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Very impressive results in collider physics 2

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-039/



Jets 3

✓ Probe QCD dynamics over broad 
range of scales

✓ Used for  determinationαs

✓ Background subtraction for BSM 
searches

✓ Ubiquitous at hadron colliders

✓ Recent new developments in 
flavoured jets

‣ What is an IR-safe definition?

‣ Higgs couplings ( )H → bb̄

‣ Top physics (PDFs, , BSM)αs

‣ Jet + V (PDFs, )αs

‣ Jet + missing  (BSM)ET



EW bosons 4

✓ LHC from discovery machine to 
precision physics

✓ Standard candles with very clear 
experimental signatures

‣ Determination of EW parameters

‣ Precise determination of MW



Tops 5

✓ Only quark that decays before it 
hadronises: precision test of the SM

✓ Heaviest SM particle: window into 
BSM physics

✓ Very precise experimental results, 
challenging theory precision



Higgs 6

✓ Main target of LHC program

✓ After discovery, measure properties 
of the Higgs boson

✓ Look for deviations from SM Higgs 
(no evidence so far)

[Nature 607 (2022) 60]



The future — High-Luminosity LHC 7
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✓ 20 times more data

✓ Very high-precision measurements

✓ Access to new rare processes

✓ Bottleneck in theory predictions… 



Why do we need precise theory predictions? 8

Slide by M.Grazzini
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PERTURBATIVE QCD CALCULATIONS
Quantum chromodynamics is conceptually 
simple. Its realisation in nature, however, is 

usually very complex. But not always.

Franck Wilczek [Phys.Today 53N8 (2000) 22-28]



Why is (perturbative) QCD a complex theory? 12

https://pdg.lbl.gov/2023/

✓ QCD looks very different at different energies

✓ Particles participating in high-energy interactions are not what detectors measure
‣ How do we relate the two perspectives?



But why not always? 13

✓ Collinear factorisation

✓ Asymptotic freedom: at high-energies, the theory is perturbative
‣ Can compute the hard scattering in perturbation theory

‣ Can define a universal object (the proton) and measure its distribution of quarks 
and gluons

σAB→X = ∑
a,b

∫
1

0
dxa ∫

1

0
dxb fa|A(xa) fb|B(xb) σab→X (xa, xb)(1 + 𝒪(ΛQCD/Q) )

Parton Distribution Functions (PDFs): 
non perturbative, but universal

Hard scattering: 
perturbation theory

Non-perturbative 
effects: 

power suppressed

✓ If sufficiently inclusive over final state (i.e., don’t ask too many questions about it)

✓ Non-perturbative corrections to factorisation formula: largely unstudied… 
‣ Start to become an obstruction to increase of theory precision



Anatomy of pQCD calculation — Hard Interaction 14

Proton 1 Proton 2

✓ A high-energy parton is extracted from each proton
‣ Rely on non-perturbative PDFs to describe the proton

✓ High-energy interaction:
‣ Computable in perturbative QCD
‣ Produce high-energy particles



Anatomy of pQCD calculation — Parton Showers 15

Proton 1 Proton 2

✓ Particles produced in the final state radiate
‣ Proliferation of particles fill phase-space

✓ Radiation is ordered in angle/transverse 
momentum
‣ Described by parton showers
‣ Form collimated jets of particles



Anatomy of pQCD calculation — Hadronisation and UE&MPIs 16

Proton 1 Proton 2

✓ Quarks and gluons hadronise
‣ Heavier hadrons more likely to be 

found as products of hard interaction

✓ Products of many other 
soft interactions also reach 
the detector 
‣ Underlying events and multiparton interactions



Anatomy of pQCD calculation — Real Life 17



Multiple scales 18

✓ Hard interaction: perturbative QCD calculation

σ(Q) = σ0 (1 + αS(Q)σ1 + α2
S(Q)σ2 + …) Q ∼ 1TeV

✓ Relate processes between disparate scales TeV and  GeVQ ∼ 1 μhad ∼ 1

‣ Large logarithms appear L = ln Q /μhad ∼ 7

‣ Spoils convergence of perturbative series: αs L2 , αs L

✓ Large logarithms must be resummed

σ = σ0 exp (αn
s Ln+1a1 + αn

s Lna0 + αn
s Ln−1a−1 + …)

✓ Hadronisation, underlying events and multiparton interactions
‣ Non-perturbative, model dependent
‣ Different general purpose Monte Carlo codes implement different models
‣ Differences included in theoretical error estimates

LO NLO NNLO

LL NLL NNLL



Parton showers and Resummation 19

σ = σ0 exp (αn
s Ln+1a1 + αn

s Lna0 + αn
s Ln−1a−1 + …)

∞

RESUMMATION 

Inclusive processes, tailored to 
specific observables. Can reach very 

high logarithmic accuracy

PARTON SHOWERS 

More exclusive processes, based 
on MC algorithms. Interfaced with 
hadronisation models in general 

purpose Monte-Carlo codes

‣ State of the art: N2,3LL

‣ State of the art:  NLL, some NNLL

‣ New generation of PS with controlled and 
systematically improvable accuracy

‣ Need to match fixed order and PS

‣ E.g.: For Drell Yan, N3LO+N3LL, giving 
theory predictions with few % error 

DYTurbo [Camarda, Cieri], Cute-MCFM [Neumann, Campbell],  
NNLOJet+RadISH [Chen, Gehrmann, et al] 2022



HARD INTERACTION: REAL RADIATION, 
FEYNMAN INTEGRALS AND AMPLITUDES 



Loops and Legs 21

σ ∼ ∫ dΦ 𝒜
2

Leading Order

NLO

NNLO

✓ The higher the order, the more loops and external legs we have



Phase-space integration and singularities 22

σ ∼ ∫ dΦ 𝒜
2

✓ Loop amplitudes have IR singularities (after UV renormalisation)

✓ Phase-space integration has IR singularities

∼ ∼
Eg → 0 θg → 0

✓ Sum is finite: ∫ dΦ3 +∫ dΦ4

✓ Two approaches in phase-space integration:

‣ Subtraction: build counter terms  process specific, very efficient⇒

‣ Slicing: introduce cut-off in integration  process independent, less efficient⇒

✓ State of the art:  at ,   at 2 → 1 N3LO 2 → 3 NNLO



(Loop) Amplitudes — Master integrals 23

𝒜 = ∑ ci( ⃗p; ϵ) mi( ⃗p; ϵ)

Master coefficients Master integrals

✓ Feynman integrals form vector spaces: basis is theory independent  fundamental 
information about all QFTs

⇒

✓ Complicated multivalued functions  large overlap with pure mathematics⇒

✓ Intricate analytic structure with interesting underlying geometry (elliptic, Calabi-Yau, …)

✓ Goal: control analytic structure & fast and stable numerical evaluation

✓ Example: master integrals for production of Higgs + 2 jets [Abreu et al, 2306.15431]

‣ Hundreds of integrals

‣ Hundreds of log singularities

‣ 6 variables

✓ Very advanced numerical approaches (differential equations, sector decomposition, …)



(Loop) Amplitudes — Master coefficients 24

✓ State of the art:  at 4 loops,  at 3 loops,   at 2 loops 2 → 1 2 → 2 2 → 3

✓ Theory specific  e.g., much more complicated in QCD than in  SYM⇒ 𝒩 = 4
‣ Develop new techniques (unitarity, …) in simpler theories

𝒜 = ∑ ci( ⃗p; ϵ) mi( ⃗p; ϵ)

Master coefficients Master integrals

✓ Main bottleneck: solving linear systems of Integration-By-Parts relations

✓ Complicated rational functions: use finite fields, tools from algebraic geometry, …

✓ E.g.: amplitudes for three-jet production at the LHC
[de Laurentis et al, 2311.10086, 2311.18752]

[Abreu et al, 2102.13609]
[Agarwal et al, 2311.09870]

‣ Simple coefficients (after a lot of work)

‣ Numerically stable, ready for pheno

‣ Can we understand their analytic 
structure better?



A lot of progress in the past few years 25

✓ NNLO corrections to 3-jet production at the LHC

‣ Energy-energy correlators…

[Czakon, Mitov, Poncelet ’21]

‣ … and new  extractionsαs

[ATLAS, JHEP 07 (2023) 85]

‣ Among most complex NNLO calculations: 100M CPU hours  big problem we need to 
address for the future!

⇒

✓ More and more phenomenology studies at NNLO for 2 to 3 processes
‣ , , , pp → γγγ pp → γγ + j pp → γ + jj pp → jjj

‣ , , pp → Wbb̄ pp → Htt̄ pp → Wtt̄

‣ New entries in the plot of the running of  at high αs Q



SUMMARY AND OUTLOOK 



Summary and Outlook 27

✓ Precise theory predictions are crucial to exploit the full potential of the LHC

‣ Wealth of new data will be available in the coming years

‣ Great potential to test the SM and find new physics beyond it

✓ A lot of progress in QCD corrections

✓ NNLO corrections: 2 to 2 processes largely done, 2 to 3 becoming a reality

‣ Can we go to ? Ok for 2 to 1, partial results for 2 to 2N3LO

‣ Extensive progress on parton showers and resummation

‣ A lot of progress on amplitudes/Feynman integrals

✓ Next challenges towards percent-level phenomenology

‣ How to handle processes with more scales? Technically challenging

‣ How to handle non-perturbative corrections? Conceptually challenging

‣ Include EW corrections? More challenging because of masses

‣ How do we make this useful for experimentalists?
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