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PBH Formation Mechanisms

@ Collapse of large (iso-)curvature
fluctuations

@ Topological Defects

@ First-order phase transitions

@ Scalar field fragmentation

Inflaton Fragmentation
during preheating

(CAVEAT: Not as Generic as often loosely claimed!)

Talks by V. Takhistov (Monday), P. Serpico (Tuesday)

, CAPT, Nottingham Reheating and Oscillons



Best Probes of the Early Universe

Cosmic Microwave Background (CMB) Radiation

+ BBN + LSS + BAO

@ What is the origin of the constituents of the plasma?
@ What is the origin of the fluctuations in the plasma?
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Part-I: Primordial Fluctuations
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(Quantum) Initial conditions for structure

Initial {(¥) — CMB — LSS (gravitational instability)

Properties of initial fluctuations: @ Adiabatic ((Z)

@ Almost scale-invariant

k nsfl
Pc = As <k) ky = 0.05 Mpc™*

Ag~2x1077, n, —1~—-0.035

@ Nearly Gaussian (o~ 107%)

2

P[C] = Bexp |:2:2 (1 =+ .fNLC+ )

— LSS, CMB = Large-scale primordial fluctuations

— Origin = Quantum fluctuations during Inflation
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Cosmic Inflation

‘ System = Gravity (g, ) + Scalar Field (y) ‘

2

m 1
S9u> Z/d%v‘g (;R‘2 usoaucpg“”—V(so)Jr-..)

(1) Background Evolution/Dynamics ¢(t) : qdS Expansion
a>0,; Gena = a; 2N, AN > 60
(Makes the universe isotropic, uniform and flat)

(2) Linear Perturbations: Two light fields (m < H)

ds? = —B2(t)dt? + a2(t) [(e“’“@ 5 +2hij(t,f)) dxidaﬁj}
— Comoving Curvature Perturbations: —((¢,%) = ¥ + % dp
(Induce CMB density and temperature fluctuations)

— Transverse & traceless Tensor Perturbations: h;;(t, %)

(Induce stochastic Gravitational Waves)
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Observational Constraints: Single field slow-roll Inflation

Scalar tilt [n, — 1 = —ez — 2 €1 | € [—0.043, —0.024] (red tilt)

Ar
Tensor-to-scalar ratio: r=—=16¢€¢ | <0.036 (low)
As
Inflaton potential o0 — T-Model a-attractors
. —— E-Model a-attractors
152 KKLT n =2 )
po =30 + V(®) <o o st
= ; 0.20
3 Slow-roll Inflation ._. E
> X cMmB! 2"
¥’ < V() 5
Reheating ) Zow
3H¢~—-V'(¢) L
H H 0.051  planck+BK18+BAO
Dend ¢* 7 < 0.036 l
. * o 0.94 0.95 0.96_ 0.97 0.98 - 0.99 1.
¢ Scalar Spectral Index n

= Single-field slow-roll paradigm of Inflation &

Asymptotically flat concave potentials!

**PLANCK Inflation (2018); **BICEP /Keck (2021); **SSM & Sahni(2022)
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What happened to other fields during inflation?

@ Observations favour ‘single-field slow-roll’ inflation.
o ‘Cold inflationary paradigm:’

= Negligible coupling to external fields 2g ©>x2, hoyp

1 i} 1 L1
5 00”0 + V() + 5 9ux 0 X+ 5 moy X°

Slexd = [ 4z v=5 ;

+ Y (i 0 + moy) ¥

1 0 - 0
+ PN

= particle production during inflation can be neglected.

o Effects of the small coupling?

@ Primordial Non-Gaussianity: inflaton interactions.

@ Decay of the inflaton field: Reheating the universe.
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Part-1I : Post-inflationary Dynamics

of the Inflaton condensate
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Post-inflationary Oscillations

Inflaton potential Potential near minimum ¢ < ¢,

po =30 + V(¢) —_e |

V() ~ %m2¢2 + §¢3 + %¢4 fo

§ Slow-roll Inflation ie—s
g Pave)
, For a quadratic potential V' x ¢p?
3H ¢~ —V'(¢) ! p (¢) ¢
. -3
> - (wg) =0 = py xa

— SR Inflation: Friction dominated = Inflaton behaves like Matter

=m? =V < H? Sincem >H = T, <H™!

—  After inflation: m? > H? Under adiabatic approximation

— When m? > H?, inflaton exhibits

b

[6(2) = bo(#) cos (mt)

Coherent Oscillations for which

, with amplitude ¢g(t) oc
= py = 2% + V(¢) ~ const.

t
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However, we have ignored two important effects:

— External coupling: (to other fields x, )

1
(e x) =5 > X

— Asymptotically flat potentials: (CMB observations)

V(e)=Vo <
have ‘attractive self-interaction’
= Self — resonance (due to A)
= Rapid Growth of d¢p
= Scalar field fragmentation
= Cosmological Solitons :

‘Oscillons’

** Amin et. al & Lozanov et. al (2010-2020)

¢

P

, CAPT, Nottingham

)2n—|U(A; 9

Scalar field fragmentation

Vi) =i (2)" -~ 1u)

V(o)

n = 1 = Oscillons
(w=0)

End of inflation

n = 2, 3 = Fragmentation

(w =~ 1/3)

crees] CMB WiNdOW fesseeesseesssesess

<
X
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Existence of quasi-Solitons: Oscillons

—  Self-supported, localised, long-lived non-linear ‘solitary’
configurations.

— Solitons are ubiquitous in nature!
(1834 J. S. Russell: solitary wave in a canal in ‘Edinburgh’!)

(Appearing in fluids, smoke rings, condensed matter physics, optics,
HEP, topological defects and Cosmology.)

— Oscillons are oscillating non-topological solitons!

— Analytical results based on small-amplitude oscillations

1 A g
V(@)%§m2<ﬁ2—z<ﬂ4+6¢6

— Supports Oscillon-like solution of the form

Posc(t,7) = ®(r) cos (wot) + ...; |®(r) = Pgsech (i>
To

**Rajaraman(1987), **Gleiser et. al; ¥**Amin et. al ; ¥**Mahbub, SSM (2023)
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Oscillon Profile |®(t,r) = ¢ sech ") cos (wot)
0

Oscillon Field Profile

Posc(t, r) = Pgsech (:_.,) cos (wot)

Radiation tail

Dose(t, )

Radiation tail

(z,y,2)

Oscillon Field Profile

—0.5

Interesting compact (non-linear) field configurations !




Existence of Oscillons ?
@ Oscillons exit as analytic (stationary) solutions

(of post-inflationary oscillations around asymptotically flat
potentials)
(a) For symmetric plateau potentials:

— small-amplitude oscillations

1 A g
V(e) ~ 5m*e® = Tuet + A ¢°

—  Supports Oscillon-like solution of the form
D(t,r) = ¢o sech <r> cos (wot)
To
(b) For asymmetric plateau potentials?

1 1 1
V()= 5m*® — o pe’ + 72"

@ Can they form dynamically?

(starting from natural conditions at the end of inflation)

*Copeland et. al(1995); *Amin et. al(2011); *Mahbub, SSM(2023); *Kim, McDonald
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Self-resonance and inflaton fragmentation

V(p)

In the linear regime, Fourier mode functions satisfy

dpr +3Hdpy + {

2

k
Pl Voo (9)

]&Pk:O

(Equation of a damped parametric oscillator)

= Resonant growth of inflaton fluctuations d¢pg (t) o< et

V(g) = %mz(j)z — U5 ¢)| (E-Model & T-Model)

Oscillations

E-model Potential

Vie) =V (1- e7A£)2

-—0

1
21
L

1
1
1
1
1
]

¥ e[ CVIB Window |-

V(p)

T-model Potential

V() = Vi tanh? </\%)

[l
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1
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Linear Parametric Self-resonance

Equation of a linear parametric oscillator

d26gok
dT

+ Q2 (k,T) 6, =0

. 2
9 Q(p

is oscillatory in T

Floquet Theorem

dpr(T) = M,(:_)(T)e“’“T +

MO @yt

= Exponentially growing for Re(ug) # 0 (in resonance bands)

= 100,/1
\
\
A
| [\

017 /\ —— ¢ = 0.06m, [ E——
sl | 00,2 0130
\ 0125
o125 ‘
Lol | Eowo /
MR . |
= 1N % !
. r 0050
. [ |
~ ‘ \ [ Ao '
0000 ! ' \ [ | k | 0000 ‘
o3 o FE T R R TR 200 o
k/m

0.03

bo/my

Non-thermal particle production




Part-III : Non-linear Dynamics

& Lattice Simulations
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Non-linear dynamics: CosmoLattice

Fully non-linear (dimensionless version of) field equations

2
¢+3Hp— —¢+V =0
a

~ a 1 —~ ~ ~
H="= 0 (Kot ot V(9))
Where t =mt; T=muz; 35,)2:%%’ F:ﬁszZmQ
—  1/8p\® 1 AG\? [9p\® [9p\?
K¢=—(—(€> R T (—‘f) +<—Sf) +(—“f>
2\ 0t 2a2(t) |\ 0% 0y FE
- I 3
pg=Kz+ G+ V(o); P¢=K¢—§G¢—V(cp)

Lattice specifications:

N=128; 0.05m™' <k <5m" |

**Figueroa et. al (2020, 2021); **Mahbub, SSM (2023)
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Self-resonance and Inflaton Fragmentation

Strong self-resonance = Inflaton fragmentation

(Asymmetric E-Model potential)
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**Mahbub, SSM (2023); **Shafi, Copeland, Mahbub, SSM, Basak (2024)

JAPT, Nottin



Oscillon formation in real time (Asymmetric)
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Fractional Energy Density of Oscillons

3
. Eosc fﬁp Z4p d mpip(mat)
E M fract = = £ F
nergy/ ass Iraction fosc Etot fd?’ccpw(a:,t)

(Fractional energy density of oscillons)

o7 E — model or T — model
0.6
Zos
(<)
3
Zos
i
Il os

> 40% of the total density = Significant!

**Mahbub, SSM (2023)
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Conclusions (so far)

@ Oscillons form for both Symmetric and Asymmetric
plateau potentials.
@ Oscillons do form after inflation in absence of external

coupling starting from generic initial conditions.

Important Questions

@ What is the lifetime of oscillons? How do they decay?

© We have ignored external coupling; g — 0

What happens if g ## 0 ? Do oscillons form?
Our latest work!

**Hertzberg (2010); **Zhang, Amin, Copeland, Saffin, Lozanov (2020)
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(P)reheating via Oscillon decay

PREPARED FOR SUBMISSION TO JCAP

Formation and decay of oscillons after
inflation in the presence of an external
coupling, Part-I: Lattice simulations

Mohammed Shafi ®,” Edmund J. Copeland @," Rafid Mahbub ®,¢

Swagat S. Mishra ®,’ Soumen Basak®

“School of Physics, Indian Institute of Science Education and Research, Thiruvananthapur
695551, India.

bSchool of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
“Department of Physics, Gustavus Adolphus College, Saint Peter, MN 56082, USA.

E-mail: mohammedshafil8@alumni.iisertvm.ac.in, edmund.copeland@nottingham.ac.uk,
mahbub@gustavus.edu, swagat.mishra@nottingham.ac.uk, sbasak@iisertvm.ac.in

( To appear on arXiv 2406.00108)
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Part-IV : Oscillon Formation in presence of

an External Coupling
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Dynamics of Inflaton Decay (Preheating)

m > Moy

‘ System : Inflaton ¢

Described by the action

Sle,x] = /d“w\/_{ Bupd o+ V(o) + = 8ux8”x+1(¢,x)}

With interaction Z(¢, x) = 2924,02)(2

The corresponding field equations are
v2
- ¥30+3H¢+‘/,¢+I,¢ =0
v2
X — ?X+3H>'<+I,X =0

with Hubble parameter

1 1
2= — |z +Z(p, x)
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Preheating via Self & External Resonance

—  For inflaton decay, |¢(t)| > do(¢, Z), x(¢, Z)

e(t,7) = &(t)+0p(t, T)
0
x(t,Z) = ¥tV +0x(t,®) (x field is in vacuum state)
— At the end of inflation, py > py, ps, (Condensate dominated)

— Resulting equations of dynamics in the linear regime

S+3H)+Vy(9) = 0
k2
0y + 3Hdp,, + [ + V¢¢(¢))] dpr = 0 Self —resonance
k? 2
Xk + 3H xx + —I— 2P| xr = 0 External — resonance

and the Hubble parameter H? ~ Smg [ #? + V((b)}

**SSM Lecture Notes (2024)
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Self-resonance and Oscillon decay for g # 0

Self-resonance — Oscillons — x production

—3 -2 -1 N )0
10 10 10 10 X105
0.0031| A = 1004/, g% = 1.6 x 10~°
1.00
0.002 075
0.50
0.001
e 02 %
A AAAAAAAR
— U H“[ V 1/ Lk
4 —0.25
—0.001 X Resonance] [Backreaction]
— /0p? —0.50
1071 10° 10" 168 168 167
mt

Asymmetric E-model potential

**Mahbub, SSM (2023); **Shafi, Copeland, Mahbub, SSM, Basak (2024)




Parameter space of Oscillon formation {), ¢*}

External Coupling

1
I(p, x) = 592 02 x>

¥

2
—A. & 2
Vi(g) =V, (1 e ; V. (¢) = V,, tanh?( A,
m
P
10° 108
(V1) E — model ; (V1) T — model

’ :

i

i i
'g 102 Oscillon formation _| Nooscillons = 10 Oscillon formation | Nooscillons
] (II1) g (Iv) 2 (TIm) i (Iv)
[ E—————_— et ettt A e —
g . '
c / 2 10 i
£ / <
I / £ i
= Self-resonance, / Fragmentation u {
$ no oscillons / via external resonance ] X ! .
v / ] Self-resonance, /! . Fragmentation
= 100 (I) W (IT) ~ 10 no oscillons ! viaexternal resonance

q o {
£ ; £ ) / a
i i
10-1 101
-7 — —5 — -
10 10-¢ 10 1o~ 10-* 10-7 10- 10— 10—+ 10-2
g? (External interaction)

g? (External interaction)

(E-Model X, vs g?) (T-Model A, vs g2)

Oscillon:
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Evolution of energy density components

Absence of external interaction Presence of external interaction

Long-lived Oscillons oscillon decay into x

(Production of x-particles due to oscillon decay!)

**Shafi, Copeland, Mahbub, SSM, Basak (2024)
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Lifetime of (a population of) Oscillons

Robust oscillons for Gradient term th x a3

e o] . (T model] 08
o Tl o Ap=100,/2 el o Ar=100y3
. 2. \/; Tl \/;
\\ L 4% 10275~ \\\
~ N \\\ . \\\
. LY Sso_e
. N 9 ’ ~. S~
at N &3 x 102 Te \\\.
. ~_ ® ~<
~ S~o >
0 ~o \\~ Ss
N .\.\ ‘\\\ °
Ny . 2% 102 Sl
. ) o
PN N
e
.
1070 10— 107
g° g
o E 2y-11 T 2)—03
Empirically : Tose X (g ) i Tose X (g )

**Shafi, Copeland, Mahbub, SSM, Basak (2024)
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Energy(Mass) Fraction of Oscillons

—-=0=0=5.

2 _
01 e g°=0
e g*=16x10"° “~xg-e e,
® -0
e ¢g?=80x10°
ol © g8P=40x1070 o ooee - —0= = 9~ 9~ ©
10? 10° 10
mt

Reduction in fosc due to y-production

**Shafi, Copeland, Mahbub, SSM, Basak (2024)
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©@ What happens if g #0 7 Do oscillons form?
YES! (Preheating via Oscillon decay into Y)

@ Lifetime of oscillons? How does an oscillon decay?
Our upcoming work (analytical)!

Phenomenological implications of oscillons?

@ Universal (high frequency) GWs

o Late-time Gravitational clustering and GWs
o Primordial Black Holes (NEHOP)

@ Oscillons in scalar field (fuzzy) dark matter
o Gravitational solitons (Oscillatons)

Arthur Conan Doyle conceived the idea of
Sherlock Holmes in Edinburgh
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Modern/Extended Standard Model of Cosmology

The hot Big Bang phase:

@ Beginning of the Universe (X)

@ End of an earlier epoch of accelerated expansion (v')

Initial conditions| +~| for Inflation ,
Dark Energy
Present Epoch




Structure of the resonance with {), ¢°}
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Power spectra of fluctuation

Inflaton dp-fluctuations

—[,\T = 100\/§, g*=28x 10*5}—
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**Shafi, Copeland, Mahbub, SSM, Basak (2024)
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Offspring y-fluctuations
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Evolution of Equation of State

Low external interaction Large external interaction
1.00 /\E750 2, 9*°=16x10"° 100 Ag = 50 =4.0 x 107°
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**Shafi, Copeland, Mahbub, SSM, Basak (2024)
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Universal Gravitational Waves

— universal (clust.) — universal (int. clust.) — universal — formation
Ness
10°6F  Ng(CMB-S4) 3 .
10-8
21 -10
= 0
o
]

10—12

10—14

10—16

faw,o[Hz]

**Lozanov, Sasaki, Takhistov (2023)
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Power-spectra: Linear Perturbation Theory

Slow-roll regime, (slow terminal speed)

H @2 dlne;

with |61 = —— = —————; € =

Primordial power-spectrum on large scales —

1 H\?1 E\"s~' Scalar spectral index
o= () 2

872 \mp/) € k.
‘ns—1=—62—261‘<<1

2 / H\? E\"r T tral ind
,PT(k) — ; () _ AT (_> ensor spectral 1maex

m ki

CMB pivot scale k., = 0.05 Mpc_1

= Tiny fluctuations that are nearly scale-invariant
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