Colour as perceived by us ... The Standard Model and strong force measurements

James Ferrando

Lancaster University

Higgs-Maxwell Workshop Royal Society of Edinburgh 28th February 2024

1/58

James Ferrando (Lancaster University)

SM & QCD

Previously at Higgs-Maxwell ...

Last time I spoke here was about LHC Run 1 Searches and Run 2 prospects

I was optimistic (and front page news at the time was rather different!)

The SM at LHC Runs 1-3

• Remarkable SM agreement for σ across many orders of magnitude

Horribly good performance of the SM continues

James Ferrando (Lancaster University)

SM & QCD

Fundamental SM parameters: m_W , m_t

ATLAS-CONF-2023-004

arXiv:2402.08713

Fundamental SM parameters: m_W, m_t, m_H

Fundamental SM parameters: α_{S}

averages per sub-field	unweighted	weighted	unweighted without subfield
τ decays & low Q^2	0.1173 ± 0.0017	0.1174 ± 0.0009	0.1177 ± 0.0013
$Q\bar{Q}$ bound states	0.1181 ± 0.0037	0.1177 ± 0.0011	0.1175 ± 0.0011
PDF fits	0.1161 ± 0.0022	0.1168 ± 0.0014	0.1179 ± 0.0011
e^+e^- jets & shapes	0.1189 ± 0.0037	0.1187 ± 0.0017	0.1174 ± 0.0011
hadron colliders	0.1168 ± 0.0027	0.1169 ± 0.0014	0.1177 ± 0.0011
electroweak	0.1203 ± 0.0028	0.1203 ± 0.0016	0.1171 ± 0.0011
PDG 2023 (without lattice)	0.1175 ± 0.0010	0.1178 ± 0.0005	n/a

PDG QCD Review: 2023 Update

SM & QCD

This talk - focus on QCD measurements in collider experiments:

- Why make QCD measurements?
- What kinds of properties can we test?
- Some measurements...
- What is still to come?

Why QCD measurements at colliders?

Why make QCD measurements: I

Because it's interesting!

- Proton Structure via Parton Distribution Functions (PDFs)
- Extra hard jets from higher-order perturbative terms
- Details of the parton shower
- Details of fragmentation and hadronisation
- Underlying event and multiple parton interactions
- A very rich set of physics to explore

Why make QCD measurements: II

Because it's useful, Uncertainties on:

- Proton structure
- Parton shower
- Fragmentation and hadronisation

are significant for many searches and precision measurements at the LHC

Example I: W-Mass

ATLAS W-mass reanalysis¹ still has large uncertainties from QCD sources:

Obs.	Mean	Elec.	PDF	Muon	EW	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
	[MeV]	Unc.	Unc.	Unc.	Unc.	A_i Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	sys.	stat.	Unc.
p_{T}^{ℓ}	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3
m_{T}	80382.2	9.2	14.6	9.8	5.9	10.3	6.0	7.0	2.4	1.8	11.7	24.4	6.7	25.3

Study of compatibility of different m_W measurements² needed much work to ensure common QCD framework:

All experiments (4 d.o.f.)										
PDF set	m_W	$\sigma_{ m PDF}$	χ^2	$\mathrm{p}(\chi^2,n)$						
ABMP16	80392.7 ± 7.5	3.2	29	0.0008%						
CT14	80393.0 ± 10.9	7.1	16	0.3%						
CT18	80394.6 ± 11.5	7.7	15	0.5%						
MMHT2014	80398.0 ± 9.2	5.8	17	0.2%						
MSHT20	80395.1 ± 9.3	5.8	16	0.3%						
NNPDF3.1	80403.0 ± 8.7	5.3	23	0.1%						
NNPDF4.0	80403.1 ± 8.9	5.3	28	0.001%						

¹ATLAS-CONF-2023-004 ²LHC-TeV MWWG arXiv:2308.09417

James Ferrando (Lancaster University)

SM & QCD

Example II: Top-Mass

ATLAS Coll., JHEP 06 (2023) 019

Table 1: Impact of main sources of uncertainty on *m*₀. Each row of the table corresponds to a group of individual systematic variations. For each uncertainty source the fit is represent with the corresponding group of misures parameters fixed to their best fit values. The contribution from each source is then evaluated by underscring in quadrance the uncertainty obtained in this fit from hat of the fifth Table table systematic variants of the fitth state of the stat

Source	Unc. on m _t [GeV]	Stat. precision [GeV]
Statistical and datasets		
Data statistics	0.39	
Signal and background model statistics	0.17	
Luminosity	< 0.01	±0.01
Pile-up	0.07	±0.03
Modelling of signal processes		
Monte Carlo event generator	0.04	±0.06
b, c-hadron production fractions	0.11	±0.01
b, c-hadron decay BRs	0.40	±0.01
b -quark fragmentation r_b	0.19	±0.06
Parton shower as FSR	0.07	±0.04
Parton shower and hadronisation model	0.06	±0.07
Initial-state QCD radiation	0.23	±0.08
Colour reconnection	< 0.01	±0.02
Choice of PDFs	0.07	±0.01
Modelling of background processes		
Soft muon fake	0.16	±0.03
Multijet	0.07	±0.02
Single top	0.01	±0.01
W/Z+jets	0.17	±0.01
Detector response		
Leptons	0.12	±0.01
Jet energy scale	0.13	±0.02
Soft muon jet pT calibration	< 0.01	±0.01
Jet energy resolution	0.08	±0.07
b-tagging	0.10	±0.01
Missing transverse momentum	0.15	±0.01
Total stat. and syst. uncertainties (excluding recoil)	0.77	±0.03
Recoil uncertainty	0.25	
Total uncertainty	0.81	

CMS Coll, Eur. Phys. J. C 83 (2023) 963

12 / 58

What to measure

PDFs

- Differential cross sections in energy scale, and overall kinematics of the system
- α_S , e.g. in N/N + 1 jet cross section ratios
- Parton shower/higher orders in
 - High jet multiplicity events
 - P_T of vector bosons and/or $t\bar{t}$
 - (Sub)Structure of hadronic jets
- Soft-QCD in the underlying event
- Heavy quark fragmentation
- Hadronisation using details of final state

Measurements

PDFs

Parametrise proton structure as Parton Distribution Functions (PDFs):

- Give probability of finding a parton of some type with fraction x of the proton's momentum when probing at a scale Q²
- Can be measured: especially *ep* collisions (Deep Inelastic Scattering)
- QCD can predict how a PDF at a given x changes with Q² via DGLAP equations
- We expect the PDFs to be Universal:
 - Proton PDFs from *ep* data applicable in *pp* data
 - Extractions from Heavy Ion/Nuclear data need additional corrections

Two recent ATLAS experimental papers studied the effect of including LHC data in the PDF fits together with HERA *ep* data:

- Inclusive W/Z and V+jets JHEP 07 (2021) 223
- 'Global' fit Eur.Phys.J.C 82 (2022) 5, 438

Retain some of the advantages of HERA PDF2.0 (extraction purely from HERA data):

- ATLAS datasets also have well understood correlations between their systematic uncertainties
- Avoid nuclear corrections

LHC Data in the ATLAS 'Global' fit

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]	Decay channel	Observables entering the fit
Inclusive $W, Z/\gamma^*$	7	4.6	e, μ combined	$\eta_{\ell}(W), y_Z(Z)$
Inclusive Z/γ^*	8	20.2	e, μ combined	$\cos \theta^*$ in bins of $y_{\ell\ell}, m_{\ell\ell}$
Inclusive W	8	20.2	μ	η_{μ}
W^{\pm} + jets	8	20.2	е	p_{T}^{W}
Z + jets	8	20.2	е	$p_{\rm T}^{\rm jet}$ in bins of $ y^{\rm jet} $
tī	8	20.2	lepton + jets, dilepton	$m_{t\bar{t}}, p_{\mathrm{T}}^{t}, y_{t\bar{t}}$
tī	13	36	lepton + jets	$m_{t\bar{t}}, p_{T}^{t}, y_{t}, y_{t\bar{t}}^{b}$
Inclusive isolated γ	8,13	20.2, 3.2	-	$E_{\rm T}^{\gamma}$ in bins of η^{γ}
Inclusive jets	7, 8, 13	4.5, 20.2, 3.2	-	$p_{\rm T}^{\rm jet}$ in bins of $ y^{\rm jet} $

Correlated systematic uncertainties between the datasets are treated as nuisance parameters that generate shifts to the datasets

Example of shifts

Example from the V+jets paper

Drell-Yan process I

- Simplest hard scattering process to calculate at the LHC
- Cross section an integral over: $q(x_1, Q)q(x_2, Q)\mathcal{M}(x, Q^2) \times \text{LIPS}$. LIPS=Lorentz Invariant Phase Space
- Here q(x, Q) are PDFs, if the boson is on shell then $Q^2 = M_V^2$
- At rest $(y = 0) x_1 = x_2 = M_V / \sqrt{s}$
- if $x_1 > x_2$ then |y| > 0, sample higher and lower x at same Q^2
- Going very forward simultaneously samples higher and lower x

Drell-Yan process II

Flavour sensitivity:

- Z boson sum pairs of all flavours $u\bar{u}, d\bar{d}, \dots$
- W^+ sums pairings of +ve charged (anti)quarks $(u\bar{d}), (u\bar{s}), ...$
- W^- sums pairings of -ve charged (anti)quarks $(d\bar{u}), (d\bar{c}),...$

$W/Z\ Production$, @ LHC

$W/Z\ Production$ at the LHC

- Exploring a new range of parton kinematics
- Run I data: not only lower x than TeVatron, also lower x than HERA at central rapidity
- LHCb further extends measurement in *x*
- Inclusive W/Z essentially probes a horizontal band in x, Q² space
- 13 TeV data probes lower x for the same Q² as 7 TeV

Effect of including DY and $W/Z\ data$

Including the inclusive W/Z data:

• reduced uncertainty on the down-valence distribution

Effect of including DY and $W/Z\ data$

Including the inclusive W/Z data:

- reduced uncertainty on the down-valence distribution
- slightly reduced uncertainty on the gluon distribution

Effect of including DY and $W/Z\ data$

Including the inclusive W/Z data:

- reduced uncertainty on the down-valence distribution
- slightly reduced uncertainty on the gluon distribution
- much stronger constraint on the ratio of the s quark to the u and d
 quarks
- The value of this ratio had to be assumed for PDFs relying entirely on HERA data

V+jets data

• more sensitivity to gluon

Effect of V+jets data

- changes the shape of quark distributions at higher-x
 - reduces d_v, \bar{s} increases \bar{d}
- reduces the gluon at lower-x

Effect of V+jets data

• Causes s to be suppressed relative to \bar{d} and \bar{u} at higher x - something preferred by CCFR/NuTev data from vN scattering

James Ferrando (Lancaster University)

SM & QCD

Effect of *V*+jets data

• Favours a positive $\bar{d} - \bar{u}$ - something preferred data from pNDrell-Yan data such as E907 Nature 590 (2021) 7847, 561-565.

Effect of including $t\bar{t}$ data

- The main effect is to reduce the mid-to-high-x gluon distribution
- Uncertainties at high-x are also reduced

Including Photons

 Minimal effect from including the photon data

Including Jets

• Strong decrease in high-x gluon uncertainty

Looking at the strange quark with charm: $W{+}c\ production$

- *W*+ charm production includes production with strange quarks in the intial state
- The CMS collaboration measured this by identifying jets containing charm mesons in W production
- Studying the effect of including this data in PDF fits the CMS collaboration demonstrated that this data helps reduce the uncertainty on the strange quark distribution

Eur. Phys. J. C 82 (2022) 1094

SM & QCD

Bigger on the inside? Intrinsic charm in the proton

- Possibility of *Intrinsic* charm (IC), a |*uudc̄c*⟩ component of the *p* wavefunction long debated
- separate from g → cc̄, should be shaped more like the valence quark distributions

Phys.Rev.Lett. 128 (2022) 8, 082001

Bigger on the inside? Intrinsic charm in the proton

- Possibility of *Intrinsic* charm (IC), a |*uudcc̄* component of the *p* wavefunction long debated
- separate from $g \rightarrow c\bar{c}$, should be shaped more like the valence quark distributions
- LHCb, with it's extremely forward coverage well-suited to explore this in *Z* + *c* events
- measured the rate of Z + c/Z+jets and found that IC favoured by the data

Phys.Rev.Lett. 128 (2022) 8, 082001

Measuring α_{S} - H1+ZEUS:

H1+ZEUS collaborations also recently explored the addition of new data to their PDF fits:

- Fits to inclusive DIS gave sensitivity to $\alpha_{\rm S}$ via scaling violations
- $\bullet\,$ This strongly correlates the gluon with α_{S}
- Addition of jet cross sections adds an extra constraint on $\alpha_{\rm S}$

Data set		taken	Q2[GeV	/ ²] range	L	e ⁺ /e ⁻	\sqrt{s}	Norma-	All	Used	Ref.
		from to	from	to	pb ⁻¹		GeV	lised	points	points	
H1 HERA I normalised	l jets	1999 - 2000	150	15000	65.4	e ⁺ p	319	yes	24	24	[9]
H1 HERA I jets at low	Q^2	1999 - 2000	5	100	43.5	e^+p	319	no	28	20	[10]
H1 normalised inclusiv	e jets at high Q^2	2003 - 2007	150	15000	351	$e^+ p/e^- p$	319	yes	30	30	[13,14]
H1 normalised dijets a	high Q^2	2003 - 2007	150	15000	351	$e^+ p/e^- p$	319	yes	24	24	[13]
H1 normalised inclusiv	e jets at low Q^2	2005 - 2007	5.5	80	290	$e^+ p/e^- p$	319	yes	48	37	[14]
H1 normalised dijets a	low Q^2	2005 - 2007	5.5	80	290	$e^+ p/e^- p$	319	yes	48	37	[14]
ZEUS inclusive jets		1996 - 1997	125	10000	38.6	e ⁺ p	301	no	30	30	[11]
ZEUS dijets	1998 -2000 &	2004 - 2007	125	20000	374	$e^+ p/e^- p$	318	no	22	16	[12]

e(k)

P(p)

Table 1: The jet-production data sets from H1 and ZEUS used for the HERAPDF2.0Jets NNLO fits. The term normalised indicates that these cross sections are normalised to the respective neutral current inclusive cross sections.

SM & QCD

32 / 58

ξp

e(k')

Measuring α_{S} - H1+ZEUS:

H1 and ZEUS

Clear change in slope and reduction in uncertainty of high-x gluon

33 / 58

Measuring α_{S} - H1+ZEUS:

Measuring α_{S} - ATLAS I

ATLAS published a new double-differential measurement of $Z P_T$ and rapidity in full lepton phase space^a, using 8 TeV data

- The p_T distribution is highly sensitive to $\alpha_{\rm S}$
- Theory predictions available at N³LO with N⁴LL low-p_T resummation
- Allows a very high precision extraction^b of $\alpha_{\rm S}$
- Methodology was demonstrated using TeVatron data in S. Camarda et al. Eur. Phys. J.C 84 (2024) 1, 39

^aarXiv:2309.09318

^barXiv:2309.12986

Measuring $\alpha_{\rm S}$ - ATLAS II

DYTurbo (used for this extraction), is able to describe the p_T spectrum well

James Ferrando (Lancaster University)

SM & QCD

Measuring α_{S} - ATLAS III

The most precise single experimental determination of α_{S}

Jets

Alice, ATLAS, CMS have made many recent jet measurements, here I highlight:

- CMS α_S from jet substructure arXiv:2402.13864
- ATLAS Jet substructure in boosted top quark events arXiv:2312.03797
- CMS Lund plane:arXiv:2312.16343
- ATLAS Lund subjet multiplicities arXiv:2402.13052

$\alpha_{\rm S}$ from jet substructure

Ratio of 2-particle to 3-particle Energy correlators inside jets is sensitive to

CMS have exploited this to extract : $\alpha_{\rm S}(m_Z) = 0.1229^{+0.0014}_{-0.0012} \text{ (stat)} ^{+0.0030}_{-0.0033} \text{ (theo)} ^{+0.0023}_{-0.0036} \text{ (exp)}$ using the slope in the ratio as a function of the η, ϕ distance (x_L) between the pairs being considered.

Boosted Top-quark Jets I

- high-p_T top-quarks can produce jets containing all the decay produces of the top
- such top jets are an interesting testing ground to study variables designed to distinguish jets with hard substructure from others
- ATLAS have studied this in $t\bar{t}$ events

Boosted Top-quark Jets II

Variables designd to distinguish 2-prong like jets from 1 prong are generally well described

Boosted Top-quark Jets II

Variables designd to distinguish 3-prong like jets from 2 prong fare worse

42 / 58

The Lund Jet Plane

The Lund Jet Plane II

 Monte Carlo can do a reasonable job of describung the plane (Sherpa seems best)

The Lund Jet Plane II

- Monte Carlo can do a reasonable job of describung the plane (Sherpa seems best)
- Analytical calculations also doing a good job

Lund Subjet multiplicities

- Lund Subjet multipicities offer even more information about events
- Here each emission is followed further, so long as it is above a certain p_T threshold
- total multiplicity above a given scale gives us more information about the shower (also sensitive to α_S)

Lund Subjet multiplicities

Again MCs and analytical calculations doing well (though analytical calculation undershoots at higher p_T)

Heavy Flavour Fragmentation

- Heavy flavour fragmentation is very important for measurements such as the top-quark mass
- Also important for flavour-tagging
 - Fraction of jet momentum carried by shifted vertex in *b*-jet is usually one of the best discriminating variables
- Relatively little data to constrain it

ATLAS studied *b* fragmentation in $t\bar{t}$ Phys. Rev. D 106 (2022) 032008 $Z_{L,b}^{ch}$ fraction of charged momentum parallel to the b-jet carried by *b*-proxy (shifted vertex) James Ferrando (Lancaster University) SM & QCD October 6 2022 47/58

Heavy Flavour Fragmentation

Clear that some MC tunes don't describe it well, but most doing a reasonable job

What Comes Next?

LHC Run 3 the story so far...

- LHC delivered around 70 fb⁻¹ per experiment in 2022-2023
- Experiments are already starting to publish results with this data

First Run 3 Measurements

Atlas and CMS have already produced first Run 3 measurements of Z and $t\bar{t}$

CMS-PAS-SMP-22-017

LHC Top WG summary

What's Next

First Run 3 Measurements

- ATLAS also measured the $t\bar{t}/Z$ ratio (generally sensitive to PDFs)
- Value of the ratio is on the low side but still consistent with expectations from most PDFs
 Phys. Lett. B 848 (2024) 138376

What's Next

I HC Run 3 and Run 4

- In 2024-2025, the LHC is expected to deliver proton-proton collisions with an integrated luminosity of 190 fb-1.
- This represents an increase of around a factor of four in the Run 3 dataset
- Improvements from new experimental techniques continue to outpace mere statistical improvements
- Many theoretical developments helping us to understand QCD better
- Expect more jet measurements, with increasing precision amd more substructure measurements, including Lund plane

Summary

Summary

• It's a great time to be doing QCD measurements at the LHC:

- huge datasets
- Generators and calculations that are doing well at describing QCD prospects
- LHC proving itself to be a machine for precision physics as well as discovery
- These measurements support other EW/Higgs/Top measurement and searches
- Many nice publications that I didn't have time to review here including:
 - LHCb measurements of A_i
 - Alice HF fragmentation and Lund jet plane work
 - CMS $\alpha_{\rm S}$ from azimuthal correlations

Back-up

ATLAS α_{S}

ATLASPDF Comparison to Sea quest data

58 / 58