February 28, 2024

QCD@50:
 Key ideas and issues going forward

Keith Ellis IPPP, Durham

With an attempt to provide links to references

QCD and Asymptotic Freedom
 Current Algebra: Quarks and What Else?

harald fritzsch ${ }^{*}$
and
mURRAY GELL-MANN** ${ }^{*}$
CERN, Geneva, Switzerland

Talk presented at the XVI International Conference on High Energy Physics

$$
\text { Volume 47B, number } 4
$$

Chicago, September, 1972
PHYSICS LETTERS
26 November 1973
ADVANTAGES OF THE COLOR OCTET GLUON PICTURE
H. FRITZSCH*, M. GELL-MANN and H. LEUTWYLER**

California Institute of Technology, Pasadena, Calif 91109, USA

$$
\text { Received } 1 \text { October } 1973
$$

It is pointed out that there are Received 1 October 1973
Yang-Mills gauge model based on colored advantages in abstracting prope
ET JOURNAL OF NUCLEAR PHYSICS
VOLUME 10, NUMBER 2
FEBRUARY, 1970
IEN'S FUNCTIONS IN THEORIES WITH A NON-ABELIAN GAUGE GROUP
KHRIPLOVICH
Institute for Nuclear Physics, Siberian Section USSR Academy of Sciences to be true.
Submitted December 21, 1968
Yad. Fiz. 10, 409-424 (August, 1969)

 Therefore, when the diagram tech of interest ortank, he because diated discussion ounterpart in
 quantum of an N-produr+ eply wald be very advice , pecomes inadmissible in scalar electrnanik's result would sensible methods of equcture of the Green's functions of symu ir if resured this my my THE BIRTH OF ASYMPTOTIC FREEDOM ir If truen I ignore abotaty mention my of : itsite downal did he concase requi Gerard't HOOFT thar. write
dom conventilk's ine radiation gauge incr Institut voor Theoretische Fysica, Rijksuniversiteit, Utrecht, The Netherlands*
G 't Hooft, unpublished Proc Colloquium on Renormalization of Yang-Mills Fields and applications to Particle Physics, 19 Jun 1972, Marseilles, France

12 Maggio 1973

A Field Theory with Computable Large-Momenta Behaviour.

K. Symanzik

Deutsches Elektronen-Synchrotr
(ricevato il 12 Dicembre 1972)

Reliable Perturbative Results for Strong Interactions?*
H. David Politzer
Jefferson Physical Laboratories, Harvard University, Cambridge, Massachusetts 02138 Harvard University,

An explicit calculation shows perturbation theory to be arbitrarily good for the deep Euclidean Green's functions of any Yang-Mills theory and of many Yang-Mills theories with fermions. Under the hypothesis that spontaneous symmetry breakdown is of dynamial origin, these symmetric Green's functions are the asymptotic forms of the physically significant spontaneously broken solution, whose coupling could be strong.

References

Aug-1968: Khriplovich Yad Fiz 10 (1968) 409-424
12-Dec-1972: Symanzik
7-Feb-1972: Parisi
19-Jun-1972: 't Hooft, Marseille Conference
6-13 Sep-1972: Fritzsch \& Gell-Mann, ICHEP 16 (Batavia)
27-Apr-1973: Gross-Wilczek
3-May-1973: Politzer,
1-Oct-1973: Fritzsch, Gell-Mann and Leutwyler

Now the interesting question has been raised lately whether we should regard the gluons as well as the quarks as being non-singlets with respect to color. For example, they could form a color octet of neutral vector fields 5. J. Wess (Private communication to B. Zumino).

Birth of QCD

Watergate Break-in 17th June 1972

9th August, 1974

Nixon Resigns

May 11, 1974: Fermilab Dedication

Beta function

* Running of the QCD coupling α_{s} is determined by the β function, which has the expansion $\beta\left(\alpha_{s}\right)=-b \alpha_{s}^{2}\left(1+b^{\prime} \alpha_{s}\right)+O\left(\alpha_{s}^{4}\right)$
$b={\frac{\left(33-2 n_{f}\right)}{12 \pi}}_{\text {(April/May 1973) }}$
- The first two coefficients b, b^{\prime} are invariant under scheme change.

1loop: Politzer, Gross-Wilczek 2loop: Caswell, Jones 3loop: Tarasov et al, Larin et al 4loop: Ritbergen et al Czakon 5loop: Baikov et al, Herzog et al

Acceptance of QCD

* Asymptotic freedom gave one the ability to immediately calculate a limited number of quantities in strong interactions, based on operator product expansion.
* Approximate scaling in Deep-Inelastic scattering, Gross-Wilczek, Georgi-Politzer
* $e^{+} e^{-}$total cross section, Appelquist-Georgi, Zee
- $\Delta I=\frac{1}{2}$ rule, $\underline{\text { Gaillard-Lee, }} \underline{\text { Altarelli-Maiani }}$
* However acceptance of the new theory was not immediate.

PHYSIGAL REVIEW D
VOLUME15, NUMBER 9

1. MAY 1977

Quark elastic scattering as a source of high-transverse-momentum mesons*
R. D. Field and R. P. Feynman

California Institute of Technology, Pasadena, California 91125
(Received 20 October 1976)
We disregard the theoretical argument that this elastic cross section [which we write as $d \hat{\sigma} /$ $d \hat{t}(\hat{s}, \hat{t})$, where \hat{s} and \hat{t} are the s, t invariants for the quark collision] must vary as $\hat{s}^{-2} f(\hat{t} / \hat{s})$ and, instead, leave it as an unknown function to be determined empirically by the data. It will vary more like $\hat{s}^{-N} f(\hat{t} / \hat{s})$ with N about 4.

LEPTOPRODUCTION AND DRELLYAN PROCESSES BEYOND THE LEADING APPROXIMATION IN CHROMODYNAMICS *

G. ALTARELLI

Istituto di Fisica dell' Università, Istituto Nazionale di Fisica Nucleare, Sezione di Roma Rome 00185, Italy
R.K. ELLIS

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
G. MARTINELLI

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati 00044, Italy

Received 3 July 1978

1. Introduction

The gauge theory of colored quarks and gluons (QCD) ${ }^{\star \star}$ is at present the best candidate for a fundamental theory of the strong interactions. The asymptotic free-

Plotting α_{s}

> Heavy quark potential from lattice gauge theory, fitted to linear +coulomb potential

Extension beyond processes governed by operator product expansion

Infrared safety

* In the 1977 paper of Sterman and Weinberg a final state is classified as two-jet like if all but a fraction ϵ of the energy is contained in a pair of cones of half-angle δ.
- $f_{2}=1-8 C_{F} \frac{\alpha_{s}}{2 \pi}\left\{\ln \frac{1}{\delta}\left[\ln \left(\frac{1}{2 \epsilon}-1\right)-\frac{3}{4}+3 \epsilon\right]+\frac{\pi^{2}}{12}-\frac{7}{16}-\epsilon+\frac{3}{2} \epsilon^{2}+O\left(\delta^{2} \ln \epsilon\right)\right\}$
* The jet measure proposed by Sterman and Weinberg was not important for itself, but because it established the zero-mass limit as a diagnostic for perturbative calculability.
* An observable is infrared and collinear safe if, in the limit of a collinear splitting, or the emission of an infinitely soft particle, the observable remains unchanged.

IR safety

September 12, 1977

Dr. Steven Weinberg
Harvard University
Cambridge, Mass. 02138

Dear Dr. Weinberg:
The manuscript by G. Sterman and S. Weinberg entitled "Jets from Quantum Chromodynamics"

George Sterman
50 years of Quantum Chromodynamics
has been reviewed by our referee(s). While some of the referees' comments were favorable, there were also scientific criticisms which were so strongly adverse that we cannot accept your paper on the basis of material now at hand. We are therefore returning your manuscript herewith, together with a copy of the pertinent criticism.

If you wish to reply, the paper will be given further consideration.

* PRL reconsidered after the acceptance of papers exploiting infrared safety by Farhi (thrust) and by Georgi \& Machacek (spherocity), both listed as received on Sept. 26, 1977.

Jet structure: IR safe sequential recombination algorithms

Calculate the distances between particles:
$d_{i j}=\min \left(k_{T i}^{2 p}, k_{T j}^{2 p}\right) \frac{\Delta y^{2}+\Delta \phi^{2}}{R^{2}}$
Calculate the beam distances: $d_{i B}=k_{T i}^{2 p}$;
Combine particles with smallest distance or, if $d_{i B}$ is smallest, call it a jet;

* Find again smallest distance and repeat procedure until no pseudo-particles are left.

Sequential recombination algorithms

* $d_{i j}=\min \left(k_{T i}^{2 p}, k_{T j}^{2 p}\right) \frac{\Delta y^{2}+\Delta \phi^{2}}{R^{2}}$
* $\mathrm{p}=1$ (inclusive k_{T} algorithm)
* Soft particle ($k_{T} \rightarrow 0$) means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets Collinear particle $\left(\Delta y^{2}+\Delta \phi^{2} \rightarrow 0\right)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets
* $\mathrm{p}=0$
* Soft particle $\left(k_{T} \rightarrow 0\right)$ can be new jet of zero momentum \Rightarrow no effect on hard jets Collinear particle $\left(\Delta y^{2}+\Delta \phi^{2} \rightarrow 0\right)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets
* $\mathrm{p}<0$ (anti- k_{T} algorithm)
* Soft particle ($k_{T} \rightarrow 0$) means $\mathrm{d} \rightarrow \infty \Rightarrow$ clustered last or new zero-jet, no effect on hard jets Collinear particle $\left(\Delta y^{2}+\Delta \phi^{2} \rightarrow 0\right)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

k_{T} and Anti-kT

* k_{T} algorithm: motivated by QCD branching structure

* Anti- k_{T} : hard particles cluster first; if no other hard particles are close by, the algorithm will give perfect cones
* Some what ironic that anti- k_{T} algorithm leads to conical jets.

Salam, Towards Jetography

Factorization

Asymptotic freedom expands it scope

* The publication of the DGLAP equation Altarelli-Parisi $1977, \quad$ Dokshiter (Sov. Phys. IETP, 46,641) with its physical picture of parton evolution, raised the issue of whether the Drell-Yan model could be extended to QCD.
* Politzer (1977) deserves credit for outlining the factorization idea.
* Unlike in the parton model, the transverse momentum is
 now unbounded.
* Transverse momentum in Drell-Yan processes (APP) and AEM (1979) followed Politzer's lead regulating collinear / soft singularities by continuing off-shell, (which turned out to be a tricky procedure).

Collinear factorization

$$
\sigma\left(P_{1}, P_{2}\right)=\sum_{i, j} \int d x_{1} \int d x_{2} f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i j}\left(p_{1}, p_{2}, \alpha_{s}\left(\mu^{2}\right), Q^{2} / \mu^{2}\right)+O\left(1 / Q^{2}\right)
$$

* QCD factorization should hold for inclusive quantities collins.sopersterman
- DIS: $e+A \rightarrow e^{\prime}+X$
- Semi-inclusive $\mathrm{e}^{\wedge}+\mathrm{e}^{\wedge}$ - annihilation: $e^{+}+e^{-} \rightarrow A+X$
- Drell-Yan processes: $A+B \rightarrow\left(\mu^{+}+\mu^{-}, W, Z\right)+X$
- Inclusive jet production: $A+B \rightarrow$ jet $+X$
- Heavy quark production: $A+B \rightarrow$ heavy quark $\left(\mathrm{m}_{\mathrm{Q}} \gg \Lambda\right)+X$

Non-global effects

* Real physical measurements are not inclusive, because of limited detector acceptance and vetoes imposed to identify jet signatures.
* In proton-proton collisions Glauber (Coulomb) phases can spoil the cancellation of collinear singularities in soft observables giving rise to super-leading logarithms, $L=\ln \left(Q / Q_{0}\right)$ where Q_{0} is jetveto scale; Forshaw, Kyrieleis, Seymour
- Thus for gap-between-jets cross-sections we get super-leading logs $\sigma^{\mathrm{SLL}} \sim \frac{\alpha_{s} L}{\pi N_{c}}\left(\frac{N_{c} \alpha_{s}}{\pi} \pi^{2}\right) \sum_{n=0}^{\infty} c_{1, n}\left(\frac{N_{c} \alpha_{s}}{\pi} L^{2}\right)^{n+1} \equiv \frac{\alpha_{s} L}{\pi N_{c}} w_{\pi} \sum_{n=0}^{\infty} c_{1, n} w^{n+1}$,

$$
w=\frac{N_{c} \alpha_{s}}{\pi} L^{2}, w_{\pi}=\frac{N_{c} \alpha_{s}}{\pi} \pi^{2}
$$

* Summing the effects of Glauber gluons (alternating series) we have, $\quad \sigma^{\mathrm{SLL}+\mathrm{G}} \sim \frac{\alpha_{s} L}{\pi N_{c}} \sum_{\ell=1}^{\infty} \sum_{n=0}^{\infty} c_{\ell, n} w_{\pi}^{\ell} w^{n+\ell}$,

Amplitudes

Spinor techniques

$\underset{\text { representation }}{\text { Weyl }} \gamma^{\mu}=\left(\begin{array}{cc}\mathbf{0} & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & \mathbf{0}\end{array}\right),(\mu=0,3) \quad \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}\mathbf{- 1} & \mathbf{0} \\ \mathbf{0} & +\mathbf{1}\end{array}\right)$

$$
\begin{gathered}
\sigma^{\mu}=\left(\mathbf{1}, \sigma^{i}\right), \bar{\sigma}^{\mu}=\left(\mathbf{1},-\sigma^{i}\right) \\
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

- Weyl spinors
- Explicitly we find in terms of the components of $p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)$,

$$
p_{\mu} \gamma^{\mu}=\left(\begin{array}{cc}
\mathbf{0} & p^{\dot{\alpha} \beta} \\
p_{\alpha \dot{\beta}} & \mathbf{0}
\end{array}\right)
$$

$$
p^{\dot{\alpha} \beta}=\left(\begin{array}{cc}
p^{-} & -\bar{p}_{\perp} \\
-p_{\perp} & p^{+}
\end{array}\right), p_{\alpha \dot{\beta}}=\left(\begin{array}{cc}
p^{+} & \bar{p}_{\perp} \\
p_{\perp} & p^{-}
\end{array}\right), \text {where } p^{ \pm}=p^{0} \pm p^{3}, p_{\perp}=p^{1}+i p^{2}, \bar{p}_{\perp}=p^{1}-i p^{2}
$$

Lance Dixon, Calculating Scattering Amplitudes Efficiently, Elvang and Huang, Scattering amplitudes

Spinor products

* Take all particles to be outgoing.
* So we need outgoing particles $\bar{u}_{ \pm}(p)$ and

$$
\begin{array}{ll}
\bar{u}_{ \pm}(p) p_{\mu} \gamma^{\mu}=0, & \bar{u}_{-}(p)=\left(\mathbf{0},\left\langle\left. p\right|^{\beta}\right)\right. \\
& \bar{u}_{+}(p)=\left(\left[\left.p\right|_{\dot{\beta}}, \mathbf{0}\right)\right.
\end{array}
$$ outgoing antiparticles $v_{ \pm}(p)$

$$
p_{\mu} \gamma^{\mu} v_{ \pm}(p)=0 \quad v_{-}(p)=\binom{\mathbf{0}}{|p\rangle_{\alpha}}, \quad v_{+}(p)=\binom{\mid p]^{\dot{\alpha}}}{\mathbf{0}}
$$

* Spinor products,

$$
\bar{u}_{+}\left(p_{i}\right) v_{+}\left(p_{j}\right)=\left[\left.i\right|_{\dot{\beta}} \mid j\right]^{\dot{\beta}}=[i j], \quad \bar{u}_{-}\left(p_{i}\right) v_{-}\left(p_{j}\right)=\left\langle\left. i\right|^{\alpha} \mid j\right\rangle_{\alpha}=\langle i j\rangle,
$$

* Gluon polarizations require an auxiliary light-like vector b

$$
\varepsilon_{+}^{\mu}(k, b)=\frac{\left[k\left|\gamma^{\mu}\right| b\right\rangle}{\sqrt{2}\langle b k\rangle}, \quad \varepsilon_{-}^{\mu}(k, b)=\frac{\left.\langle k| \gamma^{\mu} \mid b\right]}{\sqrt{2}[k b]}
$$

Dotted (undotted) indices come together with an south-west, north-east, (north-west, south-east) summation convention, which is neatly handled by the angle and square bracket notation.

Maximal Helicity Violating amplitudes

* $(m-1)$! colour sub-amplitudes defined in terms of traces of fundamental $\mathrm{SU}(3)$ matrices

$$
\mathscr{A}_{m}^{\text {tree }}(1,2,3, \ldots m)=g^{m-2} \sum_{\mathscr{P}(2,3, \ldots m)} \operatorname{Tr}\left[t^{A_{1}} t^{A_{2}} t^{A_{3} \ldots} t_{m}\right] A_{m}^{\text {tree }}(1,2,3, \ldots m)
$$

- $A_{m}^{\text {tree }}\left(1^{+}, 2^{+}, 3^{+}, \ldots m^{+}\right)$and
$A_{m}^{\text {tree }}\left(1^{-}, 2^{+}, 3^{+}, \ldots m^{+}\right)=0$
$\left(\varepsilon_{i} \cdot \varepsilon_{j}=0\right.$ for all $\left.i, j\right)$
* Maximal helicity violating amplitude has a simple form for all m

$$
A_{m}^{\text {tree }}\left(1^{-}, 2^{-}, 3^{+}, \ldots m^{+}\right)=i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle m 1\rangle} \quad \begin{aligned}
& \text { Parke-Taylor } \\
& \text { Berends-Giele }
\end{aligned}
$$

* Simple expression for $m=3$ (in complex kinematics) and $m=4$

$$
A_{3}^{\text {tree }}\left(1^{-}, 2^{-}, 3^{+}\right)=i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} A_{3}^{\text {tree }}\left(1^{+}, 2^{+}, 3^{-}\right)=i \frac{[12]^{4}}{[12][23][31]}
$$

* The "Little group" is the group of transformations that leave the momentum of an on-shell particle invariant, i.e for a massless

$$
A_{4}^{\text {tree }}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}
$$ particle rotation in xy plane $=S O(2)=\mathrm{U}(1)$ $\left.|p\rangle \rightarrow t|p\rangle, \mid p]=t^{-1} \mid p\right]$

Angle and square spinors for Weyl spinor scale as $t^{-2 h}$ for $h= \pm \frac{1}{2}$

Tree-level gluon amplitudes

* Colour decomposition

$$
\mathscr{A}_{m}^{\text {tree }}(1,2,3, \ldots m)=g^{m-2} \sum_{\mathscr{P}(2,3, \ldots m)} \operatorname{Tr}\left[t^{A_{1}} t^{A_{2}} t^{\left.A_{3} \ldots t^{A_{m}}\right] A_{m}^{\text {tree }}(1,2,3, \ldots m)} \underset{(m-1)!}{ }\right.
$$

* However these amplitudes are not all independent, Kleiss-Kuijf DDM

$$
\mathscr{A}_{m}^{\mathrm{tree}}=g^{m-2} \sum_{\sigma \in S_{m-2}}\left(F^{A_{\sigma_{2}}} \ldots F^{A_{\sigma_{3}}}\right)_{1 m} A_{m}^{\mathrm{tree}}\left(1, \sigma_{2}, \ldots \sigma_{m-1}, m\right)
$$

* Further reduction in independent amplitudes, because of $B C I$ relations. c_{j} are colour factors subject to Jacobi

$$
\begin{equation*}
\mathscr{A}_{m}^{\text {tree }}=g^{m-2} \sum_{j} \frac{c_{j} n_{j}}{\prod_{i_{j}} d_{i_{j}}} \tag{m-3}
\end{equation*}
$$ identity, n_{j} kinematic factors, satisfying the same algebra as color factors, $d_{i j}$ ordinary Feynman propagators.

Sum over j runs over distinct m-point graphs with only three point vertices

Explicit forms for MHV 4-gluon amplitude

$$
\begin{aligned}
A_{s t}=A_{4}^{\mathrm{tree}}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right) & =\frac{n_{s}}{s}-\frac{n_{t}}{t} \\
& =-i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}=i \frac{\langle 12\rangle^{2}[34]^{2}}{s t} \\
A_{t u}=A_{4}^{\mathrm{tree}}\left(1^{-}, 3^{+}, 2^{-}, 4^{+}\right) & =\frac{n_{t}}{t}-\frac{n_{u}}{u} \\
& =-i \frac{\langle 12\rangle^{4}}{\langle 13\rangle\langle 32\rangle\langle 24\rangle\langle 41\rangle}=i \frac{\langle 12\rangle^{2}[34]^{2}}{t u} \\
A_{u s}=A_{4}^{\mathrm{tree}}\left(1^{-}, 2^{-}, 4^{+}, 3^{+}\right) & =\frac{n_{u}}{u}-\frac{n_{s}}{s} \\
& =-i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 24\rangle\langle 43\rangle\langle 31\rangle}=i \frac{\langle 12\rangle^{2}[34]^{2}}{s u}
\end{aligned}
$$

Additional simplifications: BCJ for 4 point diagrams

gluon-gluon

 scattering

$$
c_{S}=f^{A_{1} A_{2} B} f^{B A_{3} A_{4}} \quad c_{t}=f^{A_{1} A_{4} B} f^{B A_{2} A_{3}} \quad c_{u}=f^{A_{1} A_{3} B} f^{B A_{4} A_{2}}
$$

Jacobi Identity: $c_{s}+c_{t}+c_{u}=0$
Full amplitude can be written in a form where kinematic part obeys the same algebra as the color part

$$
\mathscr{A}_{4}=g^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right)
$$

$$
\begin{gathered}
c_{s}+c_{t}+c_{u}=0 \Longrightarrow n_{s}+n_{t}+n_{u}=0 \\
\mathscr{A}_{4}=g^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right)=g^{2}\left[c_{s} A_{s t}-c_{u} A_{t u}\right]
\end{gathered}
$$

MHV - Graviton Scattering

* Double copy result $\mathscr{M}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=\left(\frac{\kappa}{2}\right)^{2}\left[\frac{n_{s}^{2}}{s}+\frac{n_{t}^{2}}{t}+\frac{n_{u}^{2}}{u}\right]$

$$
=-\left(\frac{\kappa}{2}\right)^{2}\left[s A_{s t} A_{u s}\right]
$$

- In agreement with BGK (1988) result

$$
\mathscr{M}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=-\left(\frac{\kappa}{2}\right)^{2} \frac{\langle 12\rangle^{7} s}{N(4)\langle 34\rangle}
$$

* $N(4)=\langle 12\rangle\langle 13\rangle\langle 14\rangle\langle 23\rangle\langle 24\rangle\langle 34\rangle$ and $\kappa=\sqrt{32 \pi G}$

Kawai, Lewellen, Tye

BCFW-combining on-shell amplitudes

* Continue to complex momenta, such that

$$
\begin{aligned}
& \hat{p}_{1}^{2}=\hat{p}_{4}^{2}=0 \\
& \hat{p}_{1}+\hat{p}_{4}=p_{1}+p_{4}
\end{aligned}
$$

$$
\begin{array}{ll}
\mid \hat{1}]=\mid 1]-z \mid 4] & \left.\left.\left.\left.\hat{p}_{1}=\frac{1}{2}\langle 1| \gamma^{\mu} \right\rvert\, \hat{1}\right] \left.=\frac{1}{2}\langle 1| \gamma^{\mu} \right\rvert\, 1\right] \left.-\frac{z}{2}\langle 1| \gamma^{\mu} \right\rvert\, 4\right] \\
|\hat{4}\rangle=|4\rangle+z|1\rangle & \hat{p}_{4}=\frac{1}{2}\left[4\left|\gamma^{\mu}\right| \hat{4}\right\rangle=\frac{1}{2}\left[4\left|\gamma^{\mu}\right| \hat{4}\right\rangle+\frac{z}{2}\left[4\left|\gamma^{\mu}\right| 1\right\rangle
\end{array}
$$

$$
A(z)=A_{3}\left(-\hat{P}^{-}, p_{3}^{+}, \hat{p}_{4}^{+}\right) \frac{i}{\hat{P}^{2}(z)} A_{3}\left(\hat{P}^{+}, \hat{p}_{1}^{-}, p_{2}^{-}\right) \text {where } P=p_{3}+\hat{p}_{4}
$$

$$
\langle 1| \hat{P} \mid 3]=\langle 14\rangle[43],\langle 2| \hat{P} \mid 4]=\langle 23\rangle[34], \hat{P}^{2}(z)=[43]\langle 31\rangle\left(z+z_{0}\right), z_{0}=\langle 34\rangle /\langle 31\rangle
$$

BCFW

$$
A(0)=-i \frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 34\rangle\langle 41\rangle}
$$

Spinor techniques for massive particles

* If amplitudes purport to be a complete description, it is necessary to be able to handle massive particles.
* For massive particles we can go to the rest-frame, where the little group is $O(3) \equiv S U(2)$.
*. In a general frame $p^{\mu}=(E, P \sin \theta \cos \phi, P \sin \theta \sin \phi, P \cos \theta), P^{ \pm}=E \pm P$
* Arkani-Hamed et al define spin-spinors with an SU2(2) index I,

$$
\begin{aligned}
& \lambda_{\alpha}^{I}=\left|\mathbf{p}^{I}\right\rangle_{\alpha}=\sqrt{P^{-}}\binom{-s^{*}}{c}, \quad \tilde{\lambda}_{I \dot{\alpha}}=\left[\left.\mathbf{p}_{I}\right|_{\dot{\alpha}}=\sqrt{P^{-}}\binom{-s}{c} \quad \text { for } I=1\right. \\
& \lambda_{\alpha}^{I}=\left|\mathbf{p}^{I}\right\rangle_{\alpha}=\sqrt{P^{+}}\binom{c}{s}, \quad \tilde{\lambda}_{\dot{\alpha} I}=\left[\left.\mathbf{p}_{I}\right|_{\dot{\alpha}}=\sqrt{P^{+}}\binom{c}{s^{*}} \quad \text { for } I=2\right. \\
& c=\cos \left(\frac{\theta}{2}\right), s=\sin \left(\frac{\theta}{2}\right) \exp (i \phi), s^{*}=\cos \left(\frac{\theta}{2}\right) \exp (-i \phi) \quad \text { Arkani-Hamed et al }
\end{aligned}
$$

Examples for Top production

* Simple results for massive amplitudes

$$
-i A_{3}\left(\mathbf{1}_{Q}, 3^{+}, \mathbf{2}_{\bar{Q}}\right)=-\frac{\langle\mathbf{1 2}\rangle\langle q| \mathbf{1} \mid 3]}{m\langle q 3\rangle}
$$

* the two primitive leading-colour amplitudes are given by,

$$
\begin{aligned}
& -i A_{4}\left(\mathbf{1}_{Q}, 3_{g}^{+}, \mathbf{4}_{g}^{+}, \mathbf{2}_{\bar{Q}}\right)=m \frac{[34]}{\langle 34\rangle} \frac{\langle\mathbf{1 2}\rangle}{\left(s_{13}-m^{2}\right)} \\
& -i A_{4}\left(\mathbf{1}_{Q}, 3_{g}^{+},,_{g}^{-}, \mathbf{2}_{\bar{Q}}\right)=\frac{\langle 4| \mathbf{1} \mid 3]([13]\langle 4 \mathbf{2}\rangle+\langle\mathbf{1 4 \rangle}\rangle[32])}{\left(s_{13}-m^{2}\right) s_{34}}
\end{aligned}
$$

NLO (in hadron-hadron reactions)

The beginning...

Volume 25, Number 21
PHYSICAL REVIEW LETTERS
23 November 1970

Observation of Massive Muon Pairs in Hadron Collisions*

J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, and B. G. Pope Columbia University, New York, New York 10027, and Brookhaven National Laboratory, Upton, New York 11973

and

E. Zavattini

CERN Laboratory, Geneva, Switzerland (Received 8 September 1970)

8th September 1970
Muon pairs in the mass range $1<m_{\mu \mu}<6.7 \mathrm{GeV} / c^{2}$ have been observed in collisions of high-energy protons with uranium nuclei. At an incident energy of 29 GeV , the cross section varies smoothly as $d \sigma / d m_{\mu \mu} \approx 10^{-32} / m_{\mu \mu}{ }^{5} \mathrm{~cm}^{2}(\mathrm{GeV} / c)^{-2}$ and exhibits no resonant structure. The total cross section increases by a factor of 5 as the proton energy rises from 22 to 29.5 GeV .

* Lederman credits Yamaguchi and Okun for suggesting lepton pair processes.
* "As seen both in the mass spectrum and the resultant cross section there is no forcing evidence of any resonant structure."
* "Indeed, in the mass region near $3.5 \mathrm{GeV} / \mathrm{c}^{2}$, the observed spectrum may be reproduced by a composite of a resonance and a steeper continuum."

$M_{\mu \mu}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

- Drell and Yan had seen the Christenson et al data at the spring APS meeting

Drell-Yan

* Drell and Yan (1970) showed that the parton model could be derived if the impulse approximation was valid.
* To accomplish this, they had to impose a transverse momentum cut-off for the particles that appeared in the quantum field theory.

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha}{3 Q^{2}} \frac{1}{Q^{2}} \mathscr{F}(\tau)= & \frac{4 \pi \alpha}{3 Q^{2}} \frac{1}{Q^{2}} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \delta\left(x_{1} x_{2}-\tau\right) \sum_{a} \lambda_{a}^{-2} F_{2 a}\left(x_{1}\right) F_{2 \bar{a}}^{\prime}\left(x_{2}\right) \\
& \text { No colour factor! }
\end{aligned}
$$

* Rapid fall-off of the cross section, despite the fact that the partons were point-like particles (in contrast to DIS).
cf, Altarelli, Brandt \& Preparata, PRL (1970)

The first Drell Yan prediction

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)
May1970!
On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region,
 two initial hadrons, respectively. General scaling properties and inelastic electron scattering are discussed. In particular, a rapid section as $Q^{2} / s \rightarrow 1$ is predicted as a consequence of the observed, elastic scattering structure function νW_{2} near threshold.

* Predictions are

* approximate scaling $\frac{Q^{3} d \sigma}{d Q}=F(\tau), \tau=Q^{2} / s$,
* angular dependence, $\left(1+\cos ^{2} \theta\right)$
* A^{1} dependence on nucleon number.

Radiative corrections to Drell-Yan

Fig. 3. The hard component of the $\left\langle k_{\perp}^{2}\right\rangle$ of the muon pair as a function of their invariant mass is compared with the experimental points taken from ref. [9] for three different powers $n=4,5,6$ of the gluon distribution, following the procedure described in the text.

* QCD predicts an approximate linear rise of $\left\langle k_{T}^{2}\right\rangle$ with s or $\mathrm{Q}^{\wedge} 2$, but only at fixed τ.
- Intrinsic k_{T} needed.

Transverse momentum in DY processes, Altarelli, Parisi and Petronzio (1977)

Altarelli, RKE, Martinelli had written a previous paper mainly on radiative corrections to DIS, including corrections to DY as a (erroneous) postscript

LARGE PERTURBATIVE CORRECTIONS TO THE DRELL-YAN PROCESS IN QCD *

G. ALTARELLI

Istituto di Fisica dell' Università,
Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome 00185, Italy

R.K. ELLIS

Center for Theoretical Physics,
Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
G. MARTINELLI

Istituto Nazionale di Fisica Nucleare,
Laboratori Nazionali di Frascati,
Frascati 00044, Italy

Received 17 April 1979 AEM

Marciano(1975) - Dimensional Regularization and Mass singularities

QCD corrections for hadron-hadron interactions

$$
\alpha_{s} f_{q}(z)=C_{F} \frac{\alpha_{s}}{2 \pi}\left[\left(1+\frac{4 \pi^{2}}{3}\right) \delta(1-z)+2\left(1+z^{2}\right)\left(\frac{\ln (1-z)}{1-z}\right)_{+}+\frac{3}{(1-z)_{+}}-6-4 z\right]
$$

$$
\alpha_{S} f_{G}(z)=\frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left[\left(z^{2}+(1-z)^{2}\right) \ln (1-z)+\frac{9}{2} z^{2}-5 z+\frac{3}{2}\right]
$$

* Correction relative to DIS
$\frac{\alpha_{S}}{2 \pi} \approx \frac{1}{20}$
* Simple origin for the large size of the corrections;
* Phenomenology, x_{F} distribution;

Altarelli, Ellis, Martinelli, see also Kubar-Andre and Paige, and Abad and Humpert

Drell-Yan data and K-factor

* Data lay above the naive DY prediction, leading to the introduction of a "K-factor"

$$
\left(\frac{d \sigma}{d Q^{2}}\right)_{E \times P}=k\left(\frac{d g^{2}}{d Q^{2}}\right)_{\text {WAVE }} D . Y
$$

From ~ 4 experiments $K \geq 2$

- Telegdi question (N_{c} or not?)

$K=\left(\mathrm{d}^{2} \sigma / \mathrm{d} x_{1} \mathrm{~d} x_{2}\right)_{\exp } /\left(\mathrm{d}^{2} \sigma / \mathrm{d} x_{1} \mathrm{~d} x_{2}\right)_{\mathrm{DY}}$ model \cdot

Reaction	pN	$\overline{\mathrm{pN}}$	$\pi^{-} \mathrm{N}$	$\pi^{+} \mathrm{N}$	$\pi^{-} \mathrm{H}_{2}$	$\left(\pi^{-}-\pi^{+}\right) \mathrm{N}$
K	2.2 ± 0.4	2.4 ± 0.5	2.2 ± 0.3	2.4 ± 0.4	2.4 ± 0.4	2.2 ± 0.4
Events	960	44	5607	2073	138	-

NA3, Badier et al,

Subtraction/slicing method at NLO

(a)

Real diagrams
(b)
(c)

- $\sigma_{N L O}=\int_{m+1} d \sigma^{R}+\int_{m} d \sigma^{V}$
* Jet definition can be arbitrarily complicated, but IR / collinear safe
* $d \sigma^{R}=P S_{m+1}\left|\mathscr{M}_{m+1}\right|^{2} F_{m+1}^{J}\left(p_{1}, \ldots p_{m+1}\right)$
- We need to combine without knowledge of F^{J}
* Divergences regularized in $d=4-2 \epsilon$ dimensions.
* Two solutions: slicing and subtraction.

One-dimensional example

* The full cross section in d dimensions is

$$
\sigma=\int_{0}^{1} \frac{d x}{x^{1+\epsilon}} M(x) F_{1}^{J}(x)+\frac{1}{\epsilon} \nu F^{J}(0)
$$

- x is the energy of the emitted gluon
* KLN cancellation theorem, $\mathscr{M}(0)=\nu$
* Infrared safety: $F_{1}^{J}(0)=F_{0}^{J}$

$$
\begin{aligned}
\sigma & =\int_{0}^{1} \frac{d x}{x^{1+\epsilon}}\left[\mathscr{M}(x) F_{1}^{J}(x)-\mathscr{M}(0) F_{1}^{J}(0)\right]+\int_{0}^{1} \frac{d x}{x^{1+\epsilon}} \nu F_{0}^{J}+\frac{1}{\epsilon} \nu F_{0}^{J} \\
& =\int_{0}^{1} \frac{d x}{x}\left[\mathscr{M}(x) F_{1}^{J}(x)-\mathscr{M}(0) F_{1}^{J}(0)\right]+O(1) \nu F_{0}^{J} \quad \text { Subtraction }
\end{aligned}
$$

$$
\sigma=\int_{0}^{1} \frac{d x}{x^{1+\epsilon}} \mathscr{M}(x) F_{1}^{J}(x)+\frac{1}{\epsilon} \nu F_{0}^{J} \approx \int_{0}^{\delta} \frac{d x}{x^{1+\epsilon}} \nu F_{0}^{J}+\frac{1}{\epsilon} \nu F_{0}^{J}+\int_{\delta}^{1} \frac{d x}{x} \mathscr{M}(x) F_{I}^{J}(x)
$$

$$
\approx \ln \delta \nu F_{0}^{J}+\int_{\delta}^{1} \frac{d x}{x} \mathscr{M}(x) F_{I}^{J}(x)
$$

NLO QCD solved!

* NLO order is a solved problem numerically, (with the exception of processes first occurring at one-loop level, and processes with a large number of external partons). NLO electroweak corrections also often included. In some cases matched with parton shower.
* MadGraph5 aMC@NLO, Recola, Openloops 2, Gosam, POWHEG(Box)
* Ingredients required -
* Tree-level and one-loop diagram generation, (or equivalent for processes beginning at one-loop order);
* Reduction to known integrals (Generalized Unitarity, OPP Tensor reduction to scalar integrals, Passarino\&Veltman Collier, On the fly reduction);
* Complete basis set of one-loop scalar integrals (tHooft \& Veltman, Denner Nierste \& Schart RKE \& Zanderighi).
* Subtraction procedure to cancel soft and collinear divergences between real and virtual (ERT Catani-Seymour FKS);

RepresentativeNLO results

	Process	μ	$n_{l f}$	Cross section (pb)	
				LO	NLO
a. 1	$p p \rightarrow t \bar{t}$	$m_{\text {top }}$	5	123.76 ± 0.05	162.08 ± 0.12
a. 2	$p p \rightarrow t j$	$m_{\text {top }}$	5	34.78 ± 0.03	41.03 ± 0.07
a. 3	$p p \rightarrow t j j$	$m_{\text {top }}$	5	11.851 ± 0.006	13.71 ± 0.02
a. 4	$p p \rightarrow t \bar{b} j$	$m_{\text {top }} / 4$	4	31.37 ± 0.03	32.86 ± 0.04
a. 5	$p p \rightarrow t \bar{b} j j$	$m_{\text {top }} / 4$	4	11.91 ± 0.006	7.299 ± 0.05
b. 1	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e}$	m_{W}	5	5072.5 ± 2.9	6146.2 ± 9.8
b. 2	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j$	m_{W}	5	828.4 ± 0.8	1065.3 ± 1.8
b. 3	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j j$	m_{W}	5	298.8 ± 0.4	289.7 ± 0.3
b. 4	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-}$	m_{Z}	5	1007.0 ± 0.1	1170.0 ± 2.4
b. 5	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j$	m_{Z}	5	156.11 ± 0.03	203.0 ± 0.2
b. 6	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j j$	m_{Z}	5	54.24 ± 0.02	54.1 ± 0.6
c. 1	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} b \bar{b}$	$m_{W}+2 m_{b}$	4	11.557 ± 0.005	22.95 ± 0.07
c. 2	$p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} t \bar{t}$	$m_{W}+2 m_{\text {top }}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001
c. 3	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} b \bar{b}$	$m_{Z}+2 m_{b}$	4	9.459 ± 0.004	15.31 ± 0.03
c. 4	$p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} t \bar{t}$	$m_{Z}+2 m_{t o p}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002
c. 5	$p p \rightarrow \gamma t \bar{t}$	$2 m_{\text {top }}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003
d. 1	$p p \rightarrow W^{+} W^{-}$	$2 m_{W}$	4	29.976 ± 0.004	43.92 ± 0.03
d. 2	$p p \rightarrow W^{+} W^{-} j$	$2 m_{W}$	4	11.613 ± 0.002	15.174 ± 0.008
d. 3	$p p \rightarrow W^{+} W^{+} j j$	$2 m_{W}$	4	0.07048 ± 0.00004	0.08241 ± 0.0004
e. 1	$p p \rightarrow H W^{+}$	$m_{W}+m_{H}$	5	0.3428 ± 0.0003	0.4455 ± 0.0003
e. 2	$p p \rightarrow H W^{+} j$	$m_{W}+m_{H}$	5	0.1223 ± 0.0001	0.1501 ± 0.0002
e. 3	$p p \rightarrow H Z$	$m_{Z}+m_{H}$	5	0.2781 ± 0.0001	0.3659 ± 0.0002
e. 4	$p p \rightarrow H Z j$	$m_{Z}+m_{H}$	5	0.0988 ± 0.0001	0.1237 ± 0.0001
e. 5	$p p \rightarrow H t \bar{t}$	$m_{\text {top }}+m_{H}$	5	0.08896 ± 0.00001	0.09869 ± 0.00003
e. 6	$p p \rightarrow H b \bar{b}$	$m_{b}+m_{H}$	4	0.16510 ± 0.00009	0.2099 ± 0.0006
e. 7	$p p \rightarrow H j j$	m_{H}	5	1.104 ± 0.002	1.333 ± 0.002

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MADFKS and MadLoop. The errors are due to the statistical uncertainty of Monte Carlo integration. See

NNLO

NNLO results

* In a recent paper (2202.07738) I tried to document all the processes calculated at NNLO.
* About 50\% are available in MCFM.
* We use both q_{T} slicing and jettiness slicing.

Most apart from heavy quark

Process	MCFM	Process	MCFM
$H+0$ jet [8-14]	$\checkmark ~[15]$	$W^{ \pm}+0$ jet [16-18]	$\checkmark[15]$
$Z / \gamma^{*}+0$ jet [11, 17-19]	$\checkmark[15]$	$Z H[20]$	$\checkmark[21]$
$W^{ \pm} \gamma[18,22,23]$	$\checkmark[24]$	$Z \gamma[18,25]$	$\checkmark[25]$
$\gamma \gamma[18,26-28]$	$\checkmark[29]$	single top [30]	$\checkmark[31]$
$W^{ \pm} H[32,33]$	$\checkmark[21]$	$W Z[34,35]$	\checkmark
$Z Z[1,18,36-40]$	\checkmark	$W^{+} W^{-}[18,41-44]$	\checkmark
$W^{ \pm}+1$ jet [45, 46]	$[3]$	$Z+1$ jet [47, 48]	$[4]$
$\gamma+1$ jet [49]	$[5]$	$H+1$ jet [50-55]	$[6]$
$t \bar{t}[56-61]$		$Z+b[62]$	
$W^{ \pm} H+$ jet [63]		$Z H+$ jet [64]	
Higgs WBF [65, 66]		$H \rightarrow b \bar{b}[67-69]$	
top decay [31, 70, 71]		dijets [72-74]	
$\gamma \gamma+$ jet [75]		$W^{ \pm} c[76]$	
$b \bar{b}[77]$	$\gamma \gamma \gamma[78]$		
HH [79]		HHH [80]	

Examples of NNLO results from MCFM

Process		target		MCFM		
	$\sigma_{N L O}$	$\sigma_{N N L O}$	$\delta_{N N L O}$	$\sigma_{N N L O}$	$\delta_{N N L O}$	
$p p \rightarrow H$	$29.78(0)$	$39.93(3)$	$10.15(3)$	$39.91(5)$	$10.13(5)$	nb
$p p \rightarrow Z$	$56.41(0)$	$55.99(3)$	$-0.42(3)$	$56.03(3)$	$-0.38(3)$	nb
$p p \rightarrow W^{-}$	$79.09(0)$	$78.33(8)$	$-0.76(8)$	$78.41(6)$	$-0.68(6)$	nb
$p p \rightarrow W^{+}$	$106.2(0)$	$105.8(1)$	$-0.4(1)$	$105.8(1)$	$-0.4(1)$	nb
$p p \rightarrow \gamma \gamma$	$25.61(0)$	$40.28(30)$	$14.67(30)$	$40.19(20)$	$14.58(20)$	pb
$p p \rightarrow e^{-} e^{+} \gamma$	$2194(0)$	$2316(5)$	$122(5)$	$2315(5)$	$121(5)$	pb
$p p \rightarrow e^{-} \overline{\nu_{e} \gamma}$	$1902(0)$	$2256(15)$	$354(15)$	$2251(2)$	$349(2)$	pb
$p p \rightarrow e^{+} \nu_{e} \gamma$	$2242(0)$	$2671(35)$	$429(35)$	$2675(2)$	$433(2)$	pb
$p p \rightarrow e^{-} \mu^{-} e^{+} \mu^{+}$	$17.29(0)$	$20.30(1)$	$3.01(1)$	$20.30(2)$	$3.01(2)$	fb
$p p \rightarrow e^{-} \mu^{+} \nu_{\mu} \overline{\nu_{e}}$	$243.7(1)$	$264.6(2)$	$20.9(3)$	$264.9(9)$	$21.2(8)$	fb
$p p \rightarrow e^{-} \mu^{-} e^{+} \overline{\nu_{\mu}}$	$23.94(1)$	$26.17(2)$	$2.23(3)$	$26.18(3)$	$2.24(2)$	fb
$p p \rightarrow e^{-} e^{+} \mu^{+} \nu_{\mu}$	$34.62(1)$	$37.74(4)$	$3.12(5)$	$37.78(4)$	$3.16(3)$	fb
$p p \rightarrow Z H$	$780.0(4)$	$846.7(5)$	$66.7(6)$	$847.3(7)$	$67.3(6)$	fb
$p p \rightarrow W^{ \pm} H$	$1446.5(7)$	$1476.1(7)$	$29.6(10)$	$1476.7(8)$	$30.2(4)$	fb

Table 4. NLO results, computed using MCFM with NNLO PDFs (denoted $\sigma_{N L O}{ }^{*}$), total NNLO cross sections from vhonnlo ($W^{ \pm} H$ and $Z H$ only) and MATRIX (remaining processes, using the extrapolated result from Table 6 of Ref. [24]) and the target NNLO coefficients ($\delta_{N N L O}$, with $\delta_{N N L O}=\sigma_{N N L O}-\sigma_{N L O}$). The result of the MCFM calculation (0 -jettiness, fit result b_{0} from Eq. (3.9)) is shown in the final column.

NNLO by slicing

$$
\begin{aligned}
\sigma_{N N L O} & =\int \mathrm{d} \Phi_{N}\left|\mathscr{M}_{N}\right|^{2}+\int \mathrm{d} \Phi_{N+1}\left|\mathscr{M}_{N+1}\right|^{2} \theta_{N}^{<}+\int \mathrm{d} \Phi_{N+2}\left|\mathscr{M}_{N+2}\right|^{2} \theta_{N}^{<} \\
& +\int \mathrm{d} \Phi_{N+1}\left|\mathscr{M}_{N+1}\right|^{2} \theta_{N}^{>}+\int \mathrm{d} \Phi_{N+2}\left|\mathscr{M}_{N+2}\right|^{2} \theta_{N}^{>} \\
& \equiv \sigma_{N N L O}\left(\tau<\tau_{c u t}\right)+\sigma_{N N L O}\left(\tau>\tau_{c u t}\right) \\
& \theta_{N}^{<}=\theta\left(\tau_{c u t}-\tau\right) \text { and } \theta_{N}^{>}=\theta\left(\tau-\tau_{c u t}\right)
\end{aligned}
$$

* Unresolved is subject to a factorization formula and power corrections.

$$
\sigma\left(\tau<\tau_{c u t}\right)=\int H \otimes B \otimes B \otimes S \otimes\left[\prod_{n}^{N} J_{n}\right]+\cdots
$$

* Resolved radiation contribution obtained from NLO calculation with one additional jet, available by subtraction in MCFM.
* As the cut on the resolved radiation becomes smaller, neglected power corrections are also smaller, but cancellation between resolved and unresolved is bigger.

Slicing parameters

* For color singlet production, " q_{T} " of produced color singlet object, (Catani et al hep-ph/07030012v2)
* "N-jettiness" (Boughezal et al) $1505.03893 \mathscr{T}_{N}=\sum_{k} \min _{i}\left\{\frac{2 p_{i} \cdot q_{k}}{Q_{i}}\right\}$
* The p_{i} are light-like reference vectors for each of the initial beams and final-state jets in the problem
* q_{k} denote the four-momenta of any final-state radiation.
* $Q_{i}=2 E_{i}$ is twice the lab-frame energy of each jet
* Can handle coloured final states, e.g. H+jet
* Recent new parameter "Jet veto" (Gavardi et al), 2308.11577

NNLO results: dependence on slicing procedure

* For most (but not all) processes the power corrections are smaller for Q_{T} slicing than for jettiness.
- Factor of two in the exponent difference between the leading form factors for q_{T} and jettiness
* removed by defining $\epsilon_{T}=q_{T}^{\mathrm{cut}} / Q$ and $\epsilon_{\tau}=\left(\tau^{\mathrm{cut}} / Q\right)^{\frac{1}{\sqrt{2}}}$

Campbell et al, $\underline{2202.07738}$

Precision QCD

* We compute higher orders in QCD to increase the precision of our predictions i.e. to reduce the theoretical error.
* As we accumulate higher order terms we can ask how our error estimates in lower order perform.
* The NNLO central value lies within the NLO error band in
 only 4 out of the 17 cases shown.

Gavin Salam, (LHCP2016)
$\mathrm{N}^{3} \mathrm{LO}$

$\mathrm{N}^{3} \mathrm{LO}$ results for inclusive Z / γ^{*} etc

* Results for $Z, W^{ \pm}, H, W H, Z H$ normalized to $\mathrm{N}^{3} \mathrm{LO}$.
- Both μ_{R} and μ_{F} are varied by a factor 2 about their central values respecting the constraint $\frac{1}{2}<\frac{\mu_{R}}{\mu_{F}}<2$, " 7 -point scale variation"
* In most of the analyzed cases the seven point scale variation at NNLO does not capture the N3LO central value.

Baglio et al, 2209.06138, c.f. Mistlberger

Conclusions

* The future for (perturbative) QCD is bright.
* Only $\sim 10 \%$ of the final LHC luminosity of $3 \mathrm{ab}^{-1}$ has been collected.
* Paucity of BSM signatures, emphasizes the importance of precision QCD for LHC (and ultimately for planned successor machines, FCC).
* Electron Ion Collider, expected to perform 3-d tomography of the proton, is expected in the early 2030's

