Fuzzy dark matter solitons in gravitational lensing time delays and the H_0 measurement

Mostly based on Blum, Teodori 2021 [2105.10873]

Teodori Luca

Dark Matter Beyond the Weak Scale II

Durham University, March 2024

Weizmann Institute of Science

Teodori Luca | Fuzzy dark matter solitons in gravitational lensing time delays and the Ho measurement

Effects of FDM

H.-Y. Schive et al 2014 [1406.6586]

D.M. Powell et al 2023 [2302.10941]

N. Bar et al 2018 [1805.00122]

- Main features: wave-interference phenomena and inner cored profile (solitons)
- Lyman-alpha forest
- Dynamical heating
- Galaxy rotation curves (Soliton-halo relation)
- Gravitational lensing anomalies

Bounds on Fuzzy Dark Matter

A. Laguë et al 2021 [2104.07802]

- Rotation curves, Dynamical heating $\implies m \simeq 1 \times 10^{-20} \text{ eV}$
- Lymann- α and CMB for fractions
- Gravitational lensing: time delays and H_o with FDM cores

V. Bonvin et al 2016 [1607.01790]

- Solitons in FDM
- *H*_o from time delays (?)
- Soliton profile affecting time delays inference
- Can we constrain the FDM paradigm with an $H_{\rm o}$ prior?

Fuzzy Dark Matter essentials

H.-Y. Schive et al 2014 [1406.6586]

E.G.M. Ferreira 2021 [2005.03254]

• De-Broglie relevant in astrophysics scales

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{mv} \simeq 3.8 \,\mathrm{pc} \left(\frac{10^{-20} \,\mathrm{eV}}{m}\right) \left(\frac{10^2 \,\mathrm{km} \,\mathrm{s}^{-1}}{\mathrm{v}}\right)$$

- Cannot squeeze too much mass in little volume (from uncertainty principle): small scales power spectrum suppression, plus formation of cored profiles
- Huge occupation number \implies classical field

$$\mathcal{N} \simeq \frac{\rho_{\rm dm}}{m(mv)^3} \simeq 10^{84} \left(\frac{\rho_{\rm dm}}{0.4\,{\rm GeV\,cm^{-3}}}\right) \left(\frac{10^{-20}\,{\rm eV}}{m}\right)^4$$

• In NR limit, we have Schrödinger-Poisson equations

$$\begin{split} \mathrm{i}\partial_t \psi &= -\frac{\nabla^2 \psi}{2m} + m \Phi \psi \ , \\ \nabla^2 \Phi &= 4\pi G |\psi|^2 \ . \end{split}$$

Solitons

• Ground state solution of Schrödinger-Poisson

$$\psi(\vec{x}, t) = \frac{mM_{\rm pl}}{\sqrt{4\pi}} e^{-i\gamma m t} \chi(\vec{x}) , x = rm$$
$$\partial_x^2 \chi + \frac{2}{x} \partial_x \chi = 2(\Phi + \Phi_{\rm ext} - \gamma)\chi$$
$$\partial_x^2 \Phi + \frac{2}{x} \partial_x \Phi = \chi^2$$

• Can cores affect time delays?

The H_o tension

P.L. Kelly et al 2023 [2305.06367]

- CMB and LSS (early);
- Distance ladder (late);
- Strong gravitational lensing from TDCOSMO (COSMOGRAIL, HoLiCOW, STRIDES, SHARP, COSMICLENS);
- Use SLACS lenses to put priors on lens population parameters.

Adapted from M. Millon et al 2019 (TDCOSMO I) [1912.08027]

The H_o tension

P.L. Kelly et al 2023 [2305.06367]

CMB and LSS (early);

- Distance ladder (late);
- Strong gravitational lensing from TDCOSMO (COSMOGRAIL, HoLiCOW, STRIDES, SHARP, COSMICLENS);
- Use SLACS lenses to put priors on lens population parameters.

Adapted from M. Millon et al 2019 (TDCOSMO I) [1912.08027]

The H_o tension

P.L. Kelly et al 2023 [2305.06367]

Vietnam Institute of Science

- CMB and LSS (early);
- Distance ladder (late);
- Strong gravitational lensing from TDCOSMO (COSMOGRAIL, HoLiCOW, STRIDES, SHARP, COSMICLENS);
- Use SLACS lenses to put priors on lens population parameters.

Adapted from M. Millon et al 2019 (TDCOSMO I) [1912.08027]

The H_0 tension

P.L. Kelly et al 2023 [2305.06367]

- CMB and LSS (early);
- Distance ladder (late);
- Strong gravitational lensing from TDCOSMO (COSMOGRAIL, HoLiCOW, STRIDES, SHARP, COSMICLENS);
- .

Galaxy	Ho
PG1115 RXJ1131 WFI2033 HE0435 DESJ0408 B1608+656 J1206	$\begin{array}{c} 81.1^{+8.0}_{-7.0}\\ 78.2^{+3.4}_{-3.4}\\ 71.6^{+3.8}_{-4.9}\\ 71.7^{+4.8}_{-4.5}\\ 74.2^{+2.7}_{-3.0}\\ 71.0^{+2.9}_{-3.3}\\ 68.9^{+5.4}_{-5.1}\end{array}$

Adapted from M. Millon et al 2019 (TDCOSMO I) [1912.08027]

Cores affecting time delays?

credit: Wikipedia

- $\hat{\alpha} = 2 \int \nabla_{\perp} \Phi \, d\lambda \implies \vec{\beta} = \vec{\theta} \frac{D_{\rm LS}}{D_{\rm S}} \hat{\alpha}(\vec{\theta})$
- Convergence $\kappa \sim \int dz \rho$.
- Lens model + time delay measurement

$$\Delta t_{ij} \propto rac{1}{H_0}$$
 .

• Degeneracies (mass sheet degeneracy): source position and mass of galaxy unknown

$$\vec{\beta}
ightarrow \lambda \vec{\beta} \,, \, \kappa
ightarrow \lambda \kappa + (1 - \lambda) \implies H_0
ightarrow \lambda H_0$$

Cores affecting time delays?

- $\hat{\alpha} = 2 \int \nabla_{\perp} \Phi \, d\lambda \implies \vec{\beta} = \vec{\theta} \frac{D_{\rm LS}}{D_{\rm S}} \hat{\alpha}(\vec{\theta})$
- Convergence $\kappa \sim \int dz \rho$.
- Lens model + time delay measurement

$$\Delta t_{ij} \propto rac{1}{H_{
m o}}$$
 .

• Degeneracies (mass sheet degeneracy): source position and mass of galaxy unknown

 $\vec{\beta} \to \lambda \vec{\beta} \,, \, \kappa \to \lambda \kappa + (1 - \lambda) \implies H_0 \to \lambda H_0$

V. Bonvin et al 2016 [1607.01790]

Cores affecting time delays?

•
$$\hat{\alpha} = 2 \int \nabla_{\perp} \Phi \, \mathrm{d}\lambda \implies \vec{\beta} = \vec{\theta} - \frac{D_{\mathrm{LS}}}{D_{\mathrm{S}}} \hat{\alpha}(\vec{\theta})$$

- Convergence $\kappa \sim \int dz \rho$.
- Lens model + time delay measurement

$$\Delta t_{ij} \propto rac{1}{H_0}$$
 .

• Degeneracies (mass sheet degeneracy): source position and mass of galaxy unknown

$$ec{eta}
ightarrow \lambda ec{eta} \,, \; \kappa
ightarrow \lambda \kappa + (1 - \lambda) \implies H_0
ightarrow \lambda H_0$$

Examples of mass sheets

- LSS on the line of sight;
- Host dark matter halo from group/cluster;
- Stellar and galaxy kinematics for real mass.
- All the previous was (sort of) accounted in TDCOSMO I, but what about a mass sheet on the dark matter halo of the lens galaxy itself?

Examples of mass sheets

G.C.-F. Chen et al 2019 [1907.02533]

- LSS on the line of sight;
- Host dark matter halo from group/cluster;
- Stellar and galaxy kinematics for real mass.
- All the previous was (sort of) accounted in TDCOSMO I, but what about a mass sheet on the dark matter halo of the lens galaxy itself?

Examples of mass sheets

G.C.-F. Chen et al 2019 [1907.02533]

- LSS on the line of sight;
- Host dark matter halo from group/cluster;
- Stellar and galaxy kinematics for real mass.
- All the previous was (sort of) accounted in TDCOSMO I, but what about a mass sheet on the dark matter halo of the lens galaxy itself?

• Soliton has core-like density profile

$$ho = rac{eta^4 m^2}{4\pi G} \chi_1^2 \,, \quad \chi_1 \simeq rac{1}{(1+a^2 r^2)^b}$$

$$\begin{split} \delta_{\rm E} &:= \frac{\alpha_{\rm c}(\theta_{\rm E})}{\theta_{\rm E}} - \kappa_{\rm c}(\theta_{\rm E}) \lesssim 0.01 \,, \\ 1 - \lambda &= \kappa_{\rm c}(0) \sim 0.1 = \frac{\delta H_{\rm o}}{H_{\rm o}} \sim \frac{\beta^2 m}{4\pi G \Sigma_{\rm crit}} \,, \\ \theta_{\rm core} &\sim \frac{1}{\beta_{\rm am} D_{\rm l}} > \theta_{\rm E} \\ m &\lesssim 10^{-24} \, {\rm eV} \left(\frac{1''}{\theta_{\rm E}}\right)^{3/2} \left(\frac{1 \, {\rm Gpc}}{D_{\rm d}}\right) \left(\frac{\delta H_{\rm o}/H_{\rm o}}{0.1}\right)^{-1/2} \end{split}$$

- ULDM whole DM: needs $m \sim 10^{-24}$ eV, tension with Lymann- α forest and CMB.
- Subdominant ULDM: $m \sim 10^{-25}$ eV

• Soliton has core-like density profile

$$ho = rac{eta^4 m^2}{4\pi G} \chi_1^2 \,, \quad \chi_1 \simeq rac{1}{(1+a^2 r^2)^b}$$

$$\begin{split} \delta_{\rm E} &:= \frac{\alpha_{\rm c}(\theta_{\rm E})}{\theta_{\rm E}} - \kappa_{\rm c}(\theta_{\rm E}) \lesssim 0.01 \,, \\ 1 - \lambda &= \kappa_{\rm c}(0) \sim 0.1 = \frac{\delta H_0}{H_0} \sim \frac{\beta^2 m}{4\pi G \Sigma_{\rm crit}} \,, \\ \theta_{\rm core} \sim \frac{1}{\beta a m D_{\rm l}} > \theta_{\rm E} \\ m &\lesssim 10^{-24} \, \text{eV} \Big(\frac{1''}{\theta_{\rm E}} \Big)^{3/2} \Big(\frac{1 \,\text{Gpc}}{D_{\rm d}} \Big) \Big(\frac{\delta H_0/H_0}{0.1} \Big)^{-1/2} \end{split}$$

- ULDM whole DM: needs $m \sim 10^{-24}$ eV, tension with Lymann- α forest and CMB.
- Subdominant ULDM: $m \sim 10^{-25} \text{ eV}$

• Soliton has core-like density profile

$$ho = rac{eta^4 m^2}{4\pi G} \chi_1^2 \,, \quad \chi_1 \simeq rac{1}{(1+a^2 r^2)^b}$$

$$\begin{split} \delta_{\rm E} &:= \frac{\alpha_{\rm c}(\theta_{\rm E})}{\theta_{\rm E}} - \kappa_{\rm c}(\theta_{\rm E}) \lesssim 0.01 \,, \\ 1 - \lambda &= \kappa_{\rm c}(0) \sim 0.1 = \frac{\delta H_0}{H_0} \sim \frac{\beta^2 m}{4\pi G \Sigma_{\rm crit}} \,, \\ \theta_{\rm core} &\sim \frac{1}{\beta am D_{\rm l}} > \theta_{\rm E} \\ m &\lesssim 10^{-24} \, \text{eV} \Big(\frac{1''}{\theta_{\rm E}} \Big)^{3/2} \Big(\frac{1 \, \text{Gpc}}{D_{\rm d}} \Big) \Big(\frac{\delta H_0/H_0}{0.1} \Big)^{-1/2} \end{split}$$

- ULDM whole DM: needs $m \sim 10^{-24}$ eV, tension with Lymann- α forest and CMB.
- Subdominant ULDM: $m \sim 10^{-25} \text{ eV}$

• Soliton has core-like density profile

$$ho = rac{eta^4 m^2}{4\pi G} \chi_1^2 \,, \quad \chi_1 \simeq rac{1}{(1+a^2 r^2)^b}$$

$$\begin{split} \delta_{\rm E} &:= \frac{\alpha_{\rm c}(\theta_{\rm E})}{\theta_{\rm E}} - \kappa_{\rm c}(\theta_{\rm E}) \lesssim 0.01 \,, \\ 1 - \lambda &= \kappa_{\rm c}(0) \sim 0.1 = \frac{\delta H_0}{H_0} \sim \frac{\beta^2 m}{4\pi G \Sigma_{\rm crit}} \,, \\ \theta_{\rm core} &\sim \frac{1}{\beta am D_{\rm l}} > \theta_{\rm E} \\ m &\lesssim 10^{-24} \, \text{eV} \Big(\frac{1''}{\theta_{\rm E}} \Big)^{3/2} \Big(\frac{1 \, \text{Gpc}}{D_{\rm d}} \Big) \Big(\frac{\delta H_0/H_0}{0.1} \Big)^{-1/2} \end{split}$$

- ULDM whole DM: needs $m \sim 10^{-24}$ eV, tension with Lymann- α forest and CMB.
- Subdominant ULDM: $m \sim 10^{-25} \, {\rm eV}$

An explicit example

- An example: subdominant $m = 2 \times 10^{-25}$ component with $M_{sol} \sim 10^{12} M_{\odot}$, $M_{200} = 2 \times 10^{13} M_{\odot}$ (resembles DESJ0408 system)
- Enough to give a 10% shift in H_0
- Kinematics measurements fundamental to constrain MSD
- With H_o prior: sensitivity to galaxy features which are hard to probe otherwise.

An explicit example

- An example: subdominant $m = 2 \times 10^{-25}$ component with $M_{sol} \sim 10^{12} M_{\odot}$, $M_{200} = 2 \times 10^{13} M_{\odot}$ (resembles DESJ0408 system)
- Enough to give a 10% shift in H_0
- Kinematics measurements fundamental to constrain MSD
- With *H*_o prior: sensitivity to galaxy features which are hard to probe otherwise.

Mock analysis

• Is our δ_E criterium good enough? Yes, actually conservative

1/0,

Ho

- Use lenstronomy utilities to see if the idea could work
- Mock: subdominant $m = 2 \times 10^{-25}$ component with $M_{sol} \sim 10^{12} M_{\odot}$, $M_{200} = 2 \times 10^{13} M_{\odot}$ and $H_0 = 67.4$ km/s/Mpc
- Can we "relax" so much mass in the soliton?

Teodori Luca | Fuzzy dark matter solitons in gravitational lensing time delays and the Ho measurement

Can we relax such a mass?

Comparison with TDCOSMO systems

• Gravitational relaxation time scale from kinetic theory

$$\tau(R) = b \frac{\sqrt{2}}{12\pi^3} \frac{m^3 \sigma^6(R)}{G^2 \alpha_{\chi}^2 \rho^2(R) \Lambda}$$

- $\tau(R) < t_{\rm gal} \implies {\rm find} \ R \ , \ M_{\rm sol} < \alpha_{\chi} M_{\rm halo}(R)$
- An isothermal power-law with constant σ yields the bound (M_{\rm halo} \simeq \sigma^2 R/G)

$$M_{\rm sol} \lesssim 10^{12} M_{\odot} \left(\frac{\alpha_{\chi}}{0.1}\right)^{3/2} \left(\frac{m}{5 \times 10^{-25}\,\text{eV}}\right)^{-3/4} \left(\frac{\sigma}{200\,\text{km\,s^{-1}}}\right)^{3/2} \left(\frac{t_{\rm gal}}{10\,\text{Gyrs}}\right)^{3/2}$$

K. Blum, LT 2021 [2105.10873]

Teodori Luca | Fuzzy dark matter solitons in gravitational lensing time delays and the Ho measurement

Simulate the system? Preliminary

Testing the relaxation bottleneck

- Constrain stringy axion fractions from time delays?
- 3D pseudo-spectral code for multiple field Schrödinger-Poisson equations
- Preliminary result: consistent with estimates, possibly motivating more cosmological simulations of such scenarios
- Work in progress...

- We discuss the possibility that the H_o tension in strong gravitational lensing measurements could come from an unaccounted approximate mass sheet degeneracy
- A possible physical dark matter model which can yield this is ULDM
- To make it work, one must consider ULDM as a subdominant part of the whole dark matter
- Scenario: $\mathcal{O}(0.1)$ fractions, $m \lesssim 1 \times 10^{-24} \, \mathrm{eV}$
- Refine estimates with simulations (work in progress)
- With an H_o prior, time delays can be used to probe features of DM halos, difficult to spot otherwise, and possibility to put bounds on FDM scenario

Using stellar kinematics

In internal MSD ($\lambda=:$ 1 $-\kappa_{\rm c}$),

$$M = (1 - \kappa_{\rm c})M^{\rm model} + M_{\rm core}, \ M_{\rm core}(r) \propto \kappa_{\rm c} \frac{r^3}{r_c}, \ \kappa_{\rm c} \sim \rho_0 r_{\rm c}$$

A perfect MSD limit is not conservative! Used in TDCOSMO IV

$$\left(rac{\sigma_{
m los}}{\sigma_{
m los}^{
m model}}
ight)^2 = 1 - \kappa_{
m c} (1-\Delta_{
m c})$$

TDCOSMO XII: insert a parametrization of the core with finite (fixed!) core radius to catch this effect as well.

Teodori Luca | Fuzzy dark matter solitons in gravitational lensing time delays and the Ho measurement

TDCOSMO IV

Weizmann Institute of Scien

Interpreting the Mass Sheet Degeneracy

Springer et al 2005

Suvu et al 2010

- Change λ_S : changing one's mind about the true κ^S
- •

$$\kappa^{\mathrm{R}} \longmapsto \lambda_{\mathrm{R}} \kappa^{\mathrm{R}} + (1 - \lambda_{\mathrm{R}})$$
$$\Gamma^{\mathrm{R}} \longmapsto \lambda_{\mathrm{R}} \Gamma^{\mathrm{R}}$$

Time delays do change!

$$\begin{split} \Delta \tau &\to \lambda_{\rm S} \lambda_{\rm LS}^{-1} \lambda_{\rm L} \Delta \tau \\ {\rm H}_{\rm o} &\to \lambda_{\rm S} \lambda_{\rm LS}^{-1} \lambda_{\rm L} {\rm H}_{\rm o} \end{split}$$

- Estimate $\kappa^{\rm S}$ via ray-tracing through Millennium Simulation and characterization of the lens field
- Degeneracy is limited by priors on weak lensing quantities and constraints on mass of lens galaxy (stellar kinematics)

TDCOSMO XII

- Resolved kinematics with Keck Cosmic Web Imager (KCWI), to mitigate systematic effects
- New result for a single system:

$$H_0 = 77.1^{+7.3}_{-7.1} \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

 Goal for the future: Spatially resolved velocity dispersion measurements for around 40 time-delay lens galaxies will yield an independent 2% H_o measurement without any mass profile assumption

Steps for the kinematic measurement

- For each pixel, compute the spectroscopic *S*/*N* ratio, to perform Voronoi binning (have the best spatial resolution given a *S*/*N* treshold).
- Fit the spectra in each Voronoi bin using pPXF and the X-shooter Spectral Library (XSL)
- Change template setup to estimate variance-covariance matrix (hopefully catching possible systematics)
- Solve the axisymmetric Jeans equation given an anisotropy profile and a gravitational potential. The gravitional potential is obtained from deprojecting κ_{gal} (they consider oblate and prolate case), which includes the finite core term.
- With this, infer a constraint on the possible mass of the lens \implies constraint on the mass sheet degeneracy, hence on the error bars on the inferred H_0 .

- In deprojecting the 3D spheroid for the dinamic modelling, they discuss the purely prolate or purely oblate case, not considering triaxiality;
- For the core profile κ_s , different parametrizations are not explored, and θ_s is fixed to the lowest value which would not affect imaging;
- Anisotropy profiles explored are 2, and they are spatially constant ones; different anisotropy profiles (non constant ones like Osipkov-Merritt) are not explored;
- The prior they use for κ^{ext} is strictly speaking the prior for κ^{S} only; from the triangle plot, κ_{s} seems just to follow his prior;
- Also the velocity anisotropy parameters seems to be limited by just the prior. Same story for the inclination angle *i* (for it, the prior is not directly on *i*, but on q_{int});
- There is no discussion of external shear (but it was included in previous analysis) and no discussion of host cluster effects
- λ seems to be constrained from the lower end, but not from the upper end.

Caustics and flux ratio anomalies

Viennan Instate of Science

Caustic: critical line mapped on source plane

R. Narayan and S. Wallington

- $R_{\text{cusp}} = \frac{|\mu_{\text{A}} + \mu_{\text{B}} + \mu_{\text{C}}|}{|\mu_{\text{A}}| + |\mu_{\text{B}}| + |\mu_{\text{C}}|} \rightarrow 0$
- $R_{\rm fold} = \frac{|\mu_{\rm min}| |\mu_{\rm sad}|}{|\mu_{\rm min}| + |\mu_{\rm sad}|} \rightarrow 0$
- They hold only in lenses with a smooth potential and small angles between two bright lensed images

(b) RXJ1131-1231

(e) WF12033-4723 (f) PG 1115+080 K.C. Wong et al 2019 [1907.04869]

Dark matter substructure or other?

 Substructures can cause magnification changes; in CDM, the halo and subhalo mass function are respectively

$$rac{\mathrm{d}N}{\mathrm{d}M} \propto M^{-lpha}$$
, $lpha \sim 1.9$, $N(>\mu := m_{\mathrm{sub}}/M_{\mathrm{h}}) = \left(rac{\mu}{\mu_{\mathrm{1}}}
ight)^{1+lpha} \exp\left(-\left(rac{\mu}{\mu_{\mathrm{cut}}}
ight)^{b}
ight)$

eramonn Institute of Scien

- Numerical studies seem not to reproduce current flux anomaly strength with substructure alone
- Baryons effects: undetected disks, (microlensing of stars)
- Illustris simulation (Jen-Wei Hsueh et al 2018): baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8% and by about 10-20% in the disc lenses, plus astrometric anomalies

J.-W. Hsueh et al 2017