Higgs-

EVIaxwell Meeting, February 2024

TOPICS

- Early days of lattice QCD
- 50 years later ... a small selection of results
- Example of ongoing work - the anomalous magnetic moment of the muon
-Future ?

Confinement of quarks*

Kenneth G. Wilson

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850 (Received 12 June 1974)
A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice) joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

Ken Wilson 1936-2013, Nobel prize 1982, for the Renormalisation Group

The origins of lattice gauge theory, hep-lat/0412043 explains:

1973, exciting discovery of asymptotic freedom ... eager jump in ... recent work in statistical mechanics meant that a lattice version of QCD seemed easier to work with ...

Elements of lattice QCD

- Theory is defined on a Euclidean space-time lattice

$$
U_{\mu}(x)=e^{-i g A_{\mu}(x+a / 2)}
$$

- Gluon fields live on the links joining lattice points and are elements of the gauge group i.e. SU(3) matrices rather than elements of the Lie algebra

$$
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet \\
U_{\mu}(x) & \bullet &
\end{array}
$$

- Solving QCD via the Feynman path integral becomes a multi-dimensional integral

$$
\int \mathcal{D} A_{\mu} \ldots e^{-\int L d t} \rightarrow \int \prod_{x_{j} \in \operatorname{grid}} d U_{\mu}\left(x_{j}\right) \ldots e^{-a \sum L_{j}}
$$

Wilson's gluon action

$$
S_{\text {gluon }}^{\text {lattice }}=\frac{6}{g^{2}(\pi / a)} \sum_{x, \mu>\nu}\left(1-P_{\mu \nu}(x)\right)
$$

$$
\stackrel{\bullet}{\stackrel{\rightharpoonup}{\bullet}} \underset{\bullet}{ } \mu
$$

where

$$
P_{\mu \nu} \equiv \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left(U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\mu}+a \hat{\nu}) U_{\nu}^{\dagger}(x)\right) \quad \text { (plaquette) }
$$

- The theory is locally gauge-invariant at NON-ZERO lattice spacing i.e. NO gaugefixing is needed.
- For small a

$$
S_{\text {gluon }}^{\text {lattice }} \rightarrow\left(S_{\text {gluon }}^{\text {cont }}=\int d^{4} x \sum_{\mu>\nu} \operatorname{Tr} F_{\mu \nu}^{2}\right)+\mathcal{O}\left(a^{2}\right)
$$

Discretisation errors

Theory shows colour confinement in strong coupling (large g²) limit

Expectation value of RxT Wilson loop

$$
\frac{1}{Z} \int \prod_{x_{j} \in \mathrm{grid}} d U_{\mu}\left(x_{j}\right) \square e^{-\beta \sum(1-\square)}
$$

For small β (large g2), expand exponential and use

$$
\int d U U^{a b}=0 \quad \int d U U^{a b}\left(U^{\dagger}\right)^{c d}=\frac{1}{3} \delta_{a d} \delta_{b c}
$$

We must 'tile' the loop with plaquettes at leading-order

$$
\begin{gathered}
\langle\square\rangle \propto \beta^{R T} \equiv e^{-\ln \left(g^{2}\right) R T} \quad \text { We also have } \\
\text { 'Area Law' } \quad \text { so } \quad V(R)=K R
\end{gathered}
$$

BUT large $g(\pi / a)$ implies large a - we want the continuum limit, $\mathrm{a} \rightarrow 0$, for phenomenology
numerical integration of path integral instead - this needs Monte Carlo/ importance sampling methods.
M. Creutz, Monte Carlo study of quantised SU(2) gauge theory, Phys. Rev. D21 (1980) 2308; used 44 to 10^{4} lattices, measuring Wilson loops from 5 (!) equilibrated gluon field configurations. (Could be done on your phone today)
possible to reach weak coupling regime. Can then measure other quantities in terms of string tension, i.e. use string tension to determine lattice spacing. $\sqrt{K} \approx 440 \mathrm{MeV}$

Big computing challenge, however!

$$
\Rightarrow a^{2}=A^{2} e^{-C \beta} \quad \beta=\frac{4{ }^{2.0} \longleftarrow}{g^{2}(\pi / a)} \text { for } \mathrm{SU}(2)
$$

Including quarks

$$
S_{q}=\bar{\psi}(\gamma \cdot D[U]+m) \psi
$$

Valence quarks: construct hadron correlator by solving Dirac equation on background gluon field and combining quark propagators, expensive for small m

Sea quarks: include Det(Dirac matrix) in importance sampling of gluon fields, extremely expensive for small m.
S. Duane, A. Kennedy, B.Pendleton, D.Roweth, , Hybrid Monte Carlo, Phys. Lett. B195 (1987) 216.

Quenched approximation, 1980s and 1990s - ignore determinant. Slow-going ...

Key progress was made in improving the discretisation of QCD (adding terms to cancel discretisation errors), particularly for quarks.

Smaller discretisation errors means larger a values can be used. Cost ($\sim 1 / \mathrm{a}^{8}$) much reduced.

\rightarrow This makes the inclusion of sea quarks possible with u/d quark masses that are small enough.

How small is small enough?
By early 2000s it was possible to include u, d, s in sea with $m_{u}=m_{d}=m_{l}$ and m_{l} / m_{s} down to 0.2
 (real world $\mathrm{m} / \mathrm{m}_{\mathrm{s}} \sim 0.04$ now reachable)

Quenched
approx: no sea
quarks

LQCD/Exp't $\left(n_{f}=0\right)$

With u, d and s sea quarks

Including sea quarks

Ratio of lattice QCD/experiment correct answer is 1

- focus on gold-plated quantities
- must fix parameters of QCD i.e. lattice spacing and quark masses. Here used

$$
\Upsilon(2 S-1 S), M_{\pi}, M_{K}, M_{\eta_{c}}, M_{\eta_{b}}
$$

No further free parameters!

- plot shows that sea quarks give correct answers across a wide range of hadrons; quenched approx. fails at 10-20\% level.
Quenched approx. inconsistent because of missing
C. Davies et al, HPQCD/Fermilab/MILC, PRL92:022001 (2004), with updates from HPQCD, PRD72:212001 (2005)

Particle physics

QCD parameters
Precision SM tests
CKM elements

Hadron spectrum Hadron structure and parton d.f.

Glueballs and exotica

Nuclear physics
Nuclear potential
Nuclear masses and properties

QCD at high temperatures and densities

Theories beyond the Standard Model

Axions
Quantum gravity
Astrophysics an

Lattice QCD today

Condensed matter physics Computational physics
Computer science Quantum computing ...

The masses of mesons from lattice QCD

These are mesons that have relatively long lifetime and a well-determined mass from experiment.

Agreement is good to very high (few MeV) accuracy. Now including QED effects to reduce uncertainties further

QCD parameters $-\alpha_{\mathrm{S}}$

ATLAS compared p_{T} distribution of Z bosons to $O\left(\alpha_{s}{ }^{3}\right)$ QCD perturbation theory

QCD parameters - quark masses

Multiple lattice methods agree well - now including effects from electric charge of valence quarks

ETMC twisted mass RI-MOM

HPQCD '21 (HISQ)
Fermilab/MILC/TUMQCD '18
Gambino et al' 17
ETM ' 16
HPQCD ' 14 (NRQCD b)
HPQCD '14 (HISQ)
HPQCD, 2005.01845, 2102.09609

$$
\left.\frac{\bar{m}_{b}\left(3 \mathrm{GeV}, n_{f}=4\right)}{\bar{m}_{c}\left(3 \mathrm{GeV}, n_{f}=4\right)}\right|_{\mathrm{QCD}+\mathrm{QED}}=4.586(12)
$$

$$
\left.\frac{\Gamma(H \rightarrow b \bar{b})}{\Gamma(H \rightarrow c \bar{c})}\right|_{\mathrm{SM}}=\frac{\bar{m}_{b}^{2}\left(M_{H}\right)}{\bar{m}_{c}^{2}\left(M_{H}\right)} \frac{\left(1+r_{b}\right)}{\left(1+r_{c}\right)} \quad \text { calculable to } 0.9 \%
$$ (LHC HiggsWG give 6\%)

Meson weak and electromagnetic decay rates

Annihilation rate to γ or W determined by hadronic parameter called decay constant, f.
C. Davies in 50 yrs of QCD, 2212.11107

Uncertainty $<1 \%$ from lattice QCD: e.g: $0.4 \% \mathrm{f}_{\psi}, 0.2 \% \mathrm{f}_{\mathrm{K}} / \mathrm{f}_{\pi}$
$\Gamma=f^{2} \times($ kin. factors $) \times\left(\mathrm{CKM}^{2}\right.$ or $\left.e_{q}^{2}\right)$
Comparison to expt. tests SM and/ or gives CKM elements

Meson semileptonic decay rates

Rate determined by form factors, functions of $(4 \text {-momentum transfer })^{2}=q^{2}$
$\mathrm{B} \rightarrow \mathrm{K}$ decay proceeds via $\mathrm{b} \rightarrow \mathrm{s}$ FCNC; 3 form factors. Can now calculate over full q^{2} range with lattice QCD .

Belle II, 2311.14647-3.5 σ evidence for

Current hot topic - anomalous magnetic moment of the muon

The muon, μ, has electric charge and spin and therefore a magnetic moment

Naive value of $\mathrm{g}=2$ (from Dirac equation) in

$$
\vec{\mu}=g\left(\frac{e}{2 m}\right) \vec{S}
$$ absence of any interactions

BUT μ interacts with a host of virtual particles generated by vacuum energy fluctuations.

Anomalous magnetic moment $\quad a_{\mu}=\frac{g-2}{2}$ Accurate comparison of theory and experiment provides stringent test of the Standard Model

Current status

$$
\begin{aligned}
& 10^{11} a_{\mu}=116592055(24) \\
& 10^{11} a_{\mu}=116591810(43)
\end{aligned}
$$

$$
\text { Difference }=245(49) \times 10^{-11}
$$

Experiment - Muong-2@FNAL PRL131:161802 (2023); runs1-3.

Theory white paper: Phys. Rep. 887:1 (2020)

50 ! \quad but QCD contributions

[^0]QCD contributions to a_{μ} start at $\alpha^{2} \mathrm{QED}$, nonperturbative in QCD LO Hadronic vacuum polarisation (HVP) dominates uncertainty in SM result. Largest non-QED piece: $\approx 7000 \times 10^{-11}$

How to calculate $a_{\mu}{ }^{\mathrm{HVP}}$?
Key ingredient is central quark bubble connected to a photon at either side
 $=e_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f}$ couples quark, of flavour f , to photons
Two methods

1) Use optical theorem to relate HVP to $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow\right.$ hadrons $)$ and use experimental data
has given smallest errors so far
2) Direct computation of the vector-vector correlation function for u, d, s and c quarks in Lattice QCD

3) $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$

$$
\begin{aligned}
& a_{\mu}^{\mathrm{HVP}}=\frac{m_{\mu}^{2}}{12 \pi^{3}} \int_{m_{\pi}^{2}}^{\infty} d s \frac{\hat{K}(s)}{s} \sigma_{\text {had }}^{0}(s) \\
& \mathrm{s}=(\text { Centre of mass energy })^{2}
\end{aligned} e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \text { hadrons }
$$

Because of kernel function, integral is dominated by a few channels at low s.
Keshavarzi et al, 1911.00367; Davier et al, 1908.00921
$\begin{aligned} & \text { Theory WP ‘data- } \\ & \text { driven' average }\end{aligned} \quad a_{\mu}^{\mathrm{HVP}}=6931(40) \times 10^{-11}$.
BMW lattice QCD, $a_{\mu}^{\mathrm{HVP}}=7075(55) \times 10^{-11}$ 2002.12347

$$
\text { difference }=144(68) \times 10^{-11}
$$

pushing SM result upwards towards expt. HVP?

2) Lattice QCD

Calculate 'two-point' vector-vector correlation function $\mathrm{C}(\mathrm{t})$

$$
C(t)=\frac{1}{3} \sum_{i, x}\left\langle j_{i}(x, t) j_{i}(0,0)\right\rangle \text { falls exponentially with } \mathrm{t}
$$

$$
a_{\mu}^{\mathrm{HVP}, f}=e_{f}^{2}\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d t \tilde{K}^{k}(t) C(t)
$$

Largest (90\%) and most problematic contribution is from u/d quarks - $\mathrm{C}(\mathrm{t})$ noisy at large time

Apply smooth 'window-in-time' from $t=0$ to $t=\mathrm{t}_{1}$ to cut out noisy region. Then

- Lattice QCD results have smaller uncertainty
- Can apply SAME window to data-driven results and compare

For total HVP in window see significant tension with datadriven (R) result -3.7σ at $t_{1}=1 \mathrm{fm}$ Fermilab/HPQCD/MILC, 2207.04765
Conclusion: current data-driven HVP value is probably too low. i.e. there is probably less 'new physics' than we thought. Needs more theory work and more experimental results on low-energy e+e- \rightarrow hadrons to sort out. (See CMD-3 2302.08834)

Inferred data-driven result m

 significant tension with data-
 Multiple lattice QCD ${ }^{\dagger}$ calculations agree on 'intermediate-window' u/d result - in significant tension with data-driven value.

Lattice QCD has come a long way in 50 years!
We now have multiple precision tests of QCD (uncertainties below 1\%)

Future

- Improve precision on quantities needed for new physics searches e.g. HVP for g-2, form factors for flavour physics ... Include QED and $m_{d}-m_{u}$ effects.
- Extend wider calculations of spectrum, including exotica, mixing with multi-hadron states to quantitative results. More baryon physics.
- Longer term - exploit quantum computing!

Backup slides

Lattice $\mathrm{QCD}=$ three-step procedure

1) Generate sets of gluon fields (inc. effect of sea quarks) for MC integrn
numerically extremely challenging
2) Calculate valence quark propagators and combine to make "hadron correlation functions" - average these results over the set of gluon fields for $\langle\mathcal{C}\rangle=$
numerically costly, data intensive
3) Fit $\langle\mathcal{C}\rangle$ to obtain hadron masses and decay amplitudes in units of the lattice spacing, a. Fix a and each m_{q} using calibration hadron masses.
Repeat 1-3 at different a for extrapolation to $a=0$.
Final accuracy depends on :

- statistical accuracy i.e. number of gluon field configurations
- control of lattice spacing dependence/ how well quark masses are tuned
- normalisation of operators (for decay amplitudes)

Example state-of-the-art: Parameters for gluon field configurations with HISQ sea quarks

$=m_{l} \quad$ (halves cost)
Configs
with $m_{u} \neq m_{d}$
also being generated now

Want u /d quarks with physical (light) masses for their physics - expensive!
*physical $\mathrm{m}_{\mathrm{u} / \mathrm{d}}$ *

$$
m_{\pi^{0}}=135 \mathrm{MeV}
$$

"2nd generation" lattices include $u / d, s$ and c quarks in sea

HISQ = Highly improved staggered quarks -very accurate discretisation of Dirac equation
E.Follana, et al, HPQCD, hep-lat/0610092.

$$
m_{u, d} \approx m_{s} / 10
$$

$$
\longleftarrow m_{u, d} \approx m_{s} / 27
$$

Spatial size:

$$
m_{\pi} L>3
$$

$\sim 6 \mathrm{fm}$ for physical m_{1}

Meson Correlation functions are constructed from valence quark propagators

$$
\begin{array}{r}
C_{3}=\sum_{m, n} A_{n} J_{n m} C_{m} e^{-M_{n} t} e^{-M_{m}(T-t)} \\
\langle n| \mathcal{J}|m\rangle
\end{array} \begin{aligned}
& \text { form factor, } \\
& \text { if J normalis }
\end{aligned}
$$

Connected correlators shown here, some processes also have quark-line disconnected diagrams

A more complete spectrum of charmonium mesons

Calculate the masses of many excited states (but with much lower accuracy)

Many operators used; So far, calculations at only one value of the lattice spacing
black=experiment green,red,blue=lattice

Lowest ‘Hybrid’ states arise from coupling to 1^{+-}gluonic excitation which adds $\sim 1.3 \mathrm{GeV}$. Same picture seen for baryons, light mesons etc.

JPC

Lattice QCD is an international endeavour

Needs huge amounts of High Performance Computing time International collaborations of physicists - sizes: $\mathrm{O}(5)$ to $\mathrm{O}(50)$, to exploit national supercomputing facilities

Some gluon fields are made publicly available for others to calculate correlators on - improves productivity of the field.

In UK :
Shared by astronomy, nuclear and particle physics theorists, 3 services at 4 sites: Data Intensive (Cambridge/ Leicester) ; Extreme Scaling (Edinburgh); Memory Intensive (Durham). Total Pflops computing power.
Lattice QCD calculations take weeks/millions core-hours

Tensions in experimental results for $\mathrm{e}+\mathrm{e}-\rightarrow$ hadrons at small s

Spread from KLOE to CMD3 $=200 \times 10^{-11}$

[^0]: New physics?

