Compaction function profiles from stochastic inflation

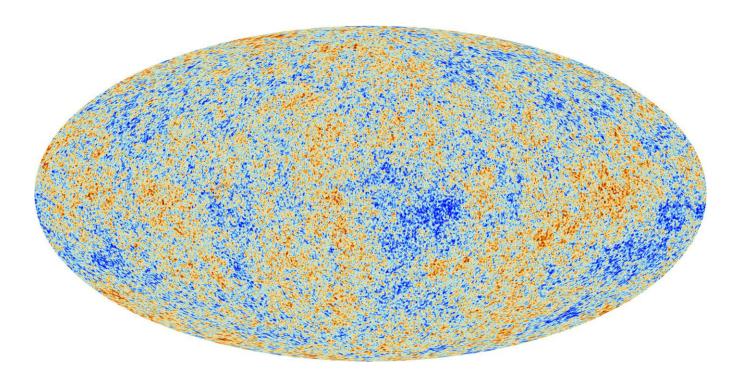
New Horizons in Primordial Black Hole physics Edinburgh, 17 May 2024

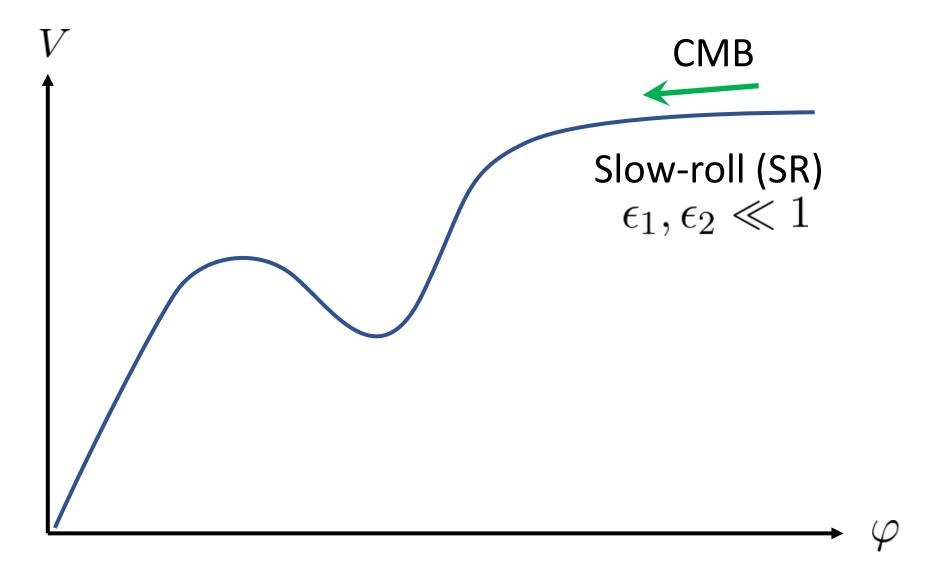
Eemeli Tomberg, Lancaster University

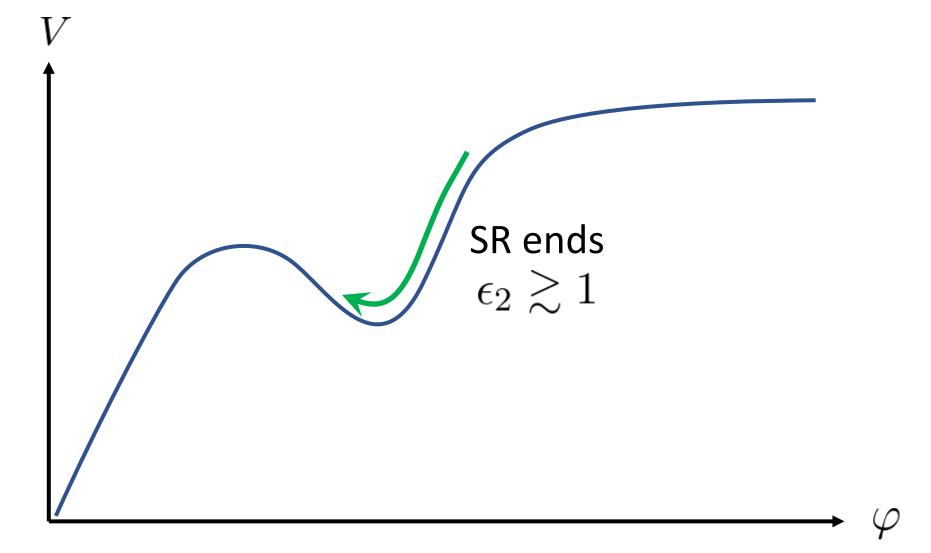
Based on 2012.06551, 2111.07437, 2210.17441, 2304.10903, 2312.12911 in collaboration with D. Figueroa, S. Raatikainen, S. Räsänen

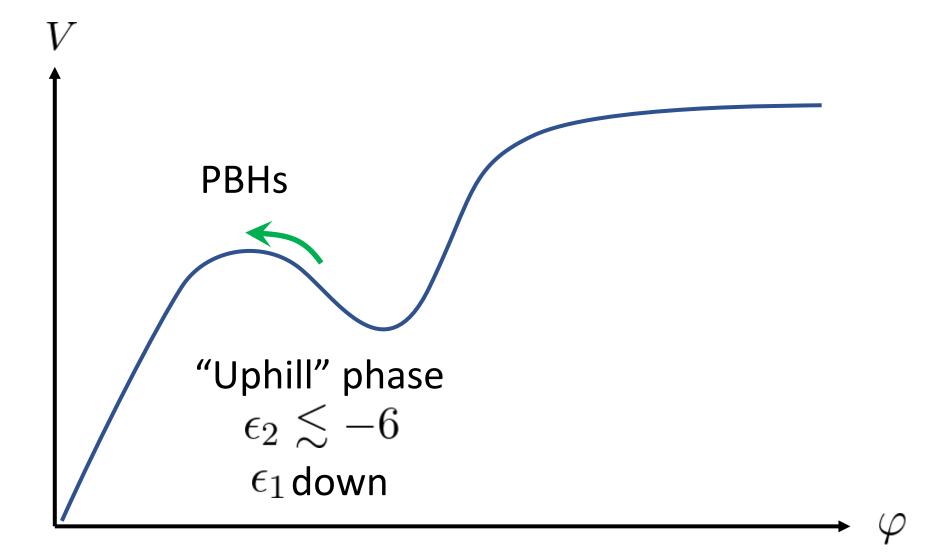
Black holes from primordial perturbations

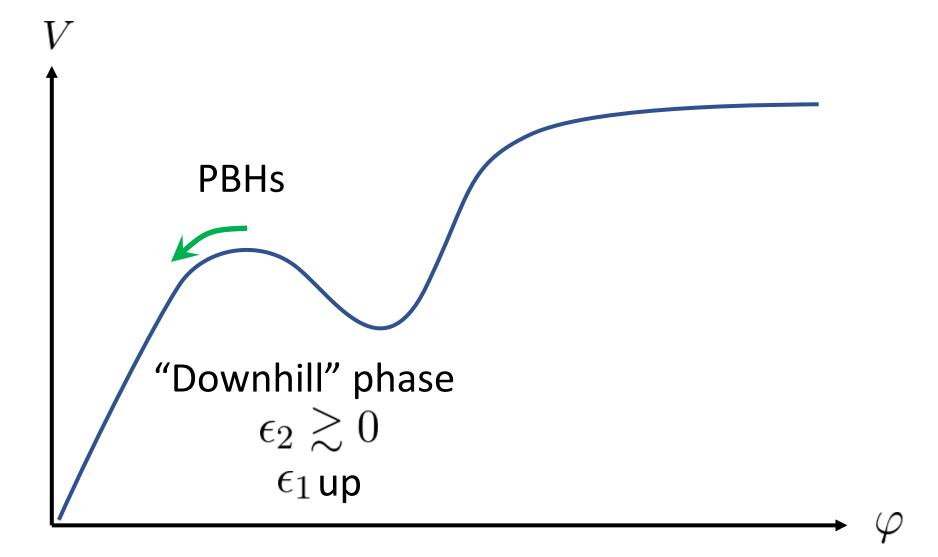
Cosmic inflation: quantum fluctuations Later: strongest collapse into black holes

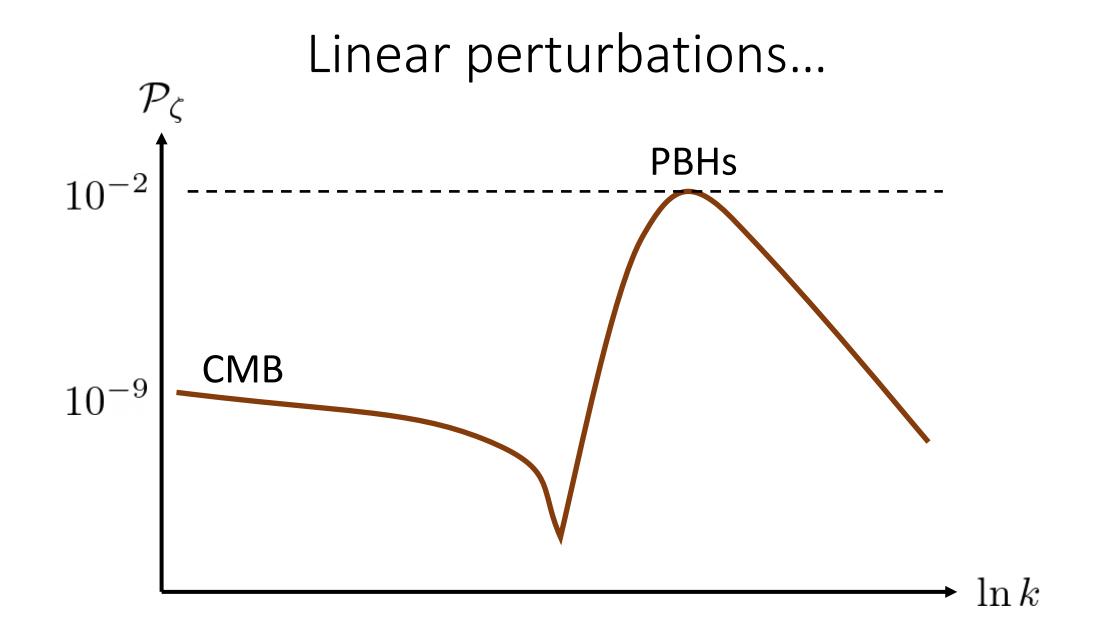


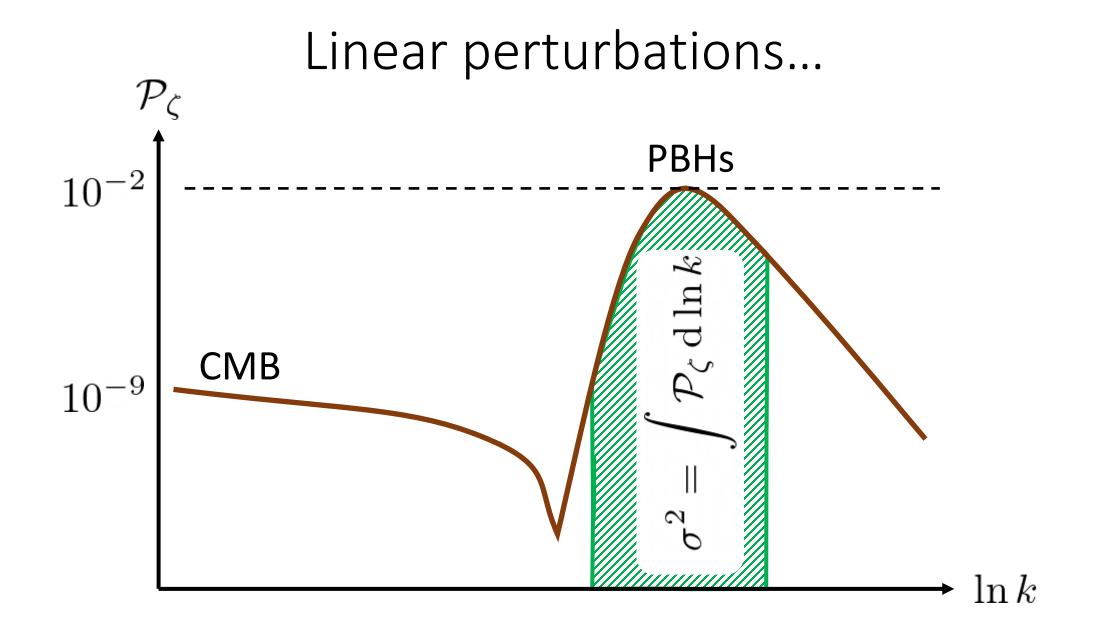


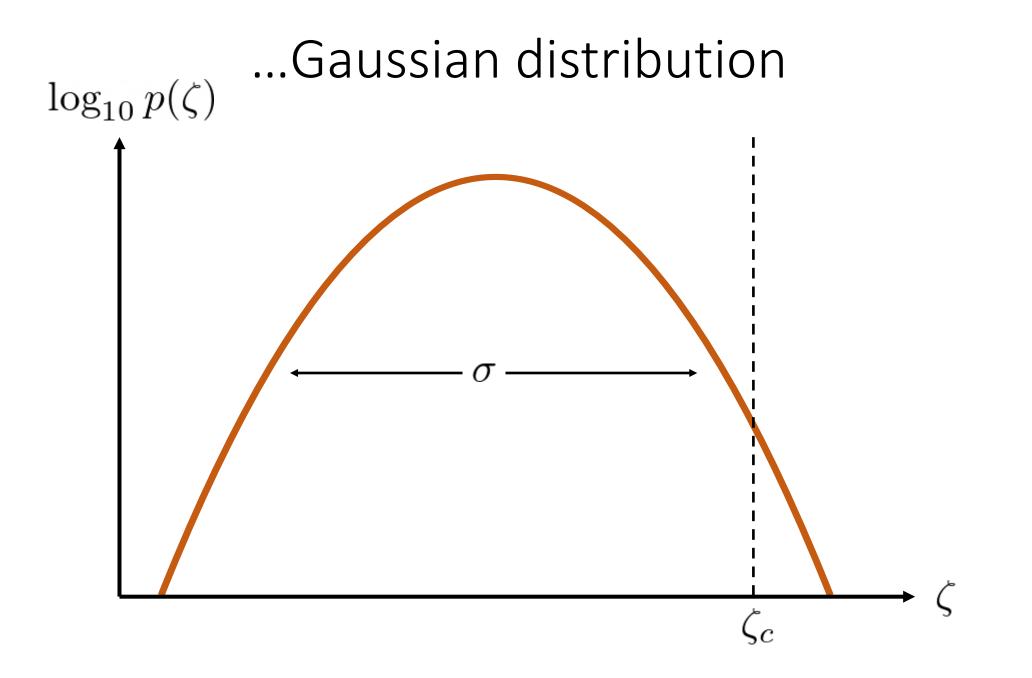


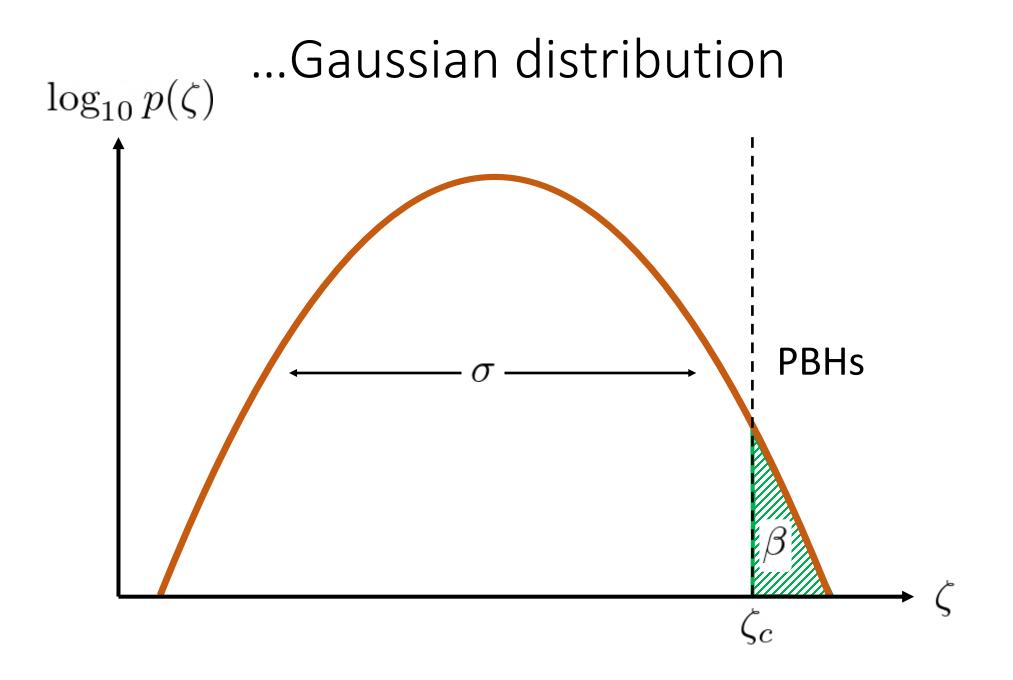












Why this is wrong

Why this is wrong

Perturbations in the tail are not Gaussian

Why this is wrong

Perturbations in the tail are not Gaussian

Instead of curvature perturbation: need compaction function

Compaction function

$$\mathcal{C} \equiv 2 \frac{M_{\rm MS} - M_{\rm bg}}{R}$$

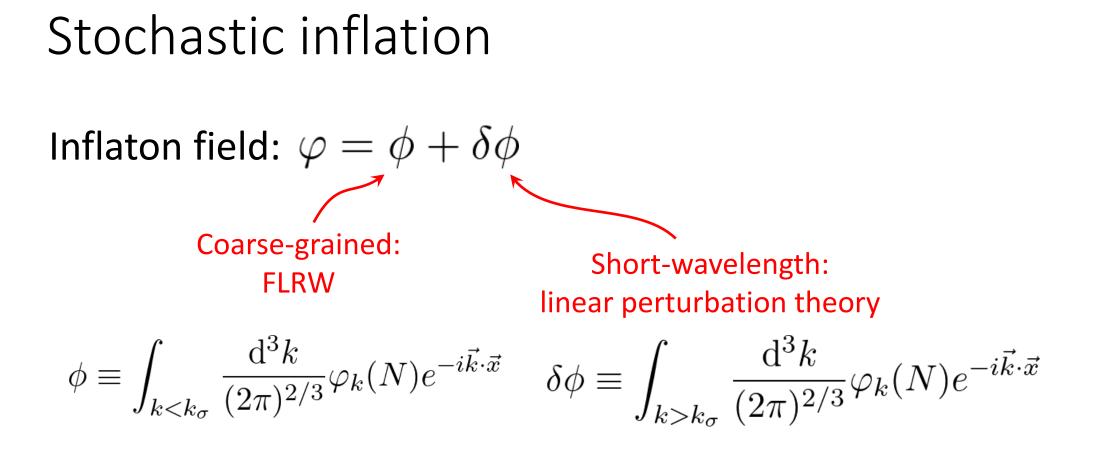
Collapse:
$$C_{\text{max}} > C_c \approx 0.4$$

Compaction function

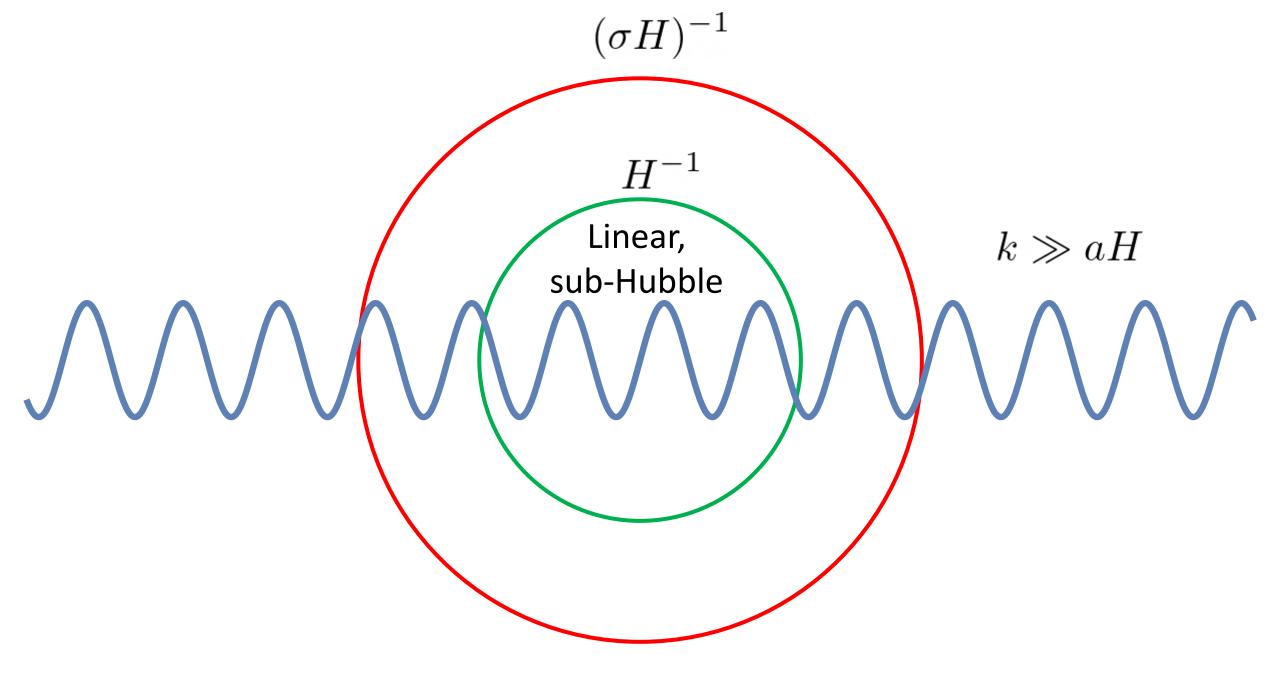
$$\mathcal{C} \equiv 2 \frac{M_{\rm MS} - M_{\rm bg}}{R}$$

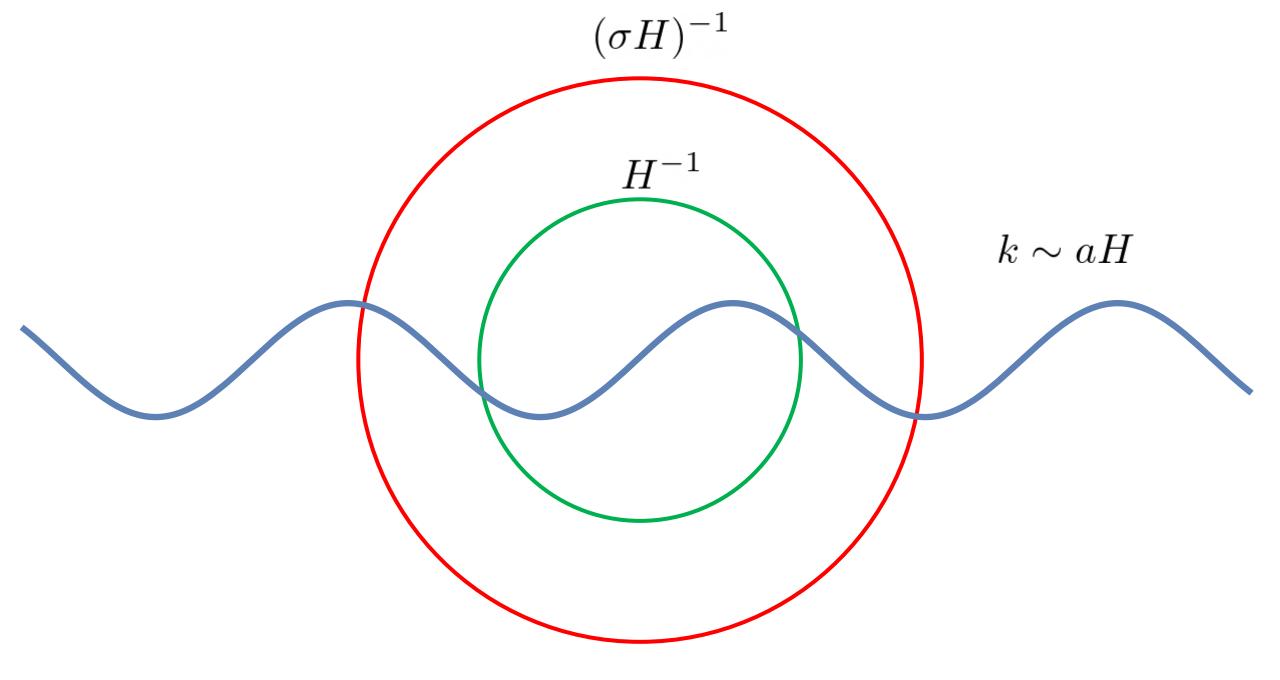
Collapse:
$$C_{\max} > C_c \approx 0.4$$

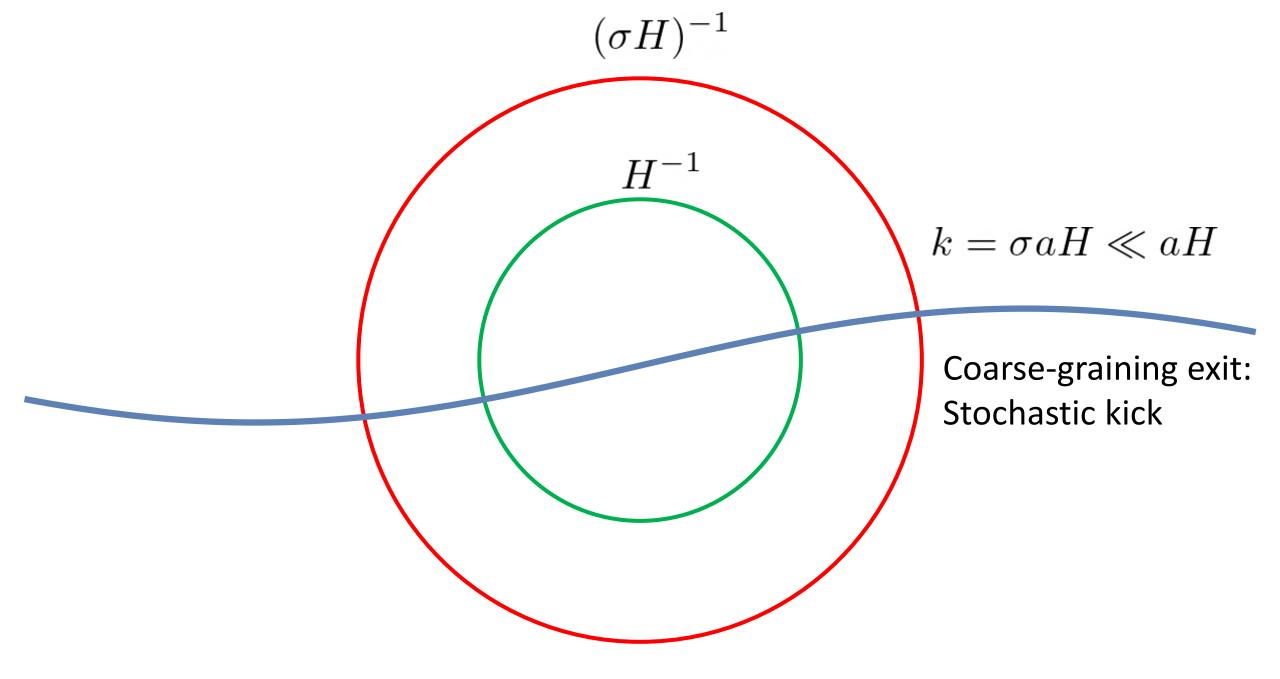
In inflationary variables: Radial profile of
$$\mathcal{C}(r) = \frac{2}{3}(1 - [1 + r\zeta'(r)]^2) \text{ non-Gaussian perturbations?}$$



Patched together at the coarse-graining scale $k = k_{\sigma} \equiv \sigma a H$







Stochastic inflation

$$\begin{split} \phi' &= \pi + \xi_{\phi} \,, \quad \pi' = -\left(3 - \frac{1}{2}\pi^2\right)\pi - \frac{V'(\phi)}{H^2} + \xi_{\pi} \,, \quad H^2 = \frac{V(\phi)}{3 - \frac{1}{2}\pi^2} \\ \delta\phi_k'' &= -(3 - \frac{1}{2}\pi^2)\delta\phi_k' - \left[\frac{k^2}{a^2H^2} + \pi^2(3 - \frac{1}{2}\pi^2) + 2\pi\frac{V'(\phi)}{H^2} + \frac{V''(\phi)}{H^2}\right]\delta\phi_k \end{split}$$

$$\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi_{k_{\sigma}}(N)|^2 \delta(N-N') \langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi'_{k_{\sigma}}(N)|^2 \delta(N-N') \langle \xi_{\phi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} \delta\phi_{k_{\sigma}}(N)\delta\phi'^*_{k_{\sigma}}(N)\delta(N-N')$$

 $\zeta_{<k} = \Delta N = N - \bar{N}$

Stochastic inflation

$$\begin{split} \phi' &= \pi + \xi_{\phi} \,, \quad \pi' = -\left(3 - \frac{1}{2}\pi^2\right)\pi - \frac{V'(\phi)}{H^2} + \xi_{\pi} \,, \quad H^2 = \frac{V(\phi)}{3 - \frac{1}{2}\pi^2} \\ \delta\phi_k'' &= -(3 - \frac{1}{2}\pi^2)\delta\phi_k' - \left[\frac{k^2}{a^2H^2} + \pi^2(3 - \frac{1}{2}\pi^2) + 2\pi\frac{V'(\phi)}{H^2} + \frac{V''(\phi)}{H^2}\right]\delta\phi_k \end{split}$$

$$\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi_{k_{\sigma}}(N)|^2 \delta(N-N') \langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi'_{k_{\sigma}}(N)|^2 \delta(N-N') \langle \xi_{\phi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} \delta\phi_{k_{\sigma}}(N)\delta\phi'^*_{k_{\sigma}}(N)\delta(N-N')$$

$$\zeta_{< k} = \Delta N = N - \bar{N} \quad \Leftarrow$$

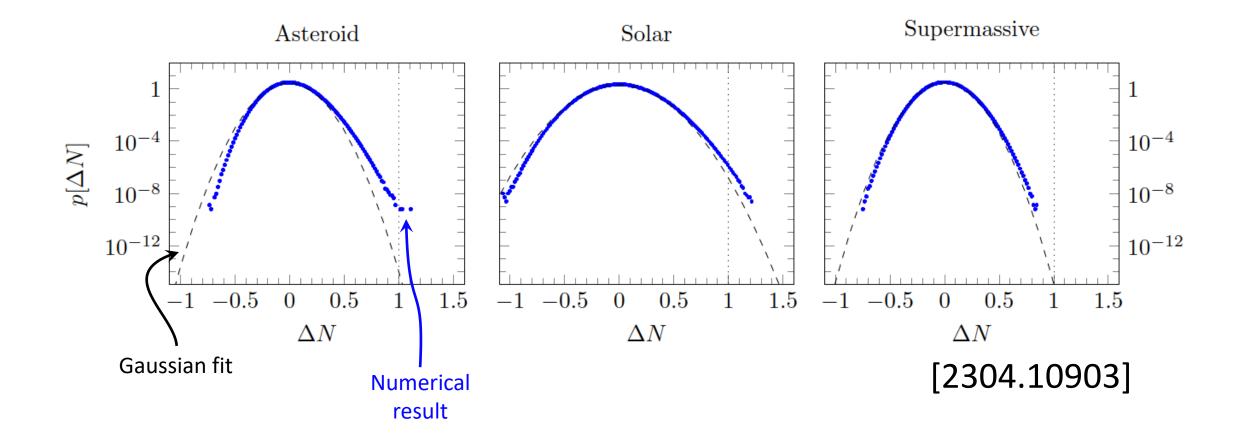
Curvature perturbations coarse-grained to k-scale

Constant-roll inflation: analytical approximation

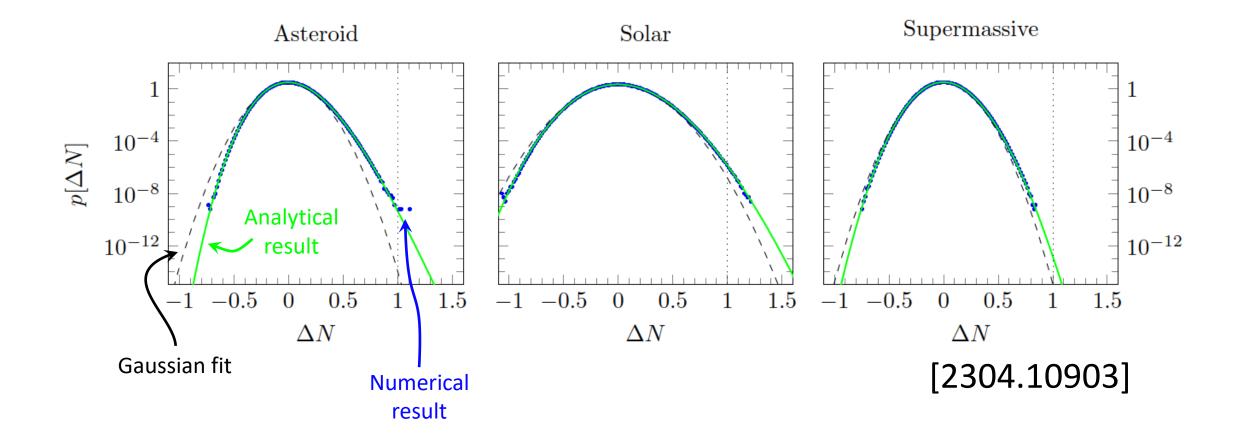
$$\zeta_{
$$\underbrace{= X_{$$$$

$$p(\zeta_{< k}) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left[-\frac{2}{\sigma_k^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\zeta_{< k}}\right)^2 - \frac{\epsilon_2}{2}\zeta_{< k}\right]$$

Comparison to numerics



Comparison to numerics



Recall:

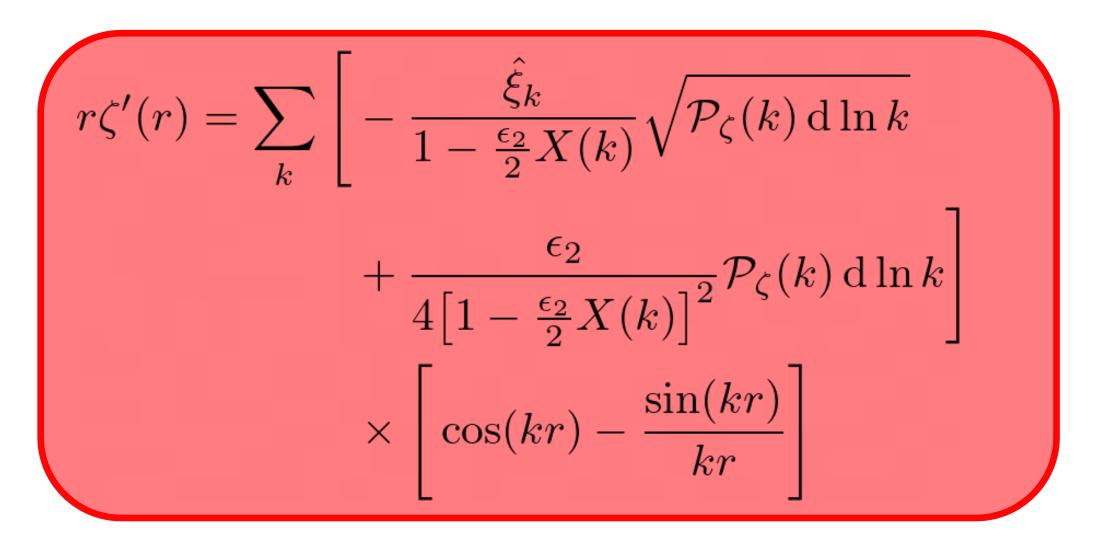
$$\mathcal{C}(r) = \frac{2}{3}(1 - [1 + r\zeta'(r)]^2)$$

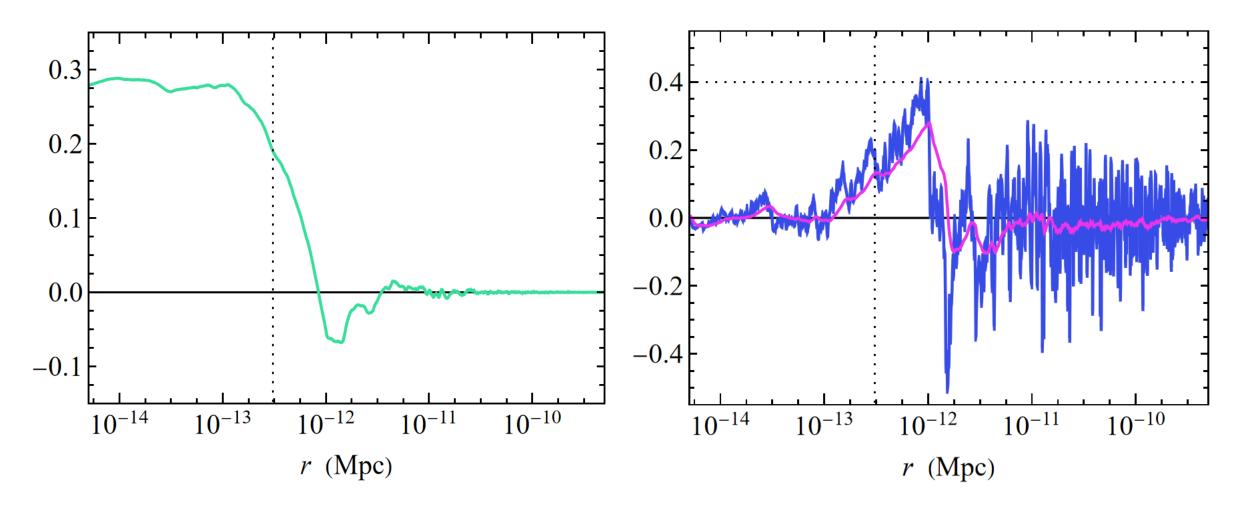
Assuming spherical symmetry...

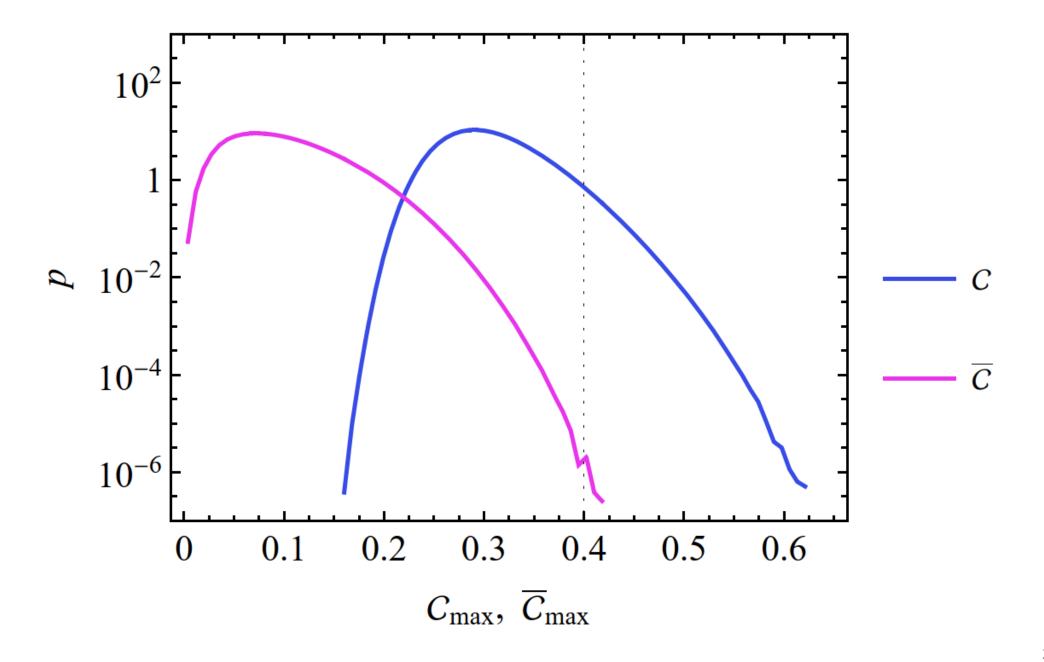
$$\zeta_k = \frac{\sqrt{2\pi}}{2k^3} \frac{\mathrm{d}\zeta_{$$

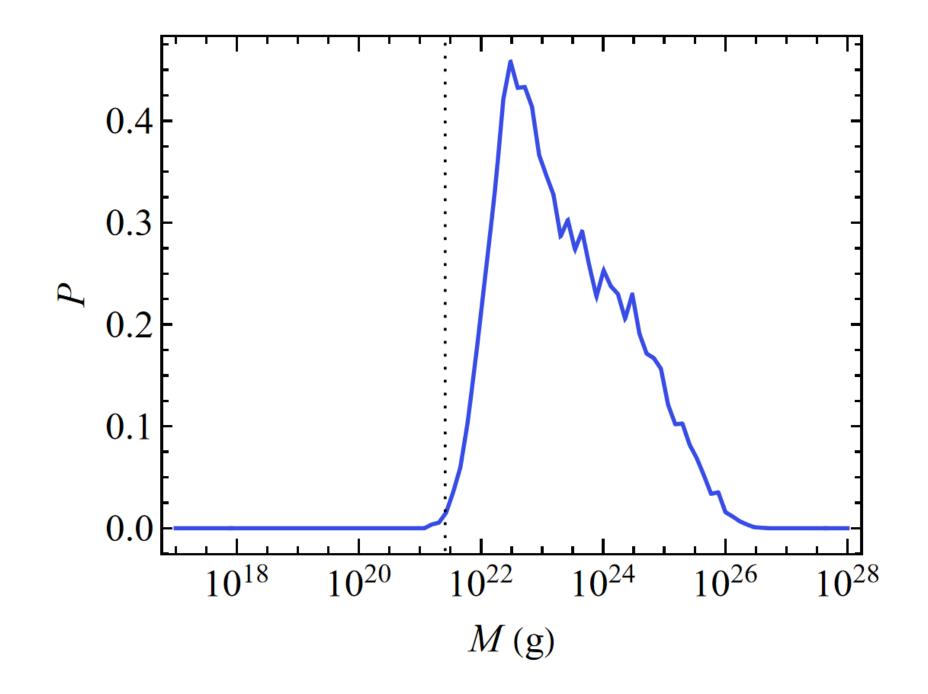
$$r\zeta'(r) = \sum_{k} \frac{2k^2 \,\mathrm{d}k}{\sqrt{2\pi}} \,\zeta_k \left[\cos(kr) - \frac{\sin(kr)}{kr}\right]$$

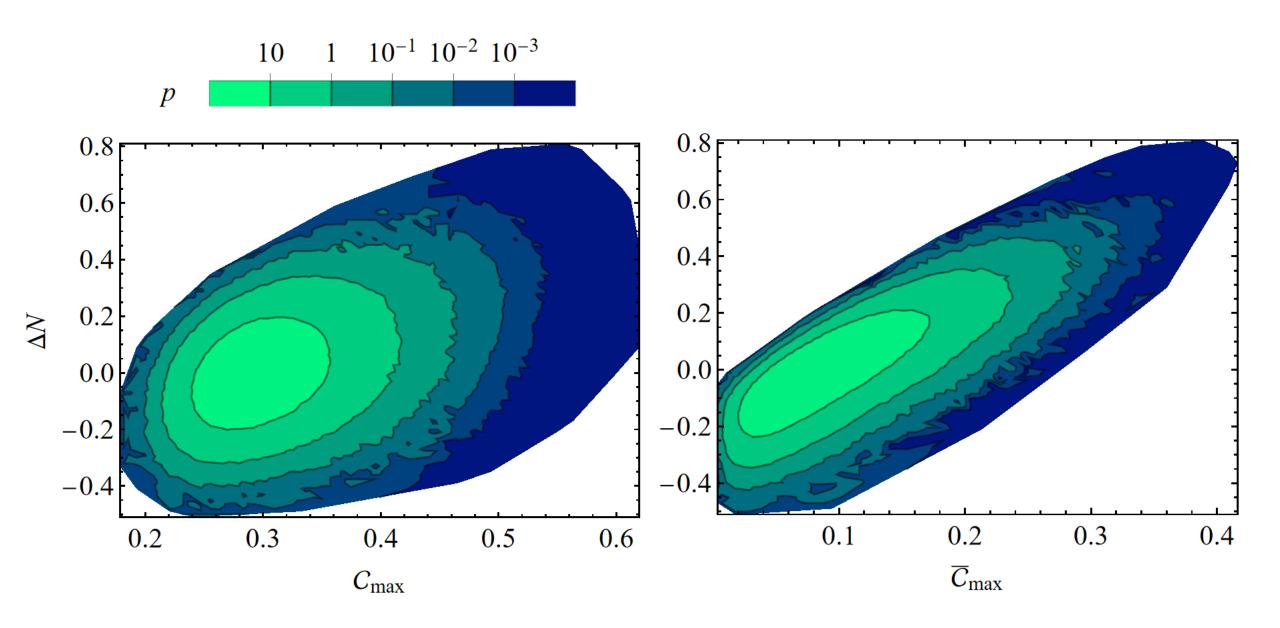
...get master formula











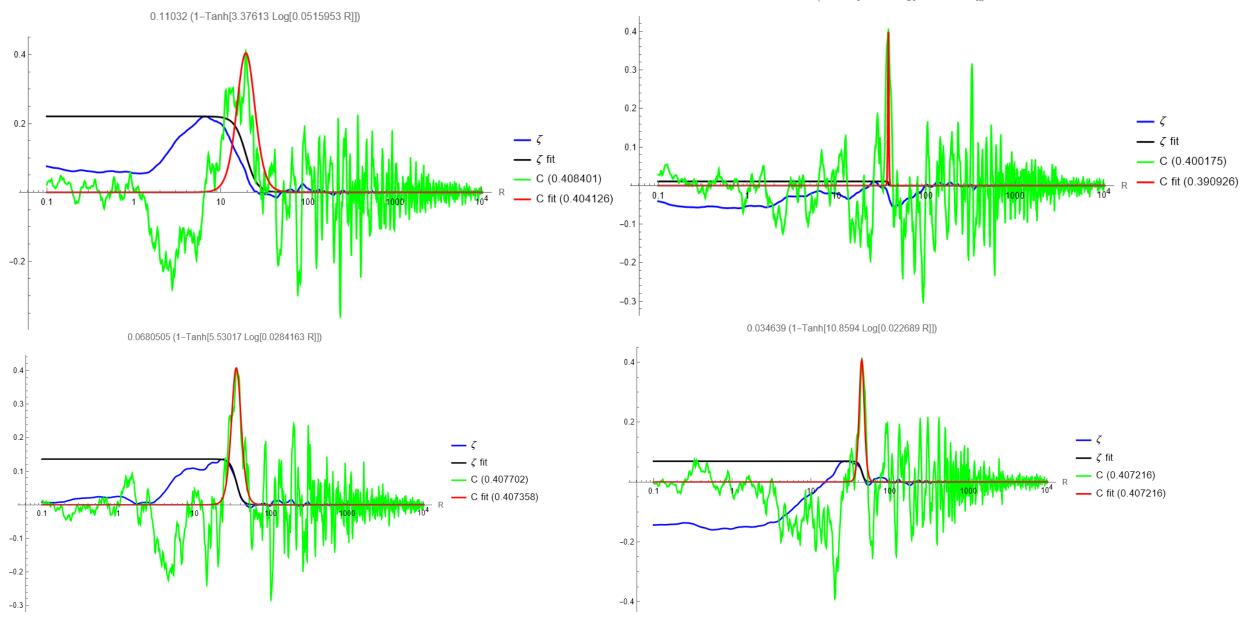
Conclusions

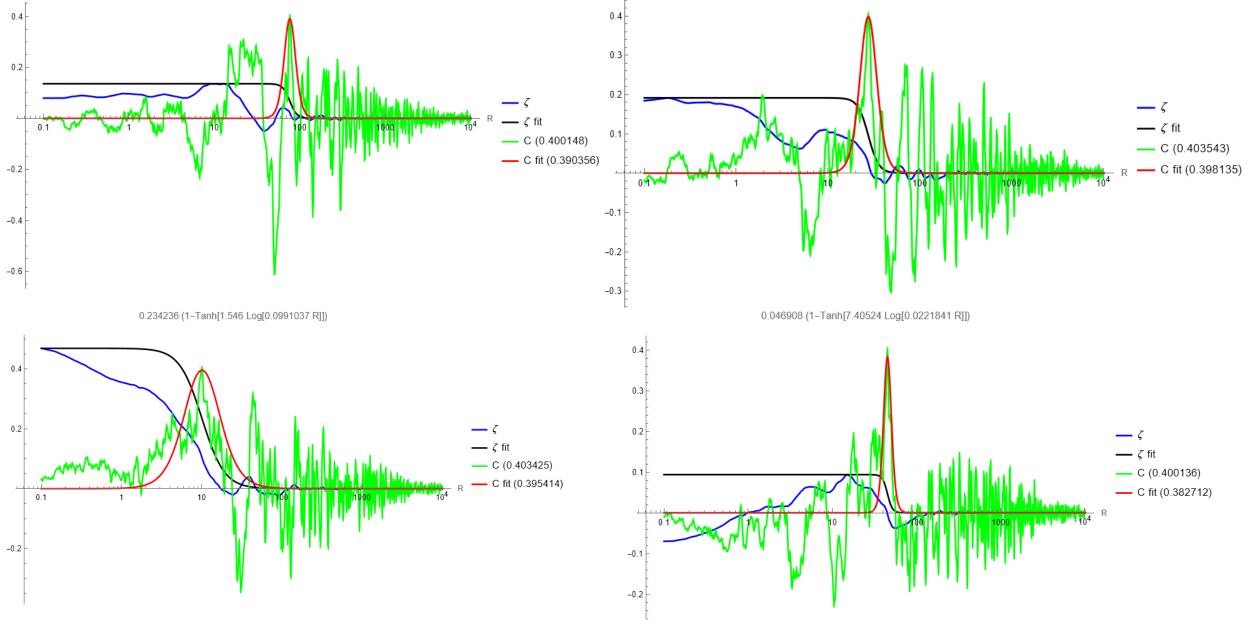
Compaction function formalism needed for accurate PBH predictions

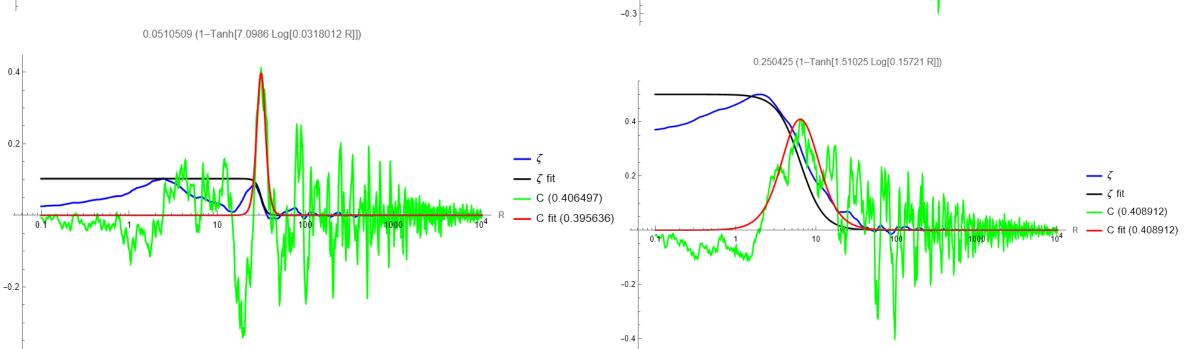
Stochastic inflation gives compaction function profiles including non-Gaussianity

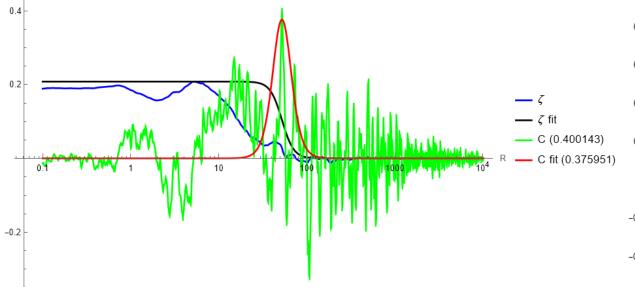
Spiked radial profiles: what to do?

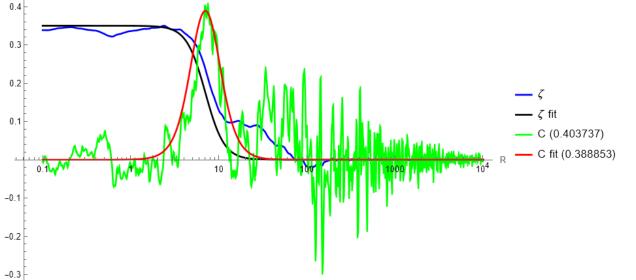
0.00538743 (1-Tanh[66.242 Log[0.0262636 R]])







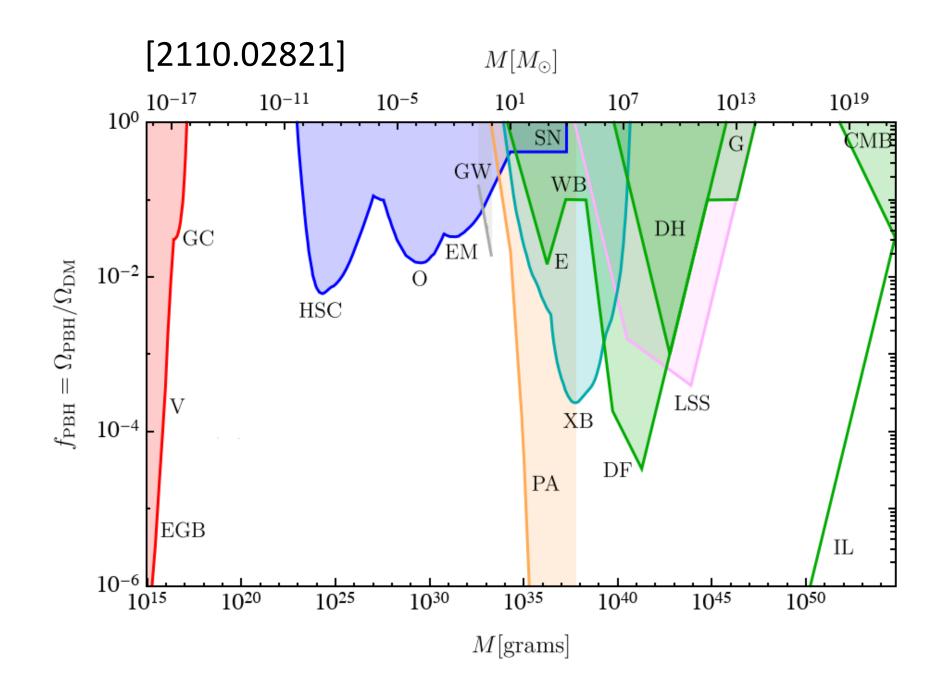




0.175054 (1-Tanh[2.02487 Log[0.142067 R]])

0.104076 (1-Tanh[3.26339 Log[0.0191647 R]])

35



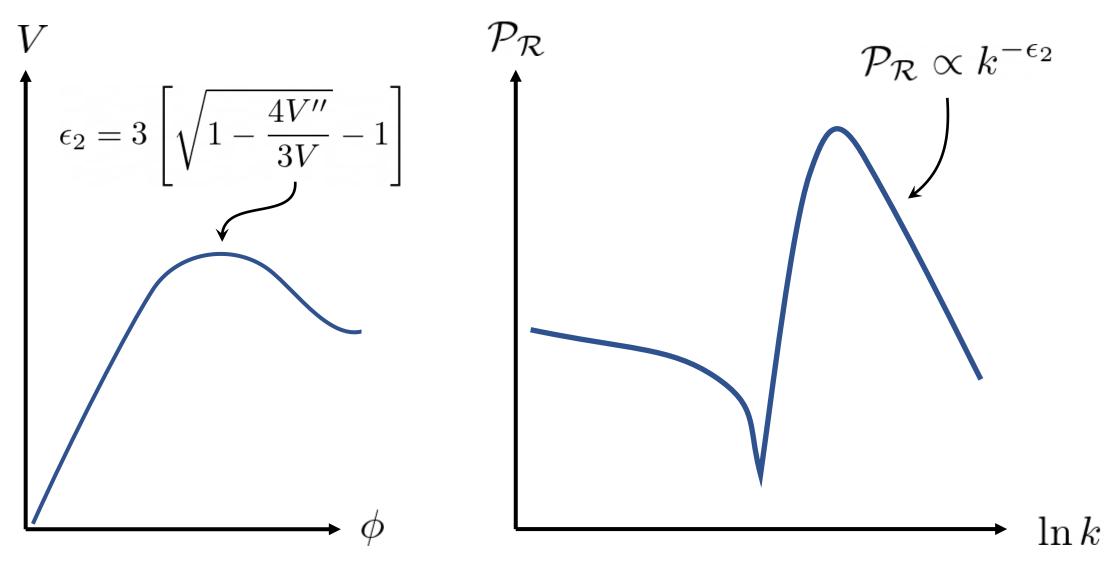
Initial PBH fractions

Gaussian approximation, $\mathcal{R}_{< k} > 1$, fixed $k: \beta \approx 5 \times 10^{-16}$

Non-Gaussian statistics, $\mathcal{R}_{< k} > 1$, fixed $k \colon \ eta pprox 2.2 imes 10^{-11}$

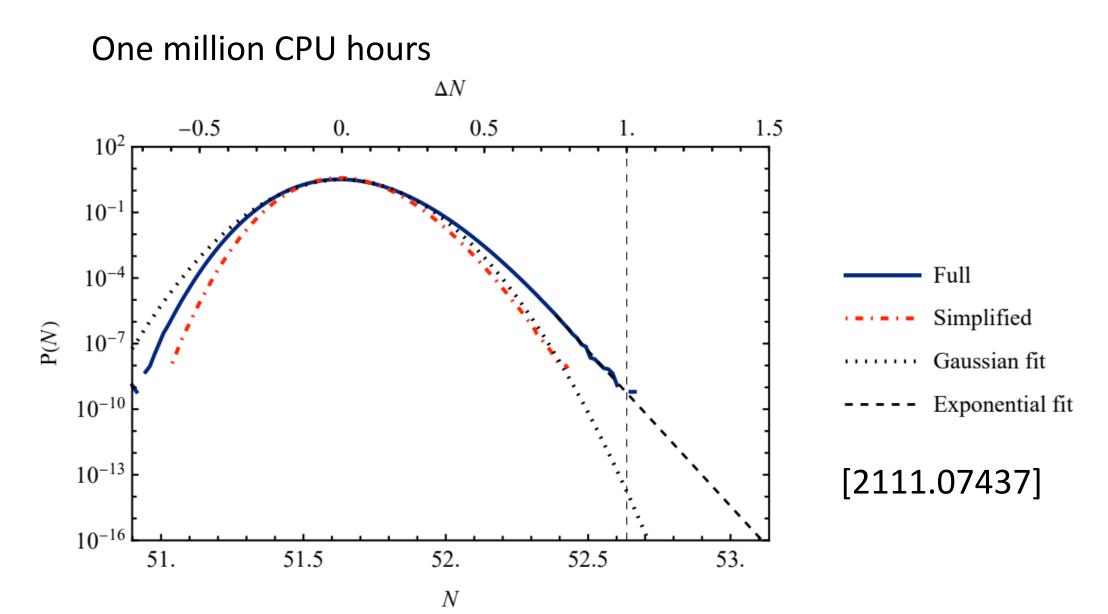
 $\bar{\mathcal{C}}_{\max} > 0.4: \quad \beta \approx 1.4 \times 10^{-8}$

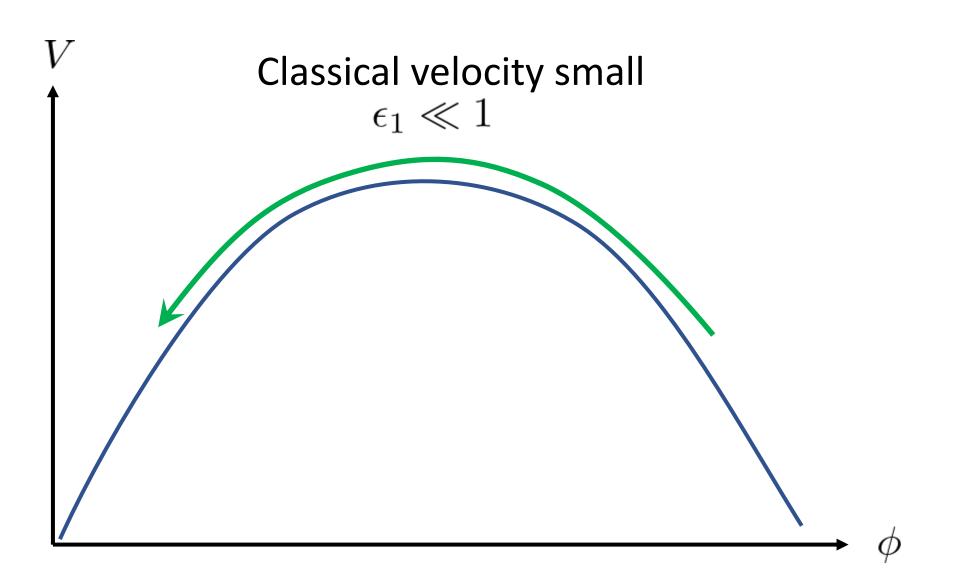
 $C_{\rm max} > 0.4$: $\beta \approx 0.016$

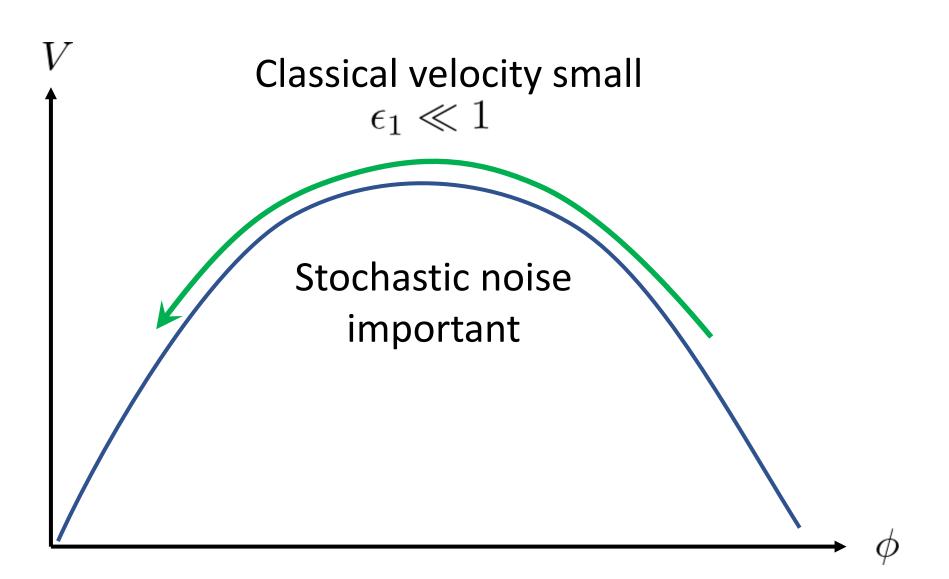


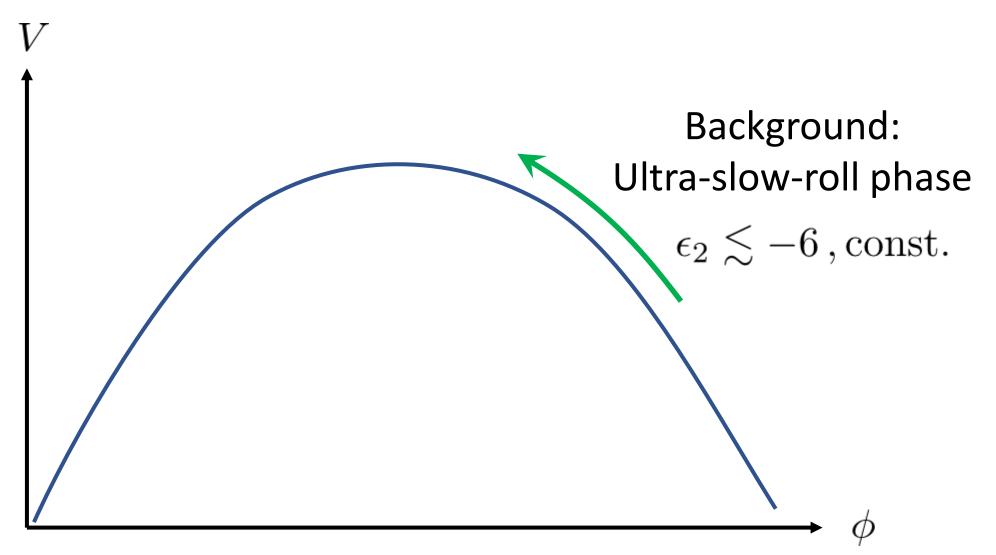
[2205.13540]

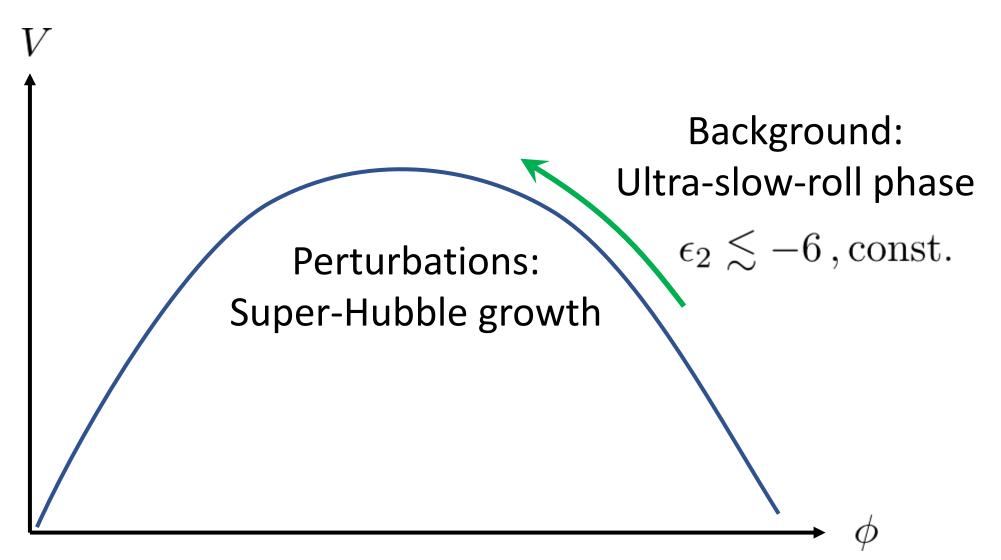
Full numerical computations

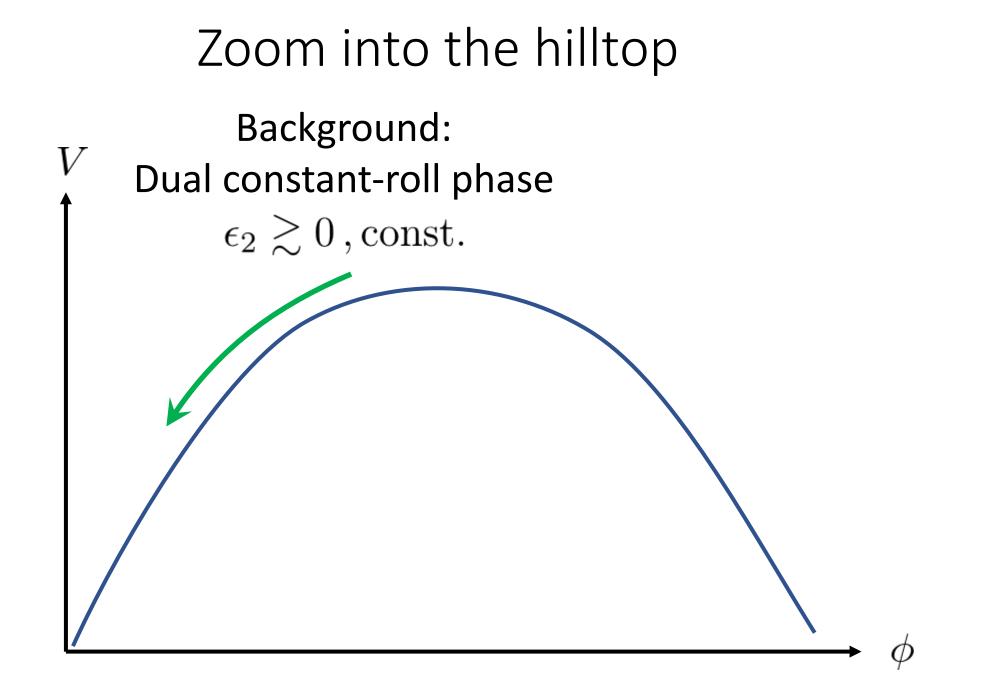


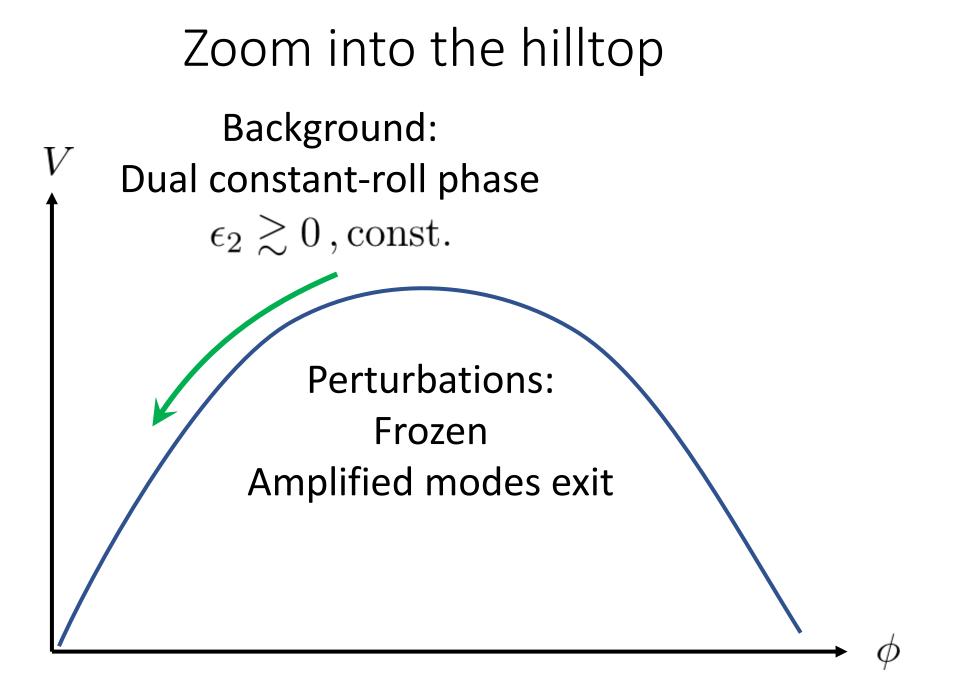












Simplified stochastic equation: $d\phi = \frac{\epsilon_2}{2}(\phi - \phi_0)dN + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}\sqrt{\mathcal{P}_{\mathcal{R}}(k_\sigma)dN}\,\hat{\xi}_N$ $\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$

Simplified stochastic equation:

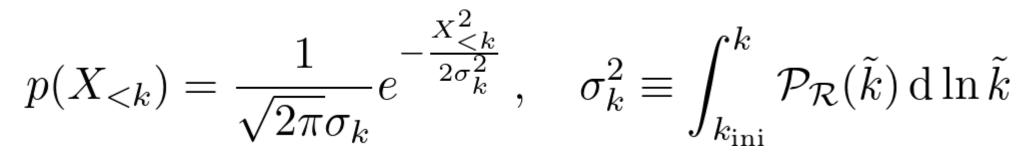
$$d\phi = \frac{\epsilon_2}{2}(\phi - \phi_0)dN + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}\sqrt{\mathcal{P}_{\mathcal{R}}(k_{\sigma})dN}\,\hat{\xi}_N$$

$$\phi(N) = \phi_0\left(1 - e^{\frac{\epsilon_2}{2}N}\right) + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}X_{< k_{\sigma}}$$

$$\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$$

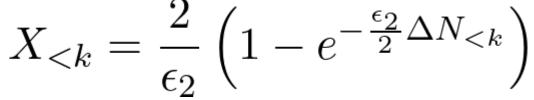
$$X_{$$

 ΔN distribution



 ΔN distribution





 ΔN distribution

$$p(X_{< k}) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{X_{< k}^2}{2\sigma_k^2}}, \quad \sigma_k^2 \equiv \int_{k_{\text{ini}}}^k \mathcal{P}_{\mathcal{R}}(\tilde{k}) \, \mathrm{d} \ln \tilde{k}$$

$$X_{$$

$$p(\Delta N_{< k}) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left[-\frac{2}{\sigma_k^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N_{< k}}\right)^2 - \frac{\epsilon_2}{2}\Delta N_{< k}\right]$$
$$\Delta N_{< k} = \mathcal{R}_{< k}$$

