Inflaton Fragmentation during Preheating : Formation & Decay of Oscillons NEHOP 2024 © Edinburgh

Swagat Saurav Mishra

STFC Research Fellow

Centre for Astronomy and Particle Theory (CAPT) School of Physics and Astronomy, University of Nottingham, UK.

(With Ed Copeland, R Mahbub, Md Shafi & S Basak)

20th June 2024

Introductory Lecture Notes [arXiv:2403.10606]

Cosmic Inflation: Background dynamics, Quantum fluctuations and Reheating

Swagat S. Mishra 💿

(Email: swagat.mishra@nottingham.ac.uk)

Centre for Astronomy and Particle Theory (CAPT), School of Physics and Astronomy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom.

March 19, 2024

PBH Formation Mechanisms

- Collapse of large (iso-)curvature fluctuations
- 2 Topological Defects
- First-order phase transitions
- Scalar field fragmentation

Inflaton Fragmentation during preheating

(CAVEAT: Not as Generic as often loosely claimed!)

Talks by V. Takhistov (Monday), P. Serpico (Tuesday)

Best Probes of the Early Universe

Cosmic Microwave Background (CMB) Radiation

+ **BBN** + **LSS** + **BAO**

What is the origin of the constituents of the plasma?What is the origin of the fluctuations in the plasma?

Part-I: Primordial Fluctuations

(Quantum) Initial conditions for structure

Initial $\zeta(\vec{x}) \longrightarrow \mathbf{CMB} \longrightarrow \mathbf{LSS}$ (gravitational instability)

Properties of initial fluctuations:

4 Adiabatic $\zeta(\vec{x})$

Almost scale-invariant

$$\mathcal{P}_{\zeta} = A_S \left(\frac{k}{k_*}\right)^{n_S - 1} k_* = 0.05 \,\mathrm{Mpc}^{-1}$$

$$A_S \simeq 2 \times 10^{-9}, \ n_s - 1 \simeq -0.035$$

• Nearly Gaussian $(\sigma \simeq 10^{-4})$

$$P[\zeta] = \mathcal{B} \exp\left[\frac{-\zeta^2}{2\sigma^2} \left(1 + \boldsymbol{f_{\rm NL}} \zeta + \ldots\right)\right]$$

 \rightarrow LSS, CMB \Rightarrow Large-scale primordial fluctuations

 \rightarrow Origin \Rightarrow Quantum fluctuations during Inflation

Cosmic Inflation

$$\begin{aligned} \mathbf{System} &= \mathbf{Gravity} \ (g_{\mu\nu}) + \mathbf{Scalar \ Field} \ (\varphi) \end{aligned} \\ S[g_{\mu\nu}, \boldsymbol{\varphi}] &= \int \mathrm{d}^4 x \sqrt{-g} \ \left(\frac{m_p^2}{2} R - \frac{1}{2} \partial_\mu \varphi \, \partial_\nu \varphi \, g^{\mu\nu} - \boldsymbol{V}(\boldsymbol{\varphi}) + \ldots \right) \end{aligned}$$

(1) Background Evolution/Dynamics $\phi(t)$: qdS Expansion $\ddot{a} > 0$,; $a_{end} = a_i e^{\Delta N}$, $\Delta N > 60$

(Makes the universe isotropic, uniform and flat)

(2) Linear Perturbations: Two light fields $(m \ll H)$

$$\mathrm{d}s^2 \,=\, -\beta^2(t)\,\mathrm{d}t^2 \,+\, a^2(t)\,\left[\,\left(e^{2\Psi(t,\vec{x})}\,\delta_{ij}+2\,\pmb{h}_{ij}(t,\vec{x})\right)\,\mathrm{d}x^i\mathrm{d}x^j\,\right]$$

 \rightarrow Comoving Curvature Perturbations: $-\zeta(t, \vec{x}) = \Psi + \frac{H}{\dot{\phi}} \delta \varphi$

(Induce CMB density and temperature fluctuations)

→ Transverse & traceless Tensor Perturbations: $h_{ij}(t, \vec{x})$ (Induce stochastic Gravitational Waves)

Observational Constraints: Single field slow-roll Inflation

⇒ Single-field slow-roll paradigm of Inflation & Asymptotically flat concave potentials!

**PLANCK Inflation (2018); **BICEP/Keck (2021); **SSM & Sahni(2022)

What happened to other fields during inflation?

- Observations favour 'single-field slow-roll' inflation.
- 'Cold inflationary paradigm:'

 \Rightarrow Negligible coupling to external fields $\frac{1}{2}g^2\varphi^2\chi^2$, $h\varphi\psi\bar{\psi}$

- \Rightarrow particle production during inflation can be neglected.
 - Effects of the small coupling?
 - **1** Primordial Non-Gaussianity: inflaton interactions.
 - **2** Decay of the inflaton field: **Reheating the universe**.

Part-II : Post-inflationary Dynamics of the Inflaton condensate

Post-inflationary Oscillations

Potential near minimum $\phi < \phi_e$,

$$V(\phi) \simeq \frac{1}{2}m^2\phi^2 \pm \frac{\mu}{3}\phi^3 \pm \frac{\lambda}{4}\phi^4 + \dots$$

For a quadratic potential $V(\phi) \propto \phi^2$

$$\langle w_{\phi}
angle = 0 \; \Rightarrow \;
ho_{\phi} \propto a^{-3}$$

 \rightarrow SR Inflation: Friction dominated \Rightarrow Inflaton behaves like Matter $rac{}{}\Rightarrow m^2 \equiv V_{\phi\phi} \ll H^2$ Ś \rightarrow After inflation: $m^2 > H^2$ \rightarrow When $m^2 \gg H^2$, inflaton exhibits

Coherent Oscillations for which

$$\Rightarrow
ho_{\phi} = rac{1}{2}\dot{\phi}^2 + V(\phi) \simeq ext{const.}$$

Since
$$m > H \Rightarrow T_{\text{osc}} < H^{-1}$$

Under adiabatic approximation

$$\phi(t) = \phi_0(t) \cos{(mt)}$$
;

with amplitude $\phi_0(t) \propto \frac{1}{4}$

However, we have ignored two important effects:

 \rightarrow **External coupling:** (to other fields χ, ψ)

$${\cal I}(arphi,\,\chi)=rac{1}{2}\,g^2\,arphi^2\chi^2$$

 \rightarrow Asymptotically flat potentials: (CMB observations)

$$V(\phi) = V_0 \left(rac{\phi}{m_p}
ight)^{2n} - \left|U(\lambda; \phi)
ight|$$

- have 'attractive self-interaction'
- \Rightarrow Self resonance (due to λ)
- \Rightarrow Rapid Growth of $\delta \varphi$
- \Rightarrow Scalar field fragmentation
- \Rightarrow Cosmological Solitons :

'Oscillons'

**Amin et. al & Lozanov et. al (2010-2020)

Existence of quasi-Solitons: Oscillons

 $\rightarrow~$ Self-supported, localised, long-lived non-linear 'solitary' configurations.

 \rightarrow Solitons are ubiquitous in nature!

(1834 J. S. Russell: solitary wave in a canal in 'Edinburgh'!)

(Appearing in fluids, smoke rings, condensed matter physics, optics, HEP, topological defects and Cosmology.)

- \rightarrow Oscillons are oscillating non-topological solitons!
- $\rightarrow ~~ \textbf{Analytical results based on small-amplitude oscillations}$

$$V(\varphi) \approx \frac{1}{2} m^2 \varphi^2 - \frac{\lambda}{4} \varphi^4 + \frac{g}{6} \varphi^6$$

;

 \rightarrow Supports **Oscillon-like solution** of the form

$$arphi_{
m osc}(t,r)pprox \Phi(r)\cos{(\omega_0\,t)}+...$$

$$\Phi(r)pprox \Phi_0 \operatorname{sech}\left(rac{r}{r_0}
ight)$$

**Rajaraman(1987), **Gleiser et. al; **Amin et. al; **Mahbub, SSM (2023)

Oscillon Profile

 $\Phi(t,r) \approx \phi_0 \operatorname{sech}\left(\frac{r}{r_0}\right) \cos\left(\omega_0 t\right)$

Oscillon Field Profile

Interesting compact (non-linear) field configurations !

Reheating and Oscillons wagat Saurav Mishra, CAPT, Nottingham

Existence of Oscillons ?

() Oscillons exit as analytic (stationary) solutions

(of post-inflationary oscillations around asymptotically flat potentials)

(a) For symmetric plateau potentials:

 $\rightarrow \ \, {\rm small-amplitude \ oscillations}$

$$V(\varphi) \approx \frac{1}{2} m^2 \varphi^2 - \frac{\lambda}{4} \mu \varphi^4 + \frac{g}{6} \lambda \varphi^6$$

 \rightarrow Supports **Oscillon-like solution** of the form

$$\Phi(t,r) = \phi_0 \, \operatorname{sech}\left(\frac{r}{r_0}\right) \, \cos\left(\omega_0 t\right)$$

(b) For asymmetric plateau potentials?

$$V(\varphi) \approx \frac{1}{2} m^2 \varphi^2 - \frac{1}{3} \mu \varphi^3 + \frac{1}{4} \lambda \varphi^4$$

2 Can they form dynamically?

(starting from natural conditions at the end of inflation)

*Copeland et. al(1995); *Amin et. al(2011); *Mahbub, SSM(2023); *Kim, McDonald

Self-resonance and inflaton fragmentation

In the linear regime, Fourier mode functions satisfy

$$\ddot{\delta arphi_k} + 3H \dot{\delta arphi_k} + \left[rac{k^2}{a^2} + V_{,\phi\phi}(\phi)
ight] \delta arphi_k = 0$$

(Equation of a **damped parametric oscillator**)

 $\Rightarrow {
m Resonant \ growth}$ of inflaton fluctuations $\delta arphi_k(t) \propto e^{\mu_k m t}$

 $V(\phi) = \frac{1}{2}m^2\phi^2 - |U(\lambda;\phi)|$ (E-Model & T-Model)

**Lozanov, Amin(2017); **Shafi, Copeland, Mahbub, SSM, Basak (2024)

Linear Parametric Self-resonance

Equation of a linear parametric oscillator

$$\left. rac{\mathrm{d}^2\deltaarphi_k}{\mathrm{d}T^2} + \Omega_arphi^2(k,T)\,\deltaarphi_k = 0
ight
angle; \quad \Omega_arphi^2 ext{ is oscillatory in T}$$

$$\begin{array}{|c|c|} \hline \textbf{Floquet Theorem} & \delta \varphi_k(T) = \mathcal{M}_k^{(+)}(T) e^{\mu_k T} + \mathcal{M}_k^{(-)}(T) e^{-\mu_k T} \end{array}$$

 \Rightarrow Exponentially growing for $\operatorname{Re}(\mu_k) \neq 0$ (in resonance bands)

Swagat Saurav Mishra, CAPT, Nottingham

Part-III : Non-linear Dynamics & Lattice Simulations

Non-linear dynamics: CosmoLattice

Fully non-linear (dimensionless version of) field equations

$$\begin{split} \ddot{\tilde{\varphi}} + 3\tilde{H}\tilde{\varphi} - \frac{\widetilde{\nabla}^2}{a^2}\tilde{\varphi} + \widetilde{V}_{,\tilde{\varphi}} &= 0\\ \tilde{H} \equiv \frac{\dot{a}}{a} = \frac{1}{3m_p^2} \left\langle \widetilde{K}_{\tilde{\varphi}} + \widetilde{G}_{\tilde{\varphi}} + \widetilde{V}(\tilde{\varphi}) \right\rangle\\ \end{split}$$

$$\end{split}$$
Where $\tilde{t} = mt \; ; \;\; \tilde{x} = mx \; ; \;\; \tilde{\varphi}, \tilde{\chi} = \frac{1}{\beta} \frac{\varphi_{,\chi}}{m_p} \; ; \;\; \tilde{F} = \frac{F}{\beta^2 m^2 m_p^2}\\ \widetilde{K}_{\tilde{\varphi}} &= \frac{1}{2} \left(\frac{\partial \tilde{\varphi}}{\partial \tilde{t}} \right)^2 \; ; \;\; \tilde{G}_{\tilde{\varphi}} = \frac{1}{2a^2(\tilde{t})} \left[\left(\frac{\partial \tilde{\varphi}}{\partial \tilde{x}} \right)^2 + \left(\frac{\partial \tilde{\varphi}}{\partial \tilde{y}} \right)^2 + \left(\frac{\partial \tilde{\varphi}}{\partial \tilde{z}} \right)^2 \right]\\ \tilde{\rho}_{\tilde{\varphi}} &= \widetilde{K}_{\tilde{\varphi}} + \widetilde{G}_{\tilde{\varphi}} + \widetilde{V}(\tilde{\varphi}) \; ; \;\;\; \tilde{p}_{\tilde{\varphi}} = \widetilde{K}_{\tilde{\varphi}} - \frac{1}{3} \widetilde{G}_{\tilde{\varphi}} - \widetilde{V}(\tilde{\varphi}) \end{split}$

Lattice specifications:

$$N = 128^3\,; \ \ \ 0.05\,m^{-1}\,\leq\,k\,\leq\,5\,m^{-1}$$

**Figueroa et. al (2020, 2021); **Mahbub, SSM (2023)

Self-resonance and Inflaton Fragmentation

Strong self-resonance \Rightarrow Inflaton fragmentation

(Asymmetric E-Model potential)

Inflation condensate

Inflation fluctuations

**Mahbub, SSM (2023); **Shafi, Copeland, Mahbub, SSM, Basak (2024)

Oscillon formation in real time (Asymmetric)

Swagat Saurav Mishra, CAPT, Nottingham

Reheating and Oscillons

Fractional Energy Density of Oscillons

Energy/Mass fraction

$$f_{\rm osc} \equiv \frac{E_{\rm osc}}{E_{\rm tot}} = \frac{\int_{\delta \rho_{\varphi} \gtrsim 4\bar{\rho}_{\varphi}} \mathrm{d}^3 \boldsymbol{x} \rho_{\varphi}(\boldsymbol{x}, t)}{\int \mathrm{d}^3 \boldsymbol{x} \rho_{\varphi}(\boldsymbol{x}, t)}$$

(Fractional energy density of oscillons)

 $\gtrsim 40\%$ of the total density \Rightarrow Significant!

**Mahbub, SSM (2023)

Conclusions (so far)

- Oscillons form for both Symmetric and Asymmetric plateau potentials.
- Oscillons do form after inflation in absence of external coupling starting from generic initial conditions.

Important Questions

- What is the **lifetime of oscillons**? How do they **decay**?
- We have ignored external coupling; g → 0
 What happens if g ≠ 0 ? Do oscillons form?

Our latest work!

**Hertzberg (2010); **Zhang, Amin, Copeland, Saffin, Lozanov (2020)

(P)reheating via Oscillon decay

PREPARED FOR SUBMISSION TO JCAP

Formation and decay of oscillons after inflation in the presence of an external coupling, Part-I: Lattice simulations

Mohammed Shafi (**b**,^{*a*} Edmund J. Copeland (**b**,^{*b*} Rafid Mahbub (**b**,^{*c*} Swagat S. Mishra (**b**,^{*b*} Soumen Basak^{*a*}

^aSchool of Physics, Indian Institute of Science Education and Research, Thiruvananthapur 695551, India.

^bSchool of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
^cDepartment of Physics, Gustavus Adolphus College, Saint Peter, MN 56082, USA.

E-mail: mohammedshafi18@alumni.iisertvm.ac.in, edmund.copeland@nottingham.ac.uk, mahbub@gustavus.edu, swagat.mishra@nottingham.ac.uk, sbasak@iisertvm.ac.in

(To appear on arXiv 2406.00108)

Part-IV : Oscillon Formation in presence of an External Coupling

Dynamics of Inflaton Decay (Preheating)

 $ext{System}: ext{ Inflaton } arphi \ \longrightarrow \ ext{massless offspring } \chi ig|; \ m \gg m_{0\chi}$

Described by the **action**

$$S[arphi,\chi] = -\int \mathrm{d}^4x\,\sqrt{-g}\left[rac{1}{2}\,\partial_\muarphi\partial^
uarphi + V(arphi) + rac{1}{2}\,\partial_\mu\chi\partial^
u\chi + \mathcal{I}(arphi,\chi)
ight]$$

With interaction $\mathcal{I}(\phi, \chi) = \frac{1}{2}g^2\varphi^2\chi^2$

The corresponding **field equations** are

$$\ddot{\varphi} - \frac{\nabla^2}{a^2}\varphi + 3H\dot{\varphi} + V_{,\varphi} + \mathcal{I}_{,\varphi} = 0$$
$$\ddot{\chi} - \frac{\nabla^2}{a^2}\chi + 3H\dot{\chi} + \mathcal{I}_{,\chi} = 0$$

with Hubble parameter

$$H^2 = \frac{1}{3m_p^2} \left[\frac{1}{2} \dot{\varphi}^2 + \frac{1}{2} \frac{\vec{\nabla}\varphi}{a} \cdot \frac{\vec{\nabla}\varphi}{a} + V(\varphi) + \frac{1}{2} \dot{\chi}^2 + \frac{1}{2} \frac{\vec{\nabla}\chi}{a} \cdot \frac{\vec{\nabla}\chi}{a} + \mathcal{I}(\varphi, \chi) \right]$$

Preheating via Self & External Resonance

 $\rightarrow~$ For inflaton decay, $|\phi(t)|\gg\delta\varphi(t,\vec{x}),\,\chi(t,\vec{x})$

$$\begin{aligned} \varphi(t,\vec{x}) &= \phi(t) + \boldsymbol{\delta}\varphi(t,\vec{x}) \\ \chi(t,\vec{x}) &= \bar{\chi}(t) + \boldsymbol{\delta}\chi(t,\vec{x}) \quad (\boldsymbol{\chi} \text{ field is in vacuum state}) \end{aligned}$$

- \rightarrow At the end of inflation, $\rho_{\phi} \gg \rho_{\chi}$, $\rho_{\delta\varphi}$ (Condensate dominated)
- \rightarrow Resulting equations of dynamics in the linear regime

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi}(\phi) = 0$$
$$\ddot{\delta\varphi}_{k} + 3H\dot{\delta\varphi}_{k} + \left[\frac{k^{2}}{a^{2}} + V_{,\phi\phi}(\phi)\right]\delta\varphi_{k} = 0 \quad \text{Self - resonance}$$
$$\ddot{\chi}_{k} + 3H\dot{\chi}_{k} + \left[\frac{k^{2}}{a^{2}} + g^{2}\phi^{2}\right]\chi_{k} = 0 \quad \text{External - resonance}$$

and the **Hubble parameter** $H^2 \simeq \frac{1}{3 m_p^2} \left[\frac{1}{2} \dot{\phi}^2 + V(\phi) \right]$

**SSM Lecture Notes (2024)

Self-resonance and Oscillon decay for $g \neq 0$

Self-resonance \rightarrow Oscillons \rightarrow χ production

Asymmetric E-model potential

**Mahbub, SSM (2023); **Shafi, Copeland, Mahbub, SSM, Basak (2024)

Parameter space of Oscillon formation $\{\lambda, g^2\}$

External Coupling
$$\begin{aligned} \mathcal{I}(\varphi, \chi) &= \frac{1}{2} g^2 \varphi^2 \chi^2 \\ V_{_{\mathrm{E}}}(\varphi) &= V_{_{0\mathrm{E}}} \left(1 - e^{-\lambda_{_{\mathbf{E}}} \frac{\varphi}{m_p}} \right)^2 \qquad \qquad V_{_{\mathrm{T}}}(\varphi) = V_{_{0\mathrm{T}}} \tanh^2 \left(\lambda_{_{\mathrm{T}}} \frac{\varphi}{m_p} \right) \end{aligned}$$

Evolution of energy density components

Absence of external interaction

Long-lived Oscillons

Presence of external interaction

oscillon decay into χ

(Production of χ -particles due to oscillon decay!)

**Shafi, Copeland, Mahbub, SSM, Basak (2024)

Lifetime of (a population of) Oscillons

Robust oscillons for Gradient term $G_{\varphi} \propto a^{-3}$

**Shafi, Copeland, Mahbub, SSM, Basak (2024)

Energy(Mass) Fraction of Oscillons

Reduction in f_{osc} due to χ -production

**Shafi, Copeland, Mahbub, SSM, Basak (2024)

Summary

What happens if g ≠ 0 ? Do oscillons form?
 YES! (Preheating via Oscillon decay into χ)

Lifetime of oscillons? How does an oscillon decay? Our upcoming work (analytical)!

Phenomenological implications of oscillons?

- Universal (high frequency) GWs
- Late-time Gravitational clustering and GWs
- Primordial Black Holes (NEHOP)
- Oscillons in scalar field (fuzzy) dark matter
- Gravitational solitons (**Oscillatons**)

Arthur Conan Doyle conceived the idea of Sherlock Holmes in Edinburgh

Extra Slides

Modern/Extended Standard Model of Cosmology

The hot Big Bang phase:

- Beginning of the Universe (\times)
- End of an earlier epoch of accelerated expansion (\checkmark)

REHEATING: Origin of all primordial matter!

Swagat Saurav Mishra, CAPT, Nottingham

Structure of the resonance with $\{\lambda, g^2\}$

Swagat Saurav Mishra, CAPT, Nottingham

Reheating and Oscillons

Power spectra of fluctuations: Resonance

Inflaton $\delta \varphi$ -fluctuations

Offspring χ -fluctuations

Evolution of Equation of State

Large external interaction

 $\langle w_arphi
angle o 0$ asymptotically

**Shafi, Copeland, Mahbub, SSM, Basak (2024)

Universal Gravitational Waves

**Lozanov, Sasaki, Takhistov (2023)

Power-spectra: Linear Perturbation Theory

Slow-roll regime, $\epsilon_1, \epsilon_2 \ll 1$ (slow terminal speed)

with
$$\epsilon_1 = -rac{\dot{H}}{H^2} = rac{\dot{\phi}^2}{3m_p^2 H^2}; \ \epsilon_2 = rac{\mathrm{dln}\epsilon_1}{\mathrm{d}N}$$

Primordial power-spectrum on large scales –

$$\mathcal{P}_{\zeta}(k) = rac{1}{8\pi^2} \left(rac{H}{m_p}
ight)^2 rac{1}{\epsilon_1} = A_S \left(rac{k}{k_*}
ight)^{n_S - 1} \quad ext{Scalar spectral index} \ \boxed{n_S - 1 = -\epsilon_2 - 2\epsilon_1} \ll 1$$

$$\mathcal{P}_T(m{k}) = rac{2}{\pi^2} \left(rac{H}{m_p}
ight)^2 = A_T \left(rac{m{k}}{k_*}
ight)^{n_T}$$

Tensor spectral index

$$\boxed{n_{_T}=-2\,\epsilon_1}\ll 1$$

CMB pivot scale $k_* = 0.05 \text{ Mpc}^{-1}$

\Rightarrow Tiny fluctuations that are nearly scale-invariant