

28/02/2024

Disclaimer

- Strong personal bias
 - Focus on recent candidates with charm quarks
 - Focus on the latest results from the LHCb experiment
 - It goes without saying interesting work on going elsewhere e.g. BES III and Belle II
 - Exotic spectroscopy also a hot topic in light quark studies
 - Recent reviews see e.g. UK workshop: Exotic Hadron Spectroscopy 2023

Contents

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays
 - Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay
 - Study of $B^0 \to J/\psi \phi K_S^0$ decays
- Future prospects

- Spectroscopy remains a hot topic in particle physics
 - 72 new states discovered at the LHC (no, we didn't start/stop with the Higgs!)
 - 64 of those were discovered by LHCb, including 20+ exotic candidates
- For "standard" mesons and baryons
 - Do the spectra and particle properties agree with QCD calculations?
 - Are they really "standard"?
- For exotic candidates (non $q\overline{q}'$ nor qq'q'' states)
 - What are their internal quark structures?
 - Are they all similar or different?
 - Where are the hexaquark candidates?

28/02/2024

Data of arXiv submission

28/02/2024

Sen Jia et al 2023 Chinese Phys. Lett. 40 121301

How do we know if something is exotic?

- Can study the quarks in the final state particles
 - Strong interaction conserves quark flavour and all quantum numbers
- Lets look at an example
 - For a strong decay, expect to see a $q\bar{q}$ pair in the final state quarks e.g.

• What about
$$T_{cs0}(2900)^0$$
 first seen in the D^-K^+ final state

$$T_{cs0}(2900)^0 \to D^- K^+$$

(??) $(\bar{c}d) (\bar{s}u)$

 $D^{*+} \rightarrow D^0 \pi^+$

 $(c\bar{d})$ $(c\bar{u})(u\bar{d})$

No associated strong decay of a meson of baryon

Isn't it really just stamp collecting?

- Hopefully I don't need to convince you that it isn't!
 - Several puzzles in spectroscopy, clearly exotic states are just one them
 - Important to test our various models of QCD (lattice, HQET etc)
- There is nothing wrong with being excited about making discoveries!
 - Of course it is important to learn as much as possible from measurements
 - Let's not loose the excitement and passion for finding something new though!
- Most cited LHCb paper?
 - CP violation?
 - Flavour anomalies?

Isn't it really just stamp collecting?

- Hopefully I don't need to convince you that it isn't!
 - Several puzzles in spectroscopy, clearly exotic states are just one them
 - Important to test our various models of QCD (lattice, HQET etc)

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 o$

- There i $J/\psi K^- p$ Decays
 - Of co LHCb Collaboration Roel Aaij (CERN) et al. (Jul 13, 2015)

Published in: *Phys.Rev.Lett.* 115 (2015) 072001 • e-Print: 1507.03414 [hep-ex]

- Most cited LHCb paper?
 - CP violation?

Let's

• Flavour anomalies?

MONE PENN

ries.

hough!

nts

#2

- Designed to study weak decays of heavy hadrons
 - Excellent track and vertex resolution provides high purity samples (>90%) easily for fully reconstructed decays
- Heavy hadrons decay into almost infinite final states
 - Study those decay products in a quasi-background free environment

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays
 - Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay
 - Study of $B^0 \rightarrow J/\psi \phi K^0_S$ decays
- Future prospects

- Decays of B mesons to double charm final states now very popular
 - Following the discovery of new particles in $B^+ \rightarrow D^+ D^- K^+$ decays
- Isospin partner decays analysed together
 - Expect standard excited charm mesons in the $\overline{D}{}^0\pi^-$ and $D^-\pi^+$ channels
 - Anything else would likely be an exotic candidate

- Decays of B mesons to double charm final states now very popular
 - Following the discovery of new particles in $B^+ \rightarrow D^+ D^- K^+$ decays
- Isospin partner decays analysed together
 - Expect standard excited charm mesons in the $\overline{D}{}^0\pi^-$ and $D^-\pi^+$ channels
 - Anything else would likely be an exotic candidate
 - E.g. Z_{cs} tetraquark candidates seen to decay to $\overline{D}*D_s^+$, $\overline{D}D_s^{*+}$ and $J/\psi K$
 - Motivation to search in the $D_s^+\pi^-$ and $D_s^+\pi^+$ from theory side in analogy to $T_{cs(0,1)}(2900)^0$ candidates in the D^-K^+ system

- Three data samples initially

 - $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ with $\overline{D}{}^0 \to K^+ \pi^ B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ with $\overline{D}{}^0 \to K^+ \pi^- \pi^+ \pi^ B^+ \to D^- D_s^+ \pi^+$ with $D^- \to K^+ \pi^- \pi^-$
- Analysis uses the full Run 1 + Run 2 data sample of 9fb^{-1}
- Standard selections
 - Combinatorial background suppressed using a BDT (boosted decision tree)
 - Non-charm background surpassed with flight distance cuts

28/02/2024

- Firstly need to measure $\tilde{\mathfrak{S}}$ •
 - Separate fits for the thr
 - Double Crystal Ball func
 - Exponential function fo

Candidates / (5.0 MeV)

.0 MeV

150

100

50

5300

5400

I Doto

150

Candidates / (5.0 MeV)

- Fit results
 - Full results in the backup slides
 - Focus here on the yields in the signal region of $\pm 20 \,\mathrm{MeV}/c^2$ around the B mass
 - Corresponds to about 2.5-3 times the mass resolution

Decay	Parameter	Run 1	$\operatorname{Run} 2$
	Signal yield	564 ± 26	2534 ± 55
$B^0 \to \overline{D}^0_{K\pi} D^+_s \pi^-$	Total candidates	633	2753
	Purity	89.1%	92.1%
	Signal yields	177 ± 14	734 ± 31
$B^0 \to \overline{D}^0_{K3\pi} D^+_s \pi^-$	Total candidates	199	835
	Purity	88.9%	87.9%
	Signal yield	766 ± 29	2984 ± 57
$B^+ \to D^- D_s^+ \pi^+$	Total candidates	797	3143
	Purity	96.1%	94.9%

28/02/2024

- Now need to perform an amplitude analysis
 - Take just the candidates from the signal regions and fix the yields
 - Include amplitudes for every sub-process that may contribute, starting with known/standard resonances

Resonance	J^P	Mass (GeV)	Width (GeV)	Comments
$\overline{D}^{*}(2007)^{0}$	1-	2.00685 ± 0.00005	$<2.1\times10^{-3}$	Width set to be $0.1 \mathrm{MeV}$
$D^*(2010)^-$	1-	2.01026 ± 0.00005	$(8.34 \pm 0.18) \times 10^{-5}$	
$\overline{D}_{0}^{*}(2300)$	0^+	2.343 ± 0.010	0.229 ± 0.016	#
$\overline{D}_{2}^{*}(2460)$	2^{+}	2.4611 ± 0.0007	0.0473 ± 0.0008	#
$\overline{D}_{1}^{*}(2600)^{0}$	1-	2.627 ± 0.010	0.141 ± 0.023	#
$\overline{D}_{3}^{*}(2750)$	3-	2.7631 ± 0.0032	0.066 ± 0.005	#
$\overline{D}_{1}^{*}(2760)^{0}$	1^{-}	2.781 ± 0.022	0.177 ± 0.040	#
$\overline{D}_J^*(3000)^0$	$?^?$	3.214 ± 0.060	0.186 ± 0.080	$\# J^P = 4^+$ is assumed

28/02/2024

- Projections from the fit with the list of known excited charm mesons
 - Full $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ dataset combining D decays and run periods
 - Good fit to data in the $\overline{D}{}^0\pi^-$ projection (left)
 - Some possible deficiencies in the $D_s^+\pi^-$ projection (centre)

28/02/2024

- Projections from the fit with the list of known excited charm mesons
 - Full $B^+ \rightarrow D^- D_s^+ \pi^+$ dataset combining D decays and run periods
 - Good fit to data in the $D^-\pi^+$ projection (left)
 - Some possible deficiencies in the $D_s^+\pi^+$ projection (centre)

28/02/2024

• Have a look at the fit quality

28/02/2024

- Have a look at the fit quality
 - Quite a bit of strong colour in the area flagged previously

28/02/2024

- Since the problem seems to be in the $D_s^+\pi$ projections
 - Try adding one state per decay mode
 - No relation between them assumed
 - Float mass, width and spin
- Both data sets prefer a spin-0 resonance at $2900 \,\mathrm{MeV}/c^2$

28/02/2024

- Perform a simultaneous fit
 - Assuming isospin symmetry to relate the two states

 $T^a_{c\bar{s}0}(2900)^0: M = (2.892 \pm 0.014 \pm 0.015) \text{ GeV},$ $\Gamma = (0.119 \pm 0.026 \pm 0.013) \text{ GeV},$

Observed with 8σ significance

 $T^a_{c\bar{s}0}(2900)^{++}: M = (2.921 \pm 0.017 \pm 0.020) \text{ GeV},$ $\Gamma = (0.137 \pm 0.032 \pm 0.017) \text{ GeV},$

Observed with 6.5σ significance

28/02/2024

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays
 - Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay
 - Study of $B^0 \rightarrow J/\psi \phi K^0_S$ decays
- Future prospects

Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay

- This decay mode was first observed by **BaBar** and confirmed by **Belle**
 - BaBar saw evidence for a new charm baryon state $\Xi_c(2930)^0$
 - Use LHCb's enormous Run 2 data sample to confirm the state and measure its properties
- Full decay mode to reconstruct $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-, \Lambda_c^+ \to p K^- \pi^+, \overline{\Lambda}_c^- \to \overline{p} K^+ \pi^-$
- In addition to the $\Xi_c(2930)^0$ state one can analyses
 - The $\Lambda_c^+ \overline{\Lambda}_c^-$ combination for exotic contributions (threshold enhancement: BESIII)
 - The $\overline{\Lambda}_c^- K^-$ channel which cannot result from a strong decay of a baryon

Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^- C_{\mathfrak{v}}$

200

100

50

5250

5300

5350

- Firstly need to select the signal candidates and configuration of the suppressed using a BDT

 - Perform a 3D mass fit to the beauty and charm baryon
 - In total the signal yield is determined to be 1365 ± 42

Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay

- Lets zoom into the $\Lambda_c^+ K^$ invariant mass distribution
 - Clear double-peaked structure in the $\Xi_c(2930)^0$ region
 - Total Ξ_c fit model requires four states with interference effects allowed (and important)
 - Spin of the new states assumed to be 1/2

Phys. Rev. D 108 (2023) 012020

Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay

- Resolved the old $\Xi_c(2930)^0$ state into two resonances!
 - Both are overwhelmingly significant even with systematics included

State	Mass~(MeV)	Width (MeV)	Significance
$\Xi_c(2880)^0$	$2881.8 \pm 3.1 \pm 8.5$	$12.4 \pm 5.2 \pm 5.8$	3.8σ
$\Xi_{c}(2923)^{0}$	$2924.5 \pm 0.4 \pm 1.1$	$4.8\pm0.9\pm1.5$	$> 10\sigma$
$\Xi_{c}(2939)^{0}$	$2938.5 \pm 0.9 \pm 2.3$	$11.0 \pm 1.9 \pm 7.5$	$> 10\sigma$

• What about the other mass distributions?

Study of the $B^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay

28/02/2024

Phys. Rev. D 108 (2023) 012020

Aside - non-observations also important!

- Why show a result with no exotic candidates?
- Whilst arguably less exciting, we must publish all null results too!
 - We are trying to understand the structure of exotic particles
 - Final states that they cannot decay to may give us further clues
- Some models can be proven wrong by non observations...

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays
 - Study of the $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay
 - Study of $B^0 \to J/\psi \phi K_S^0$ decays
- Future prospects

Study of $B^0 \rightarrow J/\psi \phi K_S^0$ decays

- Motivated by other LHCb observations in related channels
 - Tetraquark candidates seen in $B^+ \rightarrow J/\psi \phi K^+$
 - These are known as $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^+$
 - Search for possible isospin partners of these states to help understand their natures: hadronic molecules? Compact tetraquarks? Threshold effects?
- Need to reconstruct the following decay chain

•
$$B^0 \to J/\psi \phi K^0_{\rm S}, J/\psi \to \mu^+ \mu^-, \phi \to K^+ K^-, K^0_{\rm S} \to \pi^+ \pi^-$$

• Analysis used the full LHCb Run 1 and Run 2 data sample

Study of $B^0 \rightarrow J/\psi \phi K_S^0$ decays

- By now, another similar data selection
 - Combinatorial background suppressed with a multivariate analyser
- Straightforward mass fit
 - Determine the signal yield
- Define mass window
 - $\pm 15 \,\mathrm{MeV}/c^2$ for amplitude analysis

Phys. Rev. Lett. 131 (2023) 131901

Study of $B^0 \rightarrow J/\psi \phi K_{\rm S}^0$ decays

- By now, another similar data selection
 - Combinatorial background suppressed with a multivariate analyser
- Straightforward mass fit
 - Determine the signal yield
- Define mass window
 - $\pm 15 \,\mathrm{MeV}/c^2$ for amplitude analysis
 - Dalitz plot to show distribution of signal candidates
 - 94% purity in the signal window

28/02/2024

Phys. Rev. Lett. 131 (2023) 131901

$\rightarrow J/\psi\phi K_{\rm S}^0$ decays

- Next step in to periori une analysis
 - Since the signal yield is relatively small and the number of amplitudes potentially rather large, perform a simultaneous fit with $B^+ \rightarrow J/\psi \phi K^+$ decays
 - Isospin symmetry to relate them together and guide the fit to the new channel

J^P	Cont	tribution	Significance $[\times \sigma]$	$M_0 [{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\mathrm{FF}\left[\% ight]$						
	$2^1 P_1$	$K(1^+)$	4.5(4.5)	$1861 \pm 10 {}^{+ 16}_{- 46}$	$149 \pm 41 {}^{+ 231}_{- 23}$							
1^{+}	$2^{3}P_{1}$	$K'(1^+)$	4.5(4.5)	$1911 \pm 37 {}^{+ 124}_{- 48}$	$276\pm50{}^{+319}_{-159}$			X(4500)	20 (20)	$4474\pm3\pm3$	$77\pm6^{+10}_{-8}$	$5.6 \pm 0.7 {}^{+2.4}_{-0.6}$
	$1^{3}P_{1}$	$K_1(1400)$	9.2(11)	1403	174	$15 \pm 3^{+3}_{-11}$	0^+	X(4700)	17(18)	$4694 \pm 4 {}^{+16}_{-3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$
2-	$1^1 D_2$	$K_2(1770)$	7.9(8.0)	1773	186			$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8^{+19}_{-11}$
2	$1^3 D_2$	$K_2(1820)$	5.8(5.8)	1816	276			X(4140)	13 (16)	$4118 \pm 11 ^{+19}_{-36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3^{+19}_{-6}$
1-	$1^3 D_1$	$K^{*}(1680)$	4.7(13)	1717	322	$14 \pm 2^{+35}_{-8}$	1^{+}	X(4274)	18(18)	$4294 \pm 4^{+3}_{-6}$	$53\pm5\pm5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$
T	2^3S_1	$K^{*}(1410)$	7.7(15)	1414	232	$38 \pm 5^{+11}_{-17}$		X(4685)	15 (15)	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15 {}^{+ 37}_{- 41}$	$7.2\pm1.0{}^{+4.0}_{-2.0}$
2^{-}	$2^{3}P_{2}$	$K_2^*(1980)$	1.6(7.4)	$1988 \pm 22 {}^{+ 194}_{- 31}$	$318 \pm 82 {}^{+481}_{-101}$	$2.3\pm0.5\pm0.7$	1+	$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+ 4}_{- 14}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$
0^{-}	2^1S_0	K(1460)	12(13)	1483	336	$10.2 \pm 1.2 {}^{+1.0}_{-3.8}$	1	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4 {}^{+ 10}_{- 7}$
2^{-}		X(4150)	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28 {}^{+ 59}_{- 30}$	$2.0\pm0.5^{+0.8}_{-1.0}$						
1-		X(4630)	5.5(5.7)	$4626 \pm 16^{+18}_{-110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6\pm0.5^{+2.9}_{-1.5}$						
					- 10	104						

Study of $B^0 \rightarrow J/\psi \phi K_S^0$ decays

28/02/2024

Phys. Rev. Lett. 131 (2023) 131901

Study of $B^0 \rightarrow J/\psi \phi K_S^0$ decays

• Results for the new tetraquark candidate

$$M(T_{\psi s1}^{\theta}(4000)^{0}) = 3991^{+12}_{-10} + {}^{9}_{-17} \text{ MeV},$$

$$\Gamma(T_{\psi s1}^{\theta}(4000)^{0}) = 105^{+29}_{-25} + {}^{17}_{-23} \text{ MeV},$$

- Data sample too small to say more about the $T_{\psi s1}(4220)^+$ state as the parameters had to be kept fixed to those in the control channel
- The new candidate has significance of
 - Stand alone 4.0σ
 - With isospin symmetry imposed 5.4σ

Looking forwards - my two cents

- We need to understand the structure of exotic particles
 - With four and five quark states, how are the quarks arranged?
- Discovering them pseudo-randomly is a good start...
 - Perhaps it is time for a more focused, systematic, approach
 - Focus on related states and look for any more possible partners e.g.

$$T_{cs0}(2900)^{0} \qquad T_{c\bar{s}0}^{a}(2900)^{0} \qquad c\bar{s}\bar{u}d$$

$$T_{cs1}(2900)^{0} \qquad T_{c\bar{s}0}^{a}(2900)^{++} \qquad c\bar{s}u\bar{d}$$

$$cs\bar{u}d$$

• Make sure we focus equally on final states they do not decay to

Looking forwards - my two cents

- We need to understand the structure of exotic particles
 - With four and five quark states, how are the quarks arranged?
- Discovering them pseudo-randomly is a good start...

• Make sure we focus equally on final states they do not decay to

Summary

- Exciting time in spectroscopy (again)
 - Huge number of recent observations
 - Challenge to understand them
- Where are the hexaquarks?

Decay	Parameter	Run 1	Run 2
	Signal yield	587 ± 27	2641 ± 57
$B^0 \to \overline{D}^0_{K\pi} D^+_s \pi^-$	B_s^0 signal	25.3 ± 8.3	77 ± 15
	Background yield	421 ± 26	1440 ± 49
	Mean (MeV)	5279.12 ± 0.38	5279.16 ± 0.18
	Width (MeV)	7.89 ± 0.35	7.73 ± 0.17
	Exponential slope	$-(3.08\pm0.52)\times10^{-3}$	$-(2.98\pm0.29) imes10^{-3}$
	Signal yield	185 ± 15	759 ± 32
$B^0 \to \overline{D}^0_{K3\pi} D^+_s \pi^-$	B_s^0 signal	4.9 ± 4.6	38 ± 11
	Background yield	136 ± 14	692 ± 33
	Mean (MeV)	5277.98 ± 0.70	5278.79 ± 0.34
	Width (MeV)	8.01 ± 0.59	7.72 ± 0.33
	Exponential slope	$-(2.56\pm0.90)\times10^{-3}$	$-(3.03\pm0.41)\times10^{-3}$
	Signal yield	798 ± 30	3123 ± 59
$B^+ \rightarrow D^- D_s^+ \pi^+$	Background yield	311 ± 21	1201 ± 40
	Mean (MeV)	5278.88 ± 0.33	5278.74 ± 0.16
	Width (MeV)	8.08 ± 0.30	8.05 ± 0.14
	Exponential slope	$-(0.82\pm0.61)\times10^{-3}$	$-(0.90\pm0.31) imes10^{-3}$