-Thirring effect)
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Introduction: A potential new observable of PBH dark matter 4a

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

: o . g . . REarth _9
Biggest problem: Finite-size effects too big for simplified simulation b/c ~ 10

YE—M
Other (un-modeled) effects to consider that can damp orbital perturbations:

e|nclusion of additional bodies

All have small effect

on residual:
Relativistic point mass effects (EIHDL/post-Newtonian acceleration) Z or,

*Finite size Newtonian corrections (tidal forces, solar radiation pressure)

<<l

eRelativistic finite size effects (Lense-Thirring effect) . ory

PBH flyby perturbs the orbit of a SSO*, changes distance r between Earth and SSO by residual
5r = ro+ ) 81,51, )
n

v

initial pert. *SSO = solar system object
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A proposed observable of PBH dark matter

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

e . T . REarth )
Problem: Finite-size effects too big for simplified simulation b/c ~ 10

FE—_Mm
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A brief history of Mars ephemeris 4c

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

e . T . REarth )
Problem: Finite-size effects too big for simplified simulation b/c ~ 10

FE—_Mm

Mars ephemeris informed by > 20 years of ranging data,
@(10 cm) since early 2000’s

" MARS .

*  GLOBAL SURVEYOR

1996-2006: Mars Global Surveyor
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A brief history of Mars ephemeris 4d

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

Fe—m

Mars ephemeris informed by > 20 years of ranging data,
@(10 cm) since early 2000’s

2006-Present: Mars Reconnaissance Orbiter

" MARS .

*  GLOBAL SURVEYOR

1996-2006: Mars Global Surveyor
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A brief history of Mars ephemeris 4d

ldeal observable: Earth-Moon distance: > 50 years of ranging data, ©(1mm) precision since 2007

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072
FE—M
Mars ephemeris informed by > 20 years of ranging data, Radio tracking (Doppler)
@(10 cm) since early 2000’s Very Long Baseline

, _ Interferometry (VLBI)
2006-Present: Mars Reconnaissance Orbiter

" MARS .

*  GLOBAL SURVEYOR

Use orbiters like
* Mars Odessy
* Mars Express
* MAVEN

* Mars Rovers

1996-2006: Mars Global Surveyor
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It’s a beautiful PBH in the neighborhood! 6a

Similar to dark matter density calculation

|ff|:>B|_| ~ 1, PPBH = 4 GeV/cm3
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Rate of detectable flybys: an analytic estimate vs (simplified) numerical simulation 6cC

Similar to dark matter density calculation

If fegH ~ 1 (local pbh density ~ local dark matter density), ppgH =~ .4 GeV/cm3

—1
: M
Expectation 14 PBH with 0 K
for flybys: PBH (1018gm (Vpgr) ~ 220 km/s

Simplification: assume monochromatic mass spectrum

Comparing flyby time to orbital time = Impulse model
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The Solar System as a Compact Object Detector 5a

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Earth Mars
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The Solar System as a Compact Object Detector 5a

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Earth Mars
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The Solar System as a Compact Object Detector 5a

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Earth Mars
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

Fe—m

Earth Mars
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Mars
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Earth Mars
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Earth Mars
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

YE—M
Proposed observable is the Earth-Mars distance

Earth Mars
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— @(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072

Fe—m

Earth Mars

At 151" ~ OV At
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— @(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072
FE—M
oV = Py =
Mss0o

Earth Mars

At 151" ~ OV At
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The Solar System as a Compact Object Detector

ldeal observable: Earth-Moon distance —— @(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072
YE—M
Oy = Py —
Mgso
net impulse velocity
imparted to SSO
Earth Mars
// At 15}/’ ~ 5‘/ At
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The Solar System as a Compact Object Detector 5b

ldeal observable: Earth-Moon distance —— O(1mm) precision, > 50 years of ranging data

R
Problem: Newtonian finite-size effects too big for simplified simulation b/c Farth 1072
FE—M
Proposed observable is the Earth-Mars distance ’
oV = = =
Mss0o

net impulse velocity
imparted to SSO
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The Solar System itself as a new PBH telescope:

=
O
|

—— Mercury (2.09 au)

Impulse model
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—1.0 -

PBH within 10 au

ARV

—7.5

—o0.0 =25

0.0 2.5 5.0 7.5

Time from PBH perihelion |yr]
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Object Mass [g] Horizons ID
Sun 2.0 x 1033 10
Mercury 3.3 x 1026 199
Venus 4.9 x 10%7 299
Earth 6.0 x 10%7 399
Moon / (Earth) 7.3 x10%® 301
Mars 6.4 x 10%° 499
Phobos 1.1 x 10%° 401
Deimos 1.8 x 108 402
Jupiter 1.9 x 103° 599
Io 8.9 x 10%° 501
Europa 4.8 x 10 502
Ganymede 1.5 x 10%° 503
Callisto 1.1 x 10%® 504
Saturn 5.7 x 10%° 699
Titan 1.3 x10%° 606
Uranus 8.7 x10% 799
Neptune 1.0 x 10%° 899
Pluto 1.5 x 10%° 999
Ceres 9.4 x 10% 2000001
Vesta 2.6 x 103 2000004

/a




The Solar System itself as a new PBH telescope: /a

Mercury (2.09 au)

On a timescale of ~ 10 yr from PBH
Impulse model

closest approach

=
O
|

Impulse model: linear growth of distance

Envelope tracks impulse model + many
other bodies- grows linearly

g
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S
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On much longer timescales (>10 yr,
< instability timescale of solar sys.)
slope of impulse model switches sign.

PBH within 10 au

—1.0 -

. Acts as a guide: where do we look? Is or

Time from PBH perihelion |yr]
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The Solar System itself as a new PBH telescope: b

Mercury (2.09 au) Mppg = 10%! g
—— Venus (2.70 au)

Impulse model

On a timescale of ~ 10 yr from PBH
closest approach

=
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|

Impulse model: linear growth of distance

Envelope tracks impulse model + many
other bodies- grows linearly
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~
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On much longer timescales (>10 yr,
< instability timescale of solar sys.)
slope of impulse model switches sign.

PBH within 10 au

—1.0 -

. Acts as a guide: where do we look? Is or

—7.5 =50 =25 0.0 2.5 5.0 7.5 . viable observable?
Time from PBH perihelion |yr]
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The Solar System itself as a new PBH telescope: /C

Mercury (2.09au) | Mpps = 10% g On a timescale of ~ 10 yr from PBH

—— Venus (2.70 au) closest approach
—— Mars (3.05au)

Impulse model

=
O
|

Impulse model: linear growth of distance

Envelope tracks impulse model + many
other bodies- grows linearly

g
~
(’Q
T 0.0
+>
<
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|

On much longer timescales (>10 yr,
< instability timescale of solar sys.)
slope of impulse model switches sign.

—1.0 -

PBH within 10 au

Acts as a guide: where do we look? Is or

-75 =50 =25 0.0 2.5 5.0 . 0| viable observable?
Time from PBH perihelion [yr]
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Correlations amongst gravitational orbital perturbations! 8

Because of the distinct temporal pattern, one could exploit
matched filter analysis to boost SNR! (LIGO achieves g, ~ 107

We get ~1 event at g, ~ 10~
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COMPETING BACKGROUNDS

If future observations do find dry.s > o;, could we distinguish a PBH from other
possible sources of such perturbations?

Trajectory characteristics: vy, ~ 200 km/s, whereas vy, ~ O(10) km/s.

‘ : Center for
-
NA\SA Jet Propulsion Laboratory Near Earth Object
> ) California Institute of Technology Studies

CNEOS database: 17,828 NEOs since 1900. v,,, = 10.29 + 5.17 km/s; v = 42.92 km/s.
The interstellar object ‘'Oumuamua has v, moroic = 26.4 km/s and v ihelion = 87.7 km/s.

In addition, SSOs are co-planar, whereas PBHs are likely to come from
throughout a spherical region centered on the Milky Way galactic core.

credit: D.l.Kaiser
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COMPETING BACKGROUNDS

And....

(Lack of a) visual component: NASA, ESA, and other
agencies continually monitor for small NEOs.

The interstellar object ‘Oumuamua has M= 10!? g, with
dimensions ~ 100 m x 30 m x 10 m, and it was nonetheless
detected by multiple Earthbound telescopes (first identified
at » =0.22 AU). Of course, abense of evidence is not

evidence of absence.... but it could lend additional support.
credit: D.l.Kaiser

To do:

- Lensing?

- Upcoming LNPOP collaboration

- Triggering of event capture/monitoring?
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