Stellar-Mass Black Holes with Dark Matter Mini-Spikes: Indication of a Primordial Origin?

Aurora Ireland, University of Chicago NEHOP 2024

Based on [2406.07624]

Overview

- Motivations
- Mini-spike profile
 - Formation
 - Growth
 - Astrophysical effects
- Confronting the data
- Summary

Recent observations of three nearby black hole low-mass X-ray binaries (BH-LMXBs) reveal companion stars with anomalously fast orbital decay rates

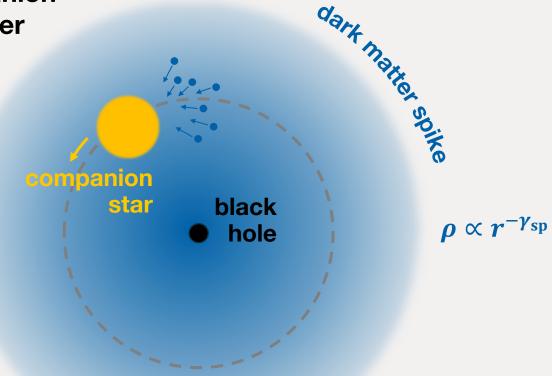
	A0620-00	XTE J1118+480	Nova Muscae 1991
$M_{ m BH}(M_{\odot})$	5.86 ± 0.24	$7.46^{+0.34}_{-0.69}$	$11.0^{+2.1}_{-1.4}$
$q = M_*/M_{\rm BH}$	0.060 ± 0.004	0.024 ± 0.009	0.079 ± 0.007
P (day)	0.32301415(7)	0.16993404(5)	0.432605(1)
Ρ̈ (ms/yr)	-0.60 ± 0.08	-1.90 ± 0.57	-20.7 ± 12.7

[1112.1839], [1311.5412], [1609.02961]

- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star
 - Gravitational wave emission
- $|\dot{P}| \lesssim 0.03 \text{ ms/yr}$

- Other explanations?
 - Extremely strong stellar magnetic field?
 - Interactions with the circumbinary disk?
 - Dynamical friction due to dark matter density spike [2212.05664]

- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star
 - Gravitational wave emission
- $|\dot{P}| \lesssim 0.03 \text{ ms/yr}$


- Other explanations?
 - Extremely strong stellar magnetic field?
 - ⇒ Inconsistent with observed binary mass loss rate [1311.5412]
 - Interactions with the circumbinary disk?
 - Dynamical friction due to dark matter density spike [2212.05664]

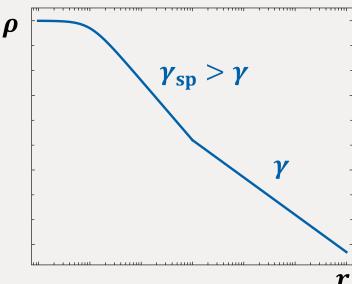
- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star
 - Gravitational wave emission

 $|\dot{P}| \lesssim 0.03 \,\mathrm{ms/yr}$

- Other explanations?
 - Extremely strong stellar magnetic field?
 - ⇒ Inconsistent with observed binary mass loss rate [1311.5412]
 - Interactions with the circumbinary disk?
 - ⇒ Insufficient mass transfer rate with inner binary [1511.00534]
 - Dynamical friction due to dark matter density spike [2212.05664]

orbiting companion pulls dark matter particles into its wake

energy loss & inspiral due to resultant drag force


dynamical friction

[2212.05664]

- Chan & Lee, 2022
 - $\gamma_{\rm sp} \sim 1.7 1.9$ consistent with observed decay
 - Indirect evidence of DM density spike
- **Issue:** Assumed DM profile appropriate for a supermassive BH in the galactic

center, not a stellar-mass black hole in a LMXB

- DM spikes
 - Arise for intermediate-mass and supermassive BHs growing adiabatically in cold, collisionless DM halos
 - $\rho \propto r^{-\gamma} \rightarrow \rho \propto r^{-\gamma_{\rm SP}}$ with $\gamma_{\rm SP} = \frac{9 2\gamma}{4 \gamma}$

- DM density spikes are not expected around stellar-mass BHs
 - Weaker gravitational influence
 - Locations in baryon-dense, DM-sparse regions
 - Energetic collapse at late times ⇒ little growing time

- DM density spikes are not expected around stellar-mass BHs
 - Weaker gravitational influence
 - Locations in baryon-dense, DM-sparse regions
 - Energetic collapse at late times ⇒ little growing time
- Stellar-mass BHs of a primordial origin are expected to form DM mini-spikes
 - Assembly begins soon after PBH formation
 - After matter-radiation equality, growth through secondary-infall
 - Modified by astrophysical effects

- DM density spikes are not expected around stellar-mass BHs
 - Weaker gravitational influence
 - Locations in baryon-dense, DM-sparse regions
 - Energetic collapse at late times ⇒ little growing time
- Stellar-mass BHs of a primordial origin are expected to form DM mini-spikes
 - Assembly begins soon after PBH formation
 - After matter-radiation equality, growth through secondary-infall
 - Modified by astrophysical effects
- Q. Can the mini-spikes about primordial black holes account for the DM density inferred by the dynamical friction hypothesis?

- Mini-spike assembly begins during radiation domination
- Cold DM particles with small v
 - Decouple from Hubble flow
 - Fall into orbit about PBH
- Turn-around radius: $r_{\rm ta} \simeq 1.0 \, r_{\rm s}^{1/3} \, t_{\rm ta}^{2/3}$ [1901.08528] \Rightarrow defines PBH sphere of influence
- Initial DM profile $\rho_i(r)$ depends on whether PBH forms before or after kinetic decoupling
- Formation at:

$$T_{\text{form}} = 141 \text{ MeV } \left(\frac{\gamma_{\text{eff}}}{0.2}\right)^{1/2} \left(\frac{24.0}{g_{\star}(T)}\right)^{1/4} \left(\frac{M_{\odot}}{M_{\text{BH}}}\right)^{1/2}$$

- $T_{\text{form}} > T_{\text{kd}}$
 - DM too tightly coupled to appreciably accrete \Rightarrow Constant ρ_{kd} out to $r_{ta}(t_{kd})$

$$\rho_{\rm kd} = \frac{\rho_{\rm eq}}{2} f_{\rm DM} \left(\frac{r_{\rm ta}(t_{\rm eq})}{r_{\rm ta}(t_{\rm kd})} \right)^{9/4}$$

- After kinetic decoupling, halo radius grows, diluting as $\rho \propto a^{-3} \propto t^{-3/2}$
 - \Rightarrow Mini-spike $\rho_{\rm sp}(r)$ for $r > r_{\rm ta}(t_{\rm kd})$

$$\rho_{i}(r) = \begin{cases} \rho_{kd} & r < r_{ta}(t_{kd}) \\ \rho_{sp}(r) & r_{ta}(t_{kd}) < r < r_{ta}(t_{eq}) \end{cases} \qquad \rho_{sp}(r) = \rho_{kd} \left(\frac{r_{ta}(t_{kd})}{r}\right)^{9/4}$$

$$\rho_{\rm sp}(r) = \rho_{\rm kd} \left(\frac{r_{\rm ta}(t_{\rm kd})}{\rm r}\right)^{9/4}$$

- $T_{\text{form}} < T_{\text{kd}}$:
 - No constant density core, $\rho_i(r) = \rho_{sp}(r)$

- Disruption by large thermal kinetic energy?
 - Demand $E_K/E_P < 1 \Rightarrow$ Can be satisfied for our $\mathcal{O}(1-10)~M_{\odot}$ BHs
- Modification by finite DM velocity?

$$\rho(r) = \frac{2}{r^2} \int d^3 v_i f_B(v_i) \int dr_i r_i^2 \frac{\rho_i(r_i)}{\tau_{\rm orb}} \left| \frac{dt}{dr} \right| \quad \Rightarrow \quad \rho(r) \simeq 1.526 \, \rho_{\rm kd} \left(\frac{r_{\rm ta}(t_{\rm kd})}{r} \right)^{9/4}$$

- Disruption by large thermal kinetic energy?
 - Demand $E_K/E_P < 1 \Rightarrow$ Can be satisfied for our $\mathcal{O}(1-10)~M_{\odot}$ BHs
- Modification by finite DM velocity?

$$\rho(r) = \frac{2}{r^2} \int d^3 v_i f_B(v_i) \int dr_i r_i^2 \frac{\rho_i(r_i)}{\tau_{\text{orb}}} \left| \frac{dt}{dr} \right| \quad \Rightarrow \quad \left| \rho(r) \simeq 1.526 \, \rho_{\text{kd}} \left(\frac{r_{\text{ta}}(t_{\text{kd}})}{r} \right)^{9/4} \right|$$

- Modification by DM annihilations?
 - Impose upper limit on DM density

$$\rho_{\text{max}} \simeq (1.3 \times 10^{-16} \text{g/cm}^3) f_{\text{DM}} \left(\frac{m_{\text{DM}}}{\text{GeV}}\right) \left(\frac{3 \times 10^{-26} \text{cm}^3/\text{s}}{\langle \sigma v \rangle}\right)$$

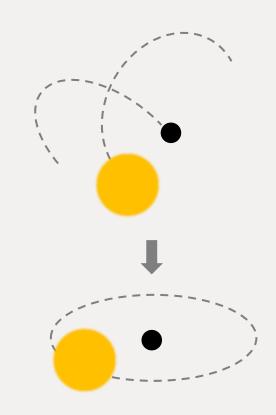
• $\Gamma_{ann} \propto \rho^2 \Rightarrow$ Enhanced γ -ray emission \Rightarrow Relevant parameter space excluded

Mini-Spike Growth

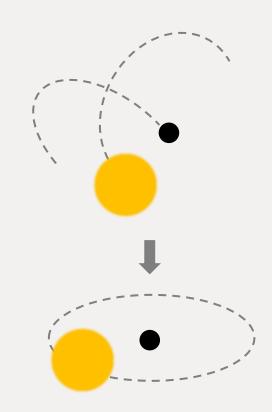
- Following t_{eq} , accretion becomes efficient
- Bound shells of DM added at successively larger radii
- Density profile
 - PBH+halo constitute overdensity $\Delta = \delta M/\overline{M}$
 - Density perturbations grow as $\Delta \propto a \propto t^{2/3}$
 - Gravitationally bound mass: $M_{\rm bound}(t) = M_{\rm bound}(t_{\rm eq})(t/t_{\rm eq})^{2/3}$
 - Turn-around radius:

$$r \propto \left(\frac{M_{\mathrm{bound}}(t)}{\rho(t)}\right)^{1/3} \propto t^{8/9} \propto \rho^{-4/9} \quad \Rightarrow \quad \boxed{\rho \propto r^{-9/4}} \quad \overset{\text{same power}}{\longleftarrow} \text{law scaling as before}$$

growth by factor ~ 100 between z_{eq} and $z \sim 30$


same power as before

- Various astrophysical processes can disrupt the DM spike
 - Tidal stripping
 - Gravitational scattering/other interactions with stars
 - Dynamical friction
 - Mergers with other PBHs
 - Incorporation in binaries


- Various astrophysical processes can disrupt the DM spike
 - Tidal stripping
 - Gravitational scattering/other interactions with stars
 - Dynamical friction
 - Mergers with other PBHs
 - Incorporation in binaries ⇒ BH-LMXB formation event

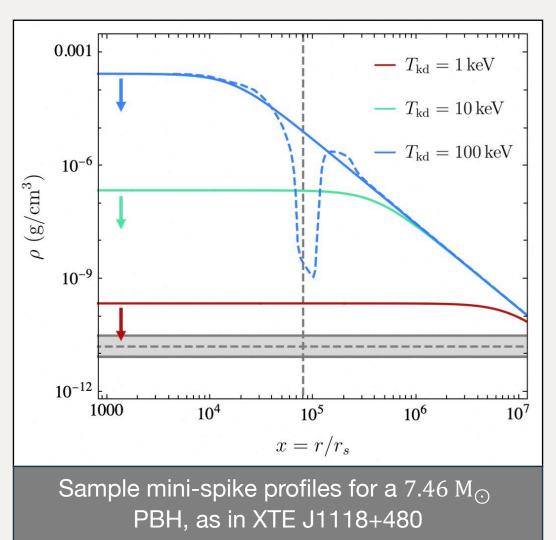
- Various astrophysical processes can disrupt the DM spike
 - Tidal stripping
 - Gravitational scattering/other interactions with stars
 - Dynamical friction
 - Mergers with other PBHs
 - Incorporation in binaries ⇒ BH-LMXB formation event
- Dynamical friction & gravitational scattering
 - Particles with $v < v_*$ gain energy
 - Energy lost by star heats DM halo
 - Increases velocity dispersion, decreases local DM density

- LMXB formation via dynamical capture
- Likelihood highest
 - In dense stellar environments
 - For $M_{\rm BH}\gg M_*$

- LMXB formation via dynamical capture
- Likelihood highest
 - In dense stellar environments
 - For $M_{\rm BH}\gg M_*$
- XTE J1118+480 likely formed through this channel!
 - High metallicity stellar component (pollution from supernova event)
 - Constituents of binary likely not born together [astro-ph/0605107], [0801.4936]
 ⇒ BH can be primordial!
 - If so, extra gravitational influence, energy dissipation aid in capture
 - Tidal stripping? Mild for $q \ll 1$

Confronting the Data

Energy loss due to dynamical friction:


$$\dot{E}_* \simeq -4\pi\mu^2 G^2 \rho_{\rm orb} \frac{\xi(v_*)}{v_*} \ln \sqrt{1/q}$$

• From $|\dot{P}/P| = \frac{3}{2} |\dot{E}_*/E_*|$:

$$\rho_{\text{orb}} \simeq \frac{1}{6\pi} \frac{M_{\text{Pl}}^{8/3}}{M_{\text{BH}}^{1/3}} \frac{(1+q)^{5/3}}{q \ln(1/q)} \frac{v_*}{\xi(v_*)} \left| \frac{\dot{P}}{P} \right| \left(\frac{2\pi}{P}\right)^{2/3}$$

	A0620-00	XTE J1118+480	Nova Muscae 1991
$x_{ m orb} = r_{ m orb}/r_s$	$(1.46 \pm 0.04) \times 10^5$	$8.01^{+0.56}_{-0.26} \times 10^4$	$1.17^{+0.11}_{-0.13} \times 10^5$
$ ho_{ m orb}\left({ m g/cm^3} ight)$	$7.62^{+1.62}_{-1.42} \times 10^{-13}$	$1.59^{+1.51}_{-0.74} \times 10^{-11}$	$1.26^{+1.10}_{-0.84} \times 10^{-11}$

Confronting the Data

Summary

- Three nearby BH-LMXBs suggest evidence of dark matter density spikes
 - Stellar-mass BHs formed from stellar collapse don't form density spikes
 - Stellar-mass primordial BHs do
 - Could the $\mathcal{O}(1-10)\,M_{\odot}$ BHs in these LMXBs be primordial?
- In this work
 - Compute mini-spike profile under variety of assumptions
 - Scenario plausible for heavy DM with late kinematic decoupling
- Future work
 - Quantify extent of halo disruption during binary formation
 - Numerical simulations