

The precision frontier of QCD

Samuel Abreu CERN & The University of Edinburgh

Higgs-Maxwell Meeting — Edinburgh, 2024

Very impressive results in collider physics

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-039/

Jets

- Ubiquitous at hadron colliders
- Probe QCD dynamics over broad range of scales
- ✓ Used for α_s determination
- Background subtraction for BSM searches
- Recent new developments in flavoured jets
 - What is an IR-safe definition?
 - Higgs couplings ($H \rightarrow b\bar{b}$)
 - Top physics (PDFs, α_s , BSM)
 - Jet + V (PDFs, α_s)
 - Jet + missing E_T (BSM)

Standard Model Production Cross Section Measurements

 Standard candles with very clear experimental signatures

- LHC from discovery machine to precision physics
 - Determination of EW parameters
 - Precise determination of M_W

Tops

 \checkmark

Inclusive tt cross section [pb]

Standard Model Production Cross Section Measurement:

Higgs

- Main target of LHC program
- ✓ After discovery, measure properties of the Higgs boson
- Look for deviations from SM Higgs (no evidence so far)

Standard Model Production Cross Section Measurement:

[Nature 607 (2022) 60]

The future — High-Luminosity LHC

https://hilumilhc.web.cern.ch/content/hl-lhc-project

Expected relative uncertainty

Why do we need precise theory predictions?

pp \rightarrow H+X 13 TeV, PDF4LHC15, $\mu_F=\mu_B=m_H/2$

Why do we need precise theory predictions?

Why do we need precise theory predictions?

PERTURBATIVE QCD CALCULATIONS

Quantum chromodynamics is conceptually simple. Its realisation in nature, however, is usually very complex. But not always.

Franck Wilczek [Phys.Today 53N8 (2000) 22-28]

Why is (perturbative) QCD a complex theory?

https://pdg.lbl.gov/2023/

- QCD looks very different at different energies
- Particles participating in high-energy interactions are not what detectors measure
 - How do we relate the two perspectives?

But why not always?

If sufficiently inclusive over final state (i.e., don't ask too many questions about it)

$$\sigma_{AB\to X} = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a|A}(x_a) f_{b|B}(x_b) \sigma_{ab\to X}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{QCD}/Q)\right)$$

Parton Distribution Functions (PDFs): non perturbative, but universal Hard scattering: perturbation theory Non-perturbative effects: power suppressed

✓ Collinear factorisation

- Can define a universal object (the proton) and measure its distribution of quarks and gluons
- Asymptotic freedom: at high-energies, the theory is perturbative
 - Can compute the hard scattering in perturbation theory
- Non-perturbative corrections to factorisation formula: largely unstudied...
 - Start to become an obstruction to increase of theory precision

Anatomy of pQCD calculation — Hard Interaction

- A high-energy parton is extracted from each proton
 - Rely on non-perturbative PDFs to describe the proton

Anatomy of pQCD calculation — Parton Showers

Anatomy of pQCD calculation — Hadronisation and UE&MPIs ¹⁶

Anatomy of pQCD calculation — Real Life

Multiple scales

Parton showers and Resummation

$$= \sigma_0 \exp \left(\alpha_s^n L^{n+1} a_1 + \alpha_s^n L^n a_0 + \alpha_s^n L^{n-1} a_{-1} + \dots \right)$$

PARTON SHOWERS

More exclusive processes, based on MC algorithms. Interfaced with hadronisation models in general purpose Monte-Carlo codes

- Need to match fixed order and PS
- New generation of PS with controlled and systematically improvable accuracy
- State of the art: NLL, some NNLL

HARD INTERACTION: REAL RADIATION, FEYNMAN INTEGRALS AND AMPLITUDES

Loops and Legs

The higher the order, the more loops and external legs we have

Phase-space integration and singularities

$$\sigma \sim \left[d\Phi \left| \mathscr{A} \right|^2 \right]$$

- Loop amplitudes have IR singularities (after UV renormalisation)
- Phase-space integration has IR singularities

- Two approaches in phase-space integration:
 - ► Subtraction: build counter terms ⇒ process specific, very efficient
 - Slicing: introduce cut-off in integration ⇒ process independent, less efficient
- ✓ State of the art: 2 → 1 at N³LO, 2 → 3 at NNLO

(Loop) Amplitudes — Master integrals

- ✓ Feynman integrals form vector spaces: basis is theory independent ⇒ fundamental information about all QFTs
- ✓ Complicated multivalued functions ⇒ large overlap with pure mathematics
- Intricate analytic structure with interesting underlying geometry (elliptic, Calabi-Yau, ...)
- Goal: control analytic structure & fast and stable numerical evaluation
- Very advanced numerical approaches (differential equations, sector decomposition, ...)
- Example: master integrals for production of Higgs + 2 jets
 - 6 variables
 - Hundreds of integrals
 - Hundreds of log singularities

23

(Loop) Amplitudes — Master coefficients

- ✓ Theory specific \Rightarrow e.g., much more complicated in QCD than in $\mathcal{N} = 4$ SYM
 - Develop new techniques (unitarity, ...) in simpler theories
- Main bottleneck: solving linear systems of Integration-By-Parts relations
- Complicated rational functions: use finite fields, tools from algebraic geometry, ...
- ✓ State of the art: 2 → 1 at 4 loops, 2 → 2 at 3 loops, 2 → 3 at 2 loops
- ✓ E.g.: amplitudes for three-jet production at the LHC

[Abreu et al, 2102.13609] [Agarwal et al, 2311.09870] [de Laurentis et al, 2311.10086, 2311.18752]

- Simple coefficients (after a lot of work)
- Numerically stable, ready for pheno
- Can we understand their analytic structure better?

A lot of progress in the past few years

- ✓ More and more phenomenology studies at NNLO for 2 to 3 processes
 - $pp \rightarrow \gamma\gamma\gamma, pp \rightarrow \gamma\gamma + i, pp \rightarrow \gamma + ii, pp \rightarrow iii$
 - ▶ $pp \rightarrow Wb\bar{b}, pp \rightarrow Ht\bar{t}, pp \rightarrow Wt\bar{t}$

Energy-energy correlators...

NNLO corrections to 3-jet production at the LHC

• Among most complex NNLO calculations: 100M CPU hours \Rightarrow big problem we need to address for the future!

[ATLAS, JHEP 07 (2023) 85] ATLAS

[Czakon, Mitov, Poncelet '21]

SUMMARY AND OUTLOOK

Summary and Outlook

- Precise theory predictions are crucial to exploit the full potential of the LHC
 - Wealth of new data will be available in the coming years
 - Great potential to test the SM and find new physics beyond it
- A lot of progress in QCD corrections
 - Extensive progress on parton showers and resummation
 - A lot of progress on amplitudes/Feynman integrals
- NNLO corrections: 2 to 2 processes largely done, 2 to 3 becoming a reality
 - Can we go to N³LO? Ok for 2 to 1, partial results for 2 to 2
 - How do we make this useful for experimentalists?
- Next challenges towards percent-level phenomenology
 - Include EW corrections? More challenging because of masses
 - How to handle processes with more scales? Technically challenging
 - How to handle non-perturbative corrections? Conceptually challenging

THANK YOU!