
Scintillating Methods to Detect Dark Matter 
from Nano to Astro Scales

CARLOS BLANCO



2

Milky Way

Dark matter halo

Dark matter halo

Image credit: ESO/L Calçada

MW Dark Matter Halo

Durham, probably

Lighter mass → more particles

Local dark matter density

Local dark matter velocity

More particles → larger fluxes
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Dark Matter in The Lab

Exotic
Physics

Direct detection

Recoils

 

Direct WIMP-like interaction

Energy Budget

Momentum Budget
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Direct Detection

Sensitivity/Exclusion

 Benchmark for right DM abundance

Need to delve deep and search wide

Minimize threshold energies

Maximize  signal efficiencies

Minimize backgrounds
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Axions (pseudoscalars)
Changes to Maxwell’s Eqs 

Mass Range & Detection Methods

Sub-GeV DM
Feeble recoils → Single transitions

Ultra-heavy DM
Macroscopic tracks in 
material

eV-scale Bosons
Absorption → Excitation

Canonical WIMPs
Rare but energetic tracks 

Wave-like Particle-like
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WIMPs: The Miracle 

The appeal
Weak-scale masses and cross sections

Griest et. al:  Phys Rep. 1996

Present-day abundance set by freeze-out

A
nnihilating

Frozen out
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WIMPs: The Resounding Success

Akerib, D. S., et al. "Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the 
Neutrino Fog." arXiv:2203.08084 (2022).

Liquid Noble Gases 

Effective when 

Looming 
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WIMPs: The Resounding Success

Akerib, D. S., et al. "Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the 
Neutrino Fog." arXiv:2203.08084 (2022).

Liquid Noble Gases 

Effective when 

Looming 
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Axions (solves strong-CP problem)
Misalignment

On to Non-WIMPy Dark Matter

light DM
Feeble interaction→ Never in thermal contact  → Freeze in abundance

Eq. not through annihilation →  Freeze out through, e.g. scattering

Ultra-heavy DM
Composite DM
Black hole relics

Wave-like Particle-like

Canonical WIMPs
Annihilation freeze-out thermal relic
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Interaction Rate
Rate spectrum (events in detector)

Transition form factor (Condensed matter / Chemistry)Mean inverse velocity (Astrophysics)

Dark matter form factor (Particle physics)



11

Interaction Rate
Rate spectrum (events in detector)

Transition form factor (Condensed matter / Chemistry)Mean inverse velocity (Astrophysics)

Dark matter form factor (Particle physics)
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Sub-GeV Direct Detection

Energy Budget

Imparted momentum in scattering

Energy equals momentum in absorption
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Electron Recoil → Photon Signal

Chromophores
Electronic excitation → Unstable state → Photon emission.

Crystals (Continuous)

Molecules and Atoms (Quantized)

 Valence →  Conduction

HOMO → LUMO
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Carbon: a Natural Candidate 

C C

S - Orbital P - Orbitals

C

SP3  σ single bond

C

C C

SP2 π double bond
+

Delocalized π networks in molecules are natural DM detector candidates  due to kinematic matching

π electrons delocalized on ring

excite to produce photoemission

rigid 

spread out

Organic Chromophores

σ electrons form  rigid network
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Fluorescence with DM

e.g. molecular crystals:

Em
issionAb
so

rp
tio

n

 fluorescence spectra

Decreasing energy (E) →

A
bs

or
pt

io
n/

em
is

si
on

 P
ro

ba
bi

li
ty

Probability for the photon to free stream

: Chromophore:

Detector volume  ~1L

re-
ab

s detectable
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Pilot Experiment

Molecular scintillators

 Many-body ground state is easy.

 Problem
Describe the interaction between DM (BSM) with molecules (chemistry)

[CB, Collar, Kahn, Lillard ‘19: 1912.02822]

Para-xylene (EJ-301)

How to compute the excited states?

The standards in the field: 

FCI Hartree-Fock or Density Functional Theory
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First Experimental Setup

[CB, Collar, Kahn, Lillard: 1912.02822]

1L of EJ-301 Ancient lead & Vetos Surface run at UChicago
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Results: EJ-301

EJ-301 (3.8 Hz)

EJ-301 (0.1 Hz)

EDELWEISS
SENSEI 3e-SENSEI @

 MINOS

XENON 10

EJ-301 (3.8 Hz)

EJ-301 (0.1 Hz)

SENSEI @
 M

INOS

SENSEI 3e-

EDELW
EISS

DAMIC

XENON 10

FDM=1 FDM 1 /𝑞 2

Theory → Experiment → Results in about 6 months

(Contact interaction) (Long-range interaction)

[CB, Collar, Kahn, Lillard: 1912.02822]
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The Field in Context

[US Cosmic Visions: Community Report: 1707.04591]

Many materials are proposed to probe the 
sub-GeV Space

In 2017:
  
Short term (2 years)

Medium term (2-5 years)

Long term
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Outlook and Potential Reach

[US Cosmic Visions: Community Report: 1707.04591]

Present day:
  
Experimental results

Zero-background projection

e.g. Si Skipper CCDs
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Outlook and Potential Reach

[US Cosmic Visions: Community Report: 1707.04591]

Present day:
  
Experimental results

Zero-background projection

e.g. Si Skipper CCDs

ELDER/SIMP/ Scalar + A’ Freeze out
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Outlook and Potential Reach

Pound (kg) for Pound (kg) molecules produce about as much signal as e.g. Si. 

The obstacle

Backgrounds

Zero-background
6 orders of magnitude of potential reach awaiting 

[CB, Collar, Kahn, Lillard: 1912.02822]
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Fluorescence with DM Works

Em
issionAb

so
rp

tio
n

Next Step
Minimize background

Option 1
Reduce background in the excitation.

Molecular crystals  
Anisotropic excitation → Time-varying DM signal

Option 2
Reduce background in the emission.

Quantum dots 
Multiple excitons → Time-coincident DM signal
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Milky Way

Dark matter halo

Dark matter halo

Directional Detection

DM wind

Change in relative orientation between detector 
and dark matter wind leads to daily modulation

Effective dark matter “wind” from 
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Trans-Stilbene

Carman, et.al. ’18 (J. of Crystal Growth)

Delocalized and planar network 
of double bonds

Molecular planes oriented in 
crystal lattice

Large optical-quality crystals
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Daily Modulation

[CB, Kahn, Lillard, McDermott: 2103.08601]

Varies up to 70% 

Verifiable signal!

Modulation amplitude remains as high as 10% even at the highest masses due to the fundamental 
anisotropy of the molecular form factor. 

(Contact interaction) (Long-range interaction)
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Improved Sensitivity & Reach

(Contact interaction) (Long-range interaction)

Sensitivity w/o modulation

Exclusion w/ modulation

Modulation discovery

Improvement of two orders of magnitude & potential for discovery 

*1kg of t-stilbene can probably 
be found within a few blocks  
of this room

With  dark rate 
(1/min)

[CB, Kahn, Lillard, McDermott: 2103.08601]
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Nuclear Recoil → Photon Signal
Nuclear scattering

 Next step in complexity: Nuclear recoil → ??? →  Radiative emission
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Ionizing Atoms Through Nuclear Recoil:

The Migdal effect 
Extend the sensitivity of detectors to lower masses. 
e.g. Xenon 

Initial nuclear recoil Nucleus moves faster than electrons Electronic transition to ionized state

Kinematic penalty
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The Molecular Migdal Effect(s)

Non-adiabatic coupling (NAC) 

Caused by relative motion

Effect beyond Born-Oppenheimer 

Center of mass recoil (CMR) 

Cause by center of mass motion

Analogous to atomic Migdal effect

 
Moving whole molecule → BIG penalty Crumpling molecule → small Penalty

Blanco ‘22: 2208.09002
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[CB, Harris*, Kahn, Lillard, Perez-Rios: 2208.09002]

Center of mass recoil 
Subdominant at all masses.

Non-adiabatic coupling  
Favorable kinematic factor.

(Contact interaction)
Si rate is calculated using the 
CMR-equivalent Migdal effect. 
Is there an NAC-equivalent in Si?

Existing constraints

Simplest molecular models already competitive.
Is there an optimal molecular target?

The Molecular Migdal Effect(s)
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Directional Molecular Migdal Effect

Varies up to 80% 

 Mass dependent phase

 

Molecular alignment →  Directional electronic excitation →  Directional molecular Migdal effect(s)

[CB, Harris*, Kahn, Lillard, Perez-Rios: 2208.09002]
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Experimental Evidence for NAC
Claim 

NAC is visible in existing data

Photon absorption probability 

Decreasing energy (E) →

L
og

(ϵ
) 

U
V

 A
bs
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y

Classically forbidden by symmetry
No dipole moment →  Classically forbidden UV absorption

Toluene

lowest 
transition

[CB, Harris, Kahn, Lillard, Perez-Rios: 2208.09002]

dipole transition

e.g. toluene
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Experimental Evidence for NAC

However
Nuclear deformation → Non-adiabatic dipole 

NAC form factor  
How electrons respond to nuclear deformation.

Photon absorption probability 

Decreasing energy (E) →

L
og

(ϵ
) 

U
V

 A
bs

or
pt

io
n 

Pr
ob
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y

Toluene

lowest 
transition

[CB, Harris, Kahn, Lillard, Perez-Rios: 2208.09002]

dipole transition

e.g. toluene

NAC-induced UV absorption 
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Finding Optimal Targets 
Find molecules with max NAC

Large NAC → Large DM interactions

Molecular symmetries →  Forbidden transitions

Measured with vibrational substructure 
→ Evidence of NACDecreasing energy (E) →

L
og

(ϵ
) 

U
V

 A
bs

or
pt

io
n 

Pr
ob

ab
il
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y

Toluene

lowest 
transition
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Finding Optimal Targets 

Method
1. Look for known favorable properties - cheminformatics
2. Extra(intra)polate onto new molecules – machine learning

Problem: Chemical space is unreasonably large

How many molecules possible with 
 C, O, N, F, H?

< 9 atoms: 100s of Thousands (DFT Computable)

< 30 atoms: 100s of Billions (Intractable)

...toluene has 15, xylene has 18, t-stilbene has 26
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ML for DM Direct Detection
Property prediction

Energies & Matrix elements

[CB, Cook*, Smirnov: 2404.xxxxx]

Molecular Generation
Sample latent space → new molecules 

Using exhaustive database (< 9 atoms)
Characterize neural nets
→ Possible to learn from small subsample  

Next: Large but sparse dataset up to 10s of atoms  
Scale architecture
→ Generate candidate molecule shortlist 

Known Subset
  (Training set)

Totally new 
molecules

Known Superset
(Training set)

%
 g

en
er

at
ed

Tuning Parameter

%
 g

en
er

at
ed
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Future Experiment

Experimental Deployment

The DIANA experiment

Daily modulation from an Intrinsically ANisotropic Array

Top-Down View

Read out different crystals

Side View

Skipper CCD

Crystal 
Scintillators

Ice cube
Tray

Holder

Back-thinned 
surface

Fig: Dan Baxter
Collab: Uchicago, FermiLab, Northwestern, MIT, and UIUC
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Fluorescence with DM Works

Em
issionAb

so
rp
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n

Focus
Minimize background

Option 1
Reduce background in the excitation.

Molecular crystals  
Anisotropic excitation → Time-varying DM signal

Option 2
Reduce background in the emission.

Quantum dots 
Multiple excitons → Time-coincident DM signal
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Nanocrystals: Quantum Dots

Zherebetskyy et al., Science 344, 1380 (2014) 

Conduction

Valence Valence

Conduction

Quantum confinement Quantum confinement affects long-wavelength physics

Example: PbS
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Quantum Dots: Coincident Signal

Absorption →  Very energetic exciton 
 

Multi-exciton generation →  several excitons
If energy is greater than twice the bandgap

Radiative recombination →  coincident photons 
      Band-edge excitons produce light 

Valence

Conduction
PMT

PMT

Target
Volume

~1L
(10 g QDs)

[CB, Essig, Fernandez-Serra, Ramani, Slone: 2208.05967]
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PbS Quantum Dots
(Contact interaction) (Long-range interaction)

Background-free 
signal @ this scale

With realistic dark rate for photodetectors. 

[CB, Essig, Fernandez-Serra, Ramani, Slone: 2208.05967]
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Future Experiment

Experimental Deployment

DarkDot & The QUADRA experiment

Fig: Joern Mahlstedt    Collab: Stockholm U, MIT, & Stony Brook
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Deployment
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Conduction

Valence Valence

Conduction

S0
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Molecular excitation
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(Singlet transitions)
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Hybrid Detectors
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(Charge Transfer)

Conduction

Valence Valence

Conduction
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Hybrid Detectors
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(Charge Transfer)

Conduction

Valence Valence

Conduction

( radiative recom.)
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(Charge Transfer)

Conduction

Valence Valence

Conduction

( radiative recom.)
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Beyond direct detection

Same theoretical techniques → Predict rates in astrophysical objects

Telescope

Astrophysical volume of molecules
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Beyond direct detection

Telescope

Cold molecular cloud

Same theoretical techniques → Predict rates in astrophysical objects

Telescope
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Dark matter in Molecular Clouds

~ 0.5 ly

Dense cold molecular clouds are almost entirely opaque. 

Ionization from CR produces ionization fraction:

Well measured through astro-spectroscopy of tracer molecules 
(line intensity measurements)

DM scattering → Add ionized SM particles

[Prabhu,CB: 2211.05787]
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Dark matter in Molecular Clouds

*Uncertainty from inferred CR ionization rate due to 
gas depletion onto grain surfaces.

Otherwise open parameter space 

Strongly-coupled dark matter is stopped before 
reaching experiments. 

[Prabhu,CB: 2211.05787]

Constraints on DM w/ ultra-light mediator

Molecular Clouds 
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Dark matter in Molecular Clouds

Direct detection

Molecular Clouds

FDM=1

The Molecular Migdal effect(s) in space

Migdal Effect in Molecular Clouds

[Prabhu,CB : 2211.05787] [CB, Harris, Kahn, Prabhu: 2310.00740]



54

Conclusions

● Successful campaign for WIMPs →  Now we must look beyond.

● By developing the formalism that describes the interaction between dark matter and 
molecules or nano-materials, we can propose detection strategies capable of delving deep and 
searching wide across the dark matter parameter space. 

● This remains one of the few ways to probe high-energy physics at the bench-top scale.
 

● Stay tuned for hybrid methods giving multiplicative improvements to sensitivity.
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The DFT Problem

 Excited states 

Plot

[Peterson, Watkins, Lane, Zhu ‘23: 2310.00147]

DFT is a ground-state theory

The systematic uncertainty from out-of-the-box 
DFT can be very large.

The Alternative 
Self-consistent molecular orbital theory
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Axions (pseudoscalars)
Quantum Sensing & Indirect Detection

Many Methods in One Program

Sub-GeV DM
Molecules and nanomaterials

Ultra-heavy DM
Windchime

eV-scale Bosons
Molecules and nanomaterials

Canonical WIMPs
Indirect detection (Galaxies & Planets)

Wave-like Particle-like
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PbS QDs
D

ar
k 

ph
ot

on
 k

in
et

ic
 c

ou
pl

in
g In the case of eV-scale dark photon absorption, 

we can use existing data to predict the 
sensitivity of QD-based detectors.

Key conclusions of QD analysis

1) The interaction rate in a semiconductor 
generated by DM  is the same if the semiconductor 
is monolithic or nanoscopically disperse.

2) In a QD-based experiment, the readout is 
independent of the target.

3) The signal can be tuned through control of 
quantum confinement.

[CB, Essig, Fernandez-Serra, Ramani, Slone: 2208.05967]
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QDs – Cheap, tunable and scalable

Φ dependence on the solution 
concentration for 3nm and 3.3nm PbS 

QDs in toluene.



60

Strongly Confining Quantum 
Dots

Semiconducting nano-spheres
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Fluorescence: Binary 
Scintillators

Energy

In
te

ns
it

y

Solvent: Primary target starts the signal

Solute: Dilute fluor gets the signal out of the bulk 

Emission

Absorption

arXiv: 1912.02822
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PbS QDs: Improvements

PMT PMT

Target
Volume

“Blind” mode “Active” mode
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PbS QDs: Improvements

PMT

PMT

PMT

PMT

Target
Volume

“Active” mode“Blind” mode
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PbS QDs: Optimism for comparison

Blanco ‘22: 2208.05967

DM-Electron Scattering (no background 1-photon signal)
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Daily Modulation: Small Mass

[CB, Kahn, Lillard, McDermott: 2103.08601]
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Daily Modulation: Large Mass

[CB, Kahn, Lillard, McDermott: 2103.08601]



67

Electron Recoil: Charge Signal
Electron scattering

Electrons in crystals (exciton generation) Electrons in atoms (ionization)

What has such transition energies?

• Semiconductor band gaps

• Maybe atomic ionization
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Semiconductor CCDs

Essig R., et al. "Snowmass2021 Cosmic Frontier The landscape of low-threshold dark 
matter direct detection in the next decade" arXiv:2203.08297 (2022).
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Nuclear Recoil: Phonon Signal

Nuclear scattering
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Calorimeters

Optical Optical 
primaryprimary

Acoustic athermal Acoustic athermal 
SecondariesSecondaries

Surface TES

Essig R., et al. "Snowmass2021 Cosmic Frontier The landscape of low-threshold dark 
matter direct detection in the next decade" arXiv:2203.08297 (2022).
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Trans-Stilbene



72

Daily Modulation: Light 
Mediator
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Local DM Phase Space

Lin, Tongyan. "Sub-GeV dark matter models and direct 
detection." SciPost Physics Lecture Notes (2022): 043.

Baxter, D., et al. "Recommended conventions for reporting results 
from direct dark matter searches." The European Physical Journal C 
81.10 (2021): 1-19.
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