





### Scintillating Methods to Detect Dark Matter from Nano to Astro Scales



### CARLOS BLANCO

### MW Dark Matter Halo



Local dark matter density  $ho_{\rm DM} = 0.4 \, {\rm GeV/cm}^3$ 

Local dark matter velocity  $\langle v_{\rm DM} \rangle \approx 300 \, {\rm km/s}$ 

Lighter mass  $\rightarrow$  more particles  $n_{\rm DM} = \rho_{\rm DM}/m_{\rm DM}$ 

More particles  $\rightarrow$  larger fluxes  $\phi_{\rm DM} \sim v_{\rm DM} n_{\rm DM}$ 

### Dark Matter in The Lab







Energy Budget  $E \sim v^2 m_{\chi} \approx \mathcal{O}(\text{keV}) \left(\frac{m_{\chi}}{1 \text{ GeV}}\right)$ Momentum Budget  $q \sim v m_{\chi} \approx \mathcal{O}(\text{MeV}) \left(\frac{m_{\chi}}{1 \text{ GeV}}\right)$ 

### **Direct Detection**



Need to delve deep and search wide Minimize threshold energies  $\Delta E_r$ Maximize signal efficiencies  $\xi$ Minimize backgrounds  $R_{\rm bkg}$ 

 $m_{\rm DM} \, [{\rm GeV}]$ 

# Mass Range & Detection Methods



### WIMPs: The Miracle



Griest et. al: Phys Rep. 1996

Present-day abundance set by *freeze-out* 

$$\Omega_c h^2 \sim \frac{1}{\langle \sigma v \rangle}$$

The appeal Weak-scale masses and cross sections 
$$\langle \sigma v 
angle_{
m FO} = 3 imes 10^{-26} {
m cm}^3 {
m /s}$$

$$\approx \frac{\alpha_{\rm W}^2}{(100\,{\rm GeV})^2}$$

### WIMPs: The Resounding Success



Liquid Noble Gases Effective when  $m_{\chi} > (O)(\text{GeV})$ 



Akerib, D. S., et al. "*Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog.*" arXiv:2203.08084 (2022).

### WIMPs: The Resounding Success



Liquid Noble Gases Effective when  $m_{\chi} > (O)(\text{GeV})$ 



Akerib, D. S., et al. "*Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog.*" arXiv:2203.08084 (2022).

# On to Non-WIMPy Dark Matter



### Interaction Rate

Rate *spectrum* (events in detector)

$$\Gamma \sim \int \frac{d^3 \vec{q}}{q} \eta(v) |F_{\rm DM}(q)|^2 |f_{i \to f}(q)|^2$$

Mean inverse velocity (Astrophysics) Transition form factor (Condensed matter / Chemistry)  $\eta(v)$   $f_{i \to f}(q) = \langle \tilde{\Psi}_f(k+q) | \tilde{\Psi}_i(k) \rangle$ 

> Dark matter form factor (Particle physics)  $F_{\rm DM}(q) \propto \begin{cases} 1 & , \text{ Contact interaction} \\ \left(\frac{1}{q}\right)^2, \text{ Long-range interaction} \end{cases}$

### Interaction Rate

Rate *spectrum* (events in detector)

$$\Gamma \sim \int \frac{d^3 \vec{q}}{q} \eta(v) |F_{\rm DM}(q)|^2 |f_{i \to f}(q)|^2$$

Mean inverse velocity (Astrophysics)  $\eta(v)$ 

Transition form factor (Condensed matter / Chemistry)  $f_{i\to f}(q) = \langle \tilde{\Psi}_f(k+q) | \tilde{\Psi}_i(k) \rangle$ 

Dark matter form factor (Particle physics)  $F_{\rm DM}(q) \propto \begin{cases} 1 & , \text{ Contact interaction} \\ \left(\frac{1}{q}\right)^2, \text{ Long-range interaction} \end{cases}$ 

### Sub-GeV Direct Detection



- R: Nuclei
- r: Electrons
- $\chi$ : Dark matter

Imparted momentum in scattering  $q \approx \mathcal{O}(\text{keV}) \left(\frac{m_{\chi}}{1 \text{ MeV}}\right)$ 

Energy Budget  $\Delta E \approx \mathcal{O}(\text{eV}) \left(\frac{\text{m}_{\chi}}{1 \text{ MeV}}\right)$ 

Energy equals momentum in *absorption* 

$$\Delta E = q = \left(\frac{m_{\chi}}{1 \text{eV}}\right)$$

# Electron Recoil --> Photon Signal



Molecules and Atoms (Quantized)  $|\psi_i\rangle \sim \psi_{lcao}(r) \quad |\psi\rangle^* \sim \psi^*_{lcao}(r)$ HOMO  $\rightarrow$  LUMO

Crystals (Continuous)  $|\psi_i\rangle \sim u_v(r)e^{ik\cdot r} |\psi\rangle^* \sim u_c(r)e^{ik\cdot r}$ 

Valence  $\rightarrow$  Conduction

*Chromophores* Electronic excitation  $\rightarrow$  Unstable state  $\rightarrow$  Photon emission.

# Carbon: a Natural Candidate



spread out

Organic Chromophores

 $\sigma$  electrons form *rigid* network



 $\pi$  electrons *delocalized* on ring

excite to produce photoemission

Delocalized  $\overline{\pi}$  networks in molecules are natural DM detector candidates due to kinematic matching  $q_e \approx 1/a_0 \sim \mathcal{O}(\text{keV}) \qquad q \sim m_\chi v_\chi \approx \mathcal{O}(\text{keV}) \left(\frac{m_\chi}{1 \text{ MeV}}\right)$ 

### Fluorescence with DM

fluorescence spectra 1.0 Absorption/emission Probability 0.8 ntensity (Normalized) Absorption 0.6 0.4 0.2 Ja. 0.0 250 300 350 400 450 500 λ (nm)

Chromophore:



Decreasing energy  $(E) \rightarrow$ 

#### Probability for the photon to free stream $\Phi_{\rm FB} \sim (1 - a_{xx})$ e.g. molecular crystals: $\Phi_{\rm FB} \approx 65\%$

# Pilot Experiment

#### Problem

Describe the interaction between DM (BSM) with molecules (chemistry)

Many-body ground state is easy.  $\Psi_G = |\psi_2 \overline{\psi_2} \psi_1 \overline{\psi_1} \psi_{1\prime} \overline{\psi_{1\prime}}|$ 

How to compute the excited states?

The standards in the field:

FCI Hartree-Fock or Density Functional Theory

Molecular scintillators



### First Experimental Setup



1L of EJ-301

Ancient lead & Vetos

Surface run at UChicago

[CB, Collar, Kahn, Lillard: 1912.02822]

## Results: EJ-301

(Contact interaction)

(Long-range interaction)



Theory  $\rightarrow$  Experiment  $\rightarrow$  Results in about 6 months

### The Field in Context



Many materials are proposed to probe the sub-GeV Space

In 2017:

Short term (2 years)

*Medium* term (2-5 years)

*Long* term

### **Outlook and Potential Reach**





Experimental results

#### Zero-background projection

### **Outlook and Potential Reach**





#### Experimental results

#### Zero-background projection

### **Outlook and Potential Reach**

#### [CB, Collar, Kahn, Lillard: 1912.02822]



# The obstacle **Backgrounds**

6 orders of magnitude of potential reach awaiting

Pound (kg) for Pound (kg) molecules produce about as much signal as e.g. Si.

### Fluorescence with DM Works



Next Step Minimize background Option 1 Reduce background in the excitation.

*Molecular crystals* Anisotropic excitation → Time-varying DM signal

Option 2 Reduce background in the emission.

**Quantum dots** Multiple excitons  $\rightarrow$  Time-coincident DM signal

### **Directional Detection**



Effective dark matter "wind" from  $ec{\hat{v}_\oplus}(t)$ 



Change in relative orientation between detector and dark matter wind leads to *daily* modulation

### Trans-Stilbene







Carman, et.al. '18 (J. of Crystal Growth)

Delocalized and planar network of double bonds

Molecular planes oriented in crystal lattice

Large optical-quality crystals

# Daily Modulation

#### (Contact interaction)



(Long-range interaction)

Modulation amplitude remains as high as 10% even at the highest masses due to the fundamental anisotropy of the molecular form factor.

# Improved Sensitivity & Reach



[CB, Kahn, Lillard, McDermott: 2103.08601]

Improvement of *two orders of magnitude* & potential for discovery

of this room

### Nuclear Recoil --> Photon Signal



Next step in *complexity*: Nuclear recoil  $\rightarrow$  ???  $\rightarrow$  Radiative emission

### Ionizing Atoms Through Nuclear Recoil:



 $||\psi_i\rangle \sim e^{i\frac{m_e}{M_N}\vec{q}\cdot\vec{r}}\psi_{\rm AO}(r_\beta)$ 

Initial nuclear recoil

Nucleus moves faster than electrons

Electronic transition to ionized state

The Migdal effect Extend the sensitivity of detectors to lower masses. e.g. Xenon

$$f_{i \to f} \approx \frac{m_e}{M_N} \vec{q} \cdot \langle \vec{r} \rangle_{i \to f}$$

Xe

Kinematic *penalty* 

# The Molecular Migdal Effect(s)

Center of mass recoil (CMR)

Cause by center of mass motion



Analogous to atomic Migdal effect

$$P_{CMR} \sim \frac{m_e}{M_{mol}}$$

Moving whole molecule  $\rightarrow$  BIG penalty

Blanco '22: 2208.09002



Non-adiabatic coupling (NAC)

Caused by relative motion



Effect beyond Born-Oppenheimer

$$P_{NAC} \sim \frac{m_e}{M_N}$$

Crumpling molecule  $\rightarrow$  small Penalty

# The Molecular Migdal Effect(s)



Si rate is calculated using the *CMR*-equivalent Migdal effect. Is there an *NAC*-equivalent in Si?

Center of mass recoil
 Subdominant at all masses.

Non-adiabatic coupling
 Favorable kinematic factor.

Simplest molecular models already competitive. Is there an optimal molecular target?

[CB, Harris\*, Kahn, Lillard, Perez-Rios: 2208.09002]

# Directional Molecular Migdal Effect



<sup>[</sup>CB, Harris\*, Kahn, Lillard, Perez-Rios: 2208.09002]

Molecular alignment  $\rightarrow$  Directional electronic excitation  $\rightarrow$  Directional molecular Migdal effect(s)

### Experimental Evidence for NAC



Claim NAC is visible in existing data

Photon absorption probability  $\langle \Psi_f | \vec{r} | \Psi_i \rangle = 0$  e.g. toluene dipole transition

Classically forbidden by symmetry No dipole moment  $\rightarrow$  Classically forbidden UV absorption

# Experimental Evidence for NAC



NAC form factor How electrons respond to nuclear deformation.  $f_{e,NAC} \sim \langle \psi_f | \nabla_R | \psi_i(r) \rangle$ 

Photon absorption probability  $\epsilon \sim \left< \Psi_f \right| \vec{r} \left| \Psi_i \right> = 0 \quad \text{e.g. toluene}$  dipole transition

*NAC-induced* UV absorption  $\epsilon \sim \langle \psi_f(r; R) | \vec{r} | \psi_i(r; R) \rangle |_{R \neq R_0} \neq 0$ 

#### However

Nuclear deformation  $\rightarrow$  Non-adiabatic dipole

[CB, Harris, Kahn, Lillard, Perez-Rios: 2208.09002]

# Finding Optimal Targets



Find molecules with max NAC Large NAC  $\rightarrow$  Large DM interactions

Molecular symmetries  $\rightarrow$  Forbidden transitions

Measured with vibrational substructure  $\rightarrow$  Evidence of NAC

# Finding Optimal Targets

Problem: Chemical space is unreasonably large

How many molecules possible with C, O, N, F, H?

< 9 atoms: 100s of Thousands (DFT Computable)

< 30 atoms: 100s of Billions (Intractable)

...toluene has 15, xylene has 18, t-stilbene has 26

Method

1. Look for known favorable properties - *cheminformatics* 

2. Extra(intra)polate onto new molecules – *machine learning*
### ML for DM Direct Detection

Property predictionMolecular GenerationEnergies & Matrix elementsSample latent space  $\rightarrow$  new molecules



<sup>[</sup>CB, Cook\*, Smirnov: 2404.xxxx]

Using exhaustive database (< 9 atoms) Characterize neural nets → Possible to learn from small subsample

Next: Large but sparse dataset up to 10s of atoms Scale architecture → Generate candidate molecule *shortlist* 

### **Future Experiment**

#### Experimental Deployment

#### The DIANA experiment

Daily modulation from an Intrinsically ANisotropic Array



Fig: Dan Baxter Collab: Uchicago, FermiLab, Northwestern, MIT, and UIUC

### Fluorescence with DM Works



#### Focus Minimize background

Option 1 Reduce background in the excitation.

*Molecular crystals* Anisotropic excitation → Time-varying DM signal

Option 2 Reduce background in the emission.

*Quantum dots* Multiple excitons → Time-coincident DM signal

## Nanocrystals: Quantum Dots

Quantum confinement affects long-wavelength physics

Quantum confinement



# Quantum Dots: Coincident Signal



Absorption  $\rightarrow$  Very *energetic* exciton

Multi-exciton generation  $\rightarrow$  several excitons If energy is greater than twice the bandgap

Radiative recombination  $\rightarrow$  coincident photons Band-edge excitons produce light



 $\sim 1L$  (10 g QDs)

### PbS Quantum Dots

#### (Contact interaction)

#### (Long-range interaction)



#### Background-free signal @ this scale

[CB, Essig, Fernandez-Serra, Ramani, Slone: 2208.05967]

With realistic dark rate for photodetectors.

### Future Experiment

#### Experimental Deployment

#### DarkDot & The QUADRA experiment



Figure 2: (Left:) Inner structure of the current SUXESs facility. (Right:) A diagram of a single module for the proposed detector.

Fig: Joern Mahlstedt Collab: Stockholm U, MIT, & Stony Brook

### Deployment



### Hybrid Detectors





Molecular excitation (Singlet transitions)



Conduction

Valence





46

 $10^{2}$ 

ODs 17

 $\alpha m_e$ 

 $10^{2}$ 



(Singlet transitions)



### Beyond direct detection



Astrophysical volume of molecules

Same theoretical techniques  $\rightarrow$  Predict rates in *astrophysical* objects

### Beyond direct detection





#### Cold molecular cloud

Same theoretical techniques  $\rightarrow$  Predict rates in *astrophysical* objects

#### Dark matter in Molecular Clouds



Dense cold molecular clouds are almost entirely opaque.  $n_{\rm H_2} \sim O(10^2) {\rm cm}^{-3}$ 

Ionization from CR produces ionization fraction:  $\zeta^{H_2}$ CR + H<sub>2</sub>  $\rightarrow$  CR + H<sub>2</sub><sup>+</sup> + e<sup>-</sup>

Well measured through astro-spectroscopy of tracer molecules (line intensity measurements)

DM scattering  $\rightarrow$  Add ionized SM particles

$$\zeta_i^{\mathrm{H}_2} = 2\pi \int \frac{dN_i}{dE} (E) \sigma_i(E) dE$$

#### Dark matter in Molecular Clouds

#### Constraints on DM w/ ultra-light mediator



Otherwise open parameter space

Strongly-coupled dark matter is stopped before reaching experiments.

\*Uncertainty from inferred CR ionization rate due to gas depletion onto grain surfaces.

#### Dark matter in Molecular Clouds





The Molecular Migdal effect(s) *in space* 

### Conclusions

- Successful campaign for WIMPs  $\rightarrow$  Now we must look beyond.
- By developing the formalism that describes the interaction between dark matter and molecules or nano-materials, we can propose detection strategies capable of *delving deep* and *searching wide* across the dark matter parameter space.
- This remains one of the few ways to probe high-energy physics at the *bench-top* scale.
- Stay tuned for hybrid methods giving multiplicative improvements to sensitivity.

# Acknowledgements

- **Grad Students**: Ian Harris (UIUC), Sandip Roy (Princeton), & Cameron Cook (Edinburgh --- soon Liverpool)
- Collaborators & colleagues: Ani Prabhu, Yoni Kahn, Ben Lillard, Juan Collar, Jesus Perez-Rios, Rouven Essig, Hari Ramani, Oren Slone, Dan Baxter, Marivi Fernandez-Serra, Sam McDermott, Ian Harris, Juri Smirnov (In no particular order)
- The work of C.B. was supported in part by NASA through the NASA Hubble Fellowship Program grant HST-HF2-51451.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555 as well as by the European Research Council under grant 742104.



# The DFT Problem



[Peterson, Watkins, Lane, Zhu '23: 2310.00147]

DFT is a ground-state theory

The systematic uncertainty from *out-of-the-box* DFT can be very large.

The Alternative Self-consistent molecular orbital theory

Excited states

 $\Psi_i^j = \frac{1}{\sqrt{2}} (|\psi_1 \overline{\psi_1} ... \psi_i \overline{\psi_j} ... \psi_N \overline{\psi_N}| - |\psi_1 \overline{\psi_1} ... \psi_j \overline{\psi_i} ... \psi_N \overline{\psi_N}|)$ 

# Many Methods in One Program



### PbS QDs



[CB, Essig, Fernandez-Serra, Ramani, Slone: 2208.05967]

In the case of eV-scale dark photon absorption, we can use existing *data* to predict the sensitivity of QD-based detectors.

#### Key conclusions of QD analysis

1) The interaction rate in a semiconductor generated by DM is the same if the semiconductor is *monolithic* or *nanoscopically* disperse.

2) In a QD-based experiment, the readout is independent of the target.

3) The signal can be tuned through control of quantum confinement.

Dark photon kinetic coupling

# QDs – Cheap, tunable and scalable

#### **QDot™ PbS Quantum Dots**



#### \$399.00 - \$2,500.00



QDot<sup>™</sup> PbS (Lead Sulfide) Quantum Dots, oleic acid capped, absorb the light from high energy photons up to near-infrared (NIR) range and re-emit in NIR range. The absorption/emission profiles can be tuned from 800 to 2200 nm, simply by changing nanoparticle sizes from 2 to 12 nm. This material has outstanding light absorption and photoelectrical properties, and is utilised for for near-infrared (NIR) or short-wave infrared (SWIR) image sensors. For specific application convenience, two lines of QDs are available:

- With specific absorption peak in 800 2200 nm range
- With specific emission peak in 900 1600 nm range Read more





Φ dependence on the solution concentration for 3nm and 3.3nm PbS QDs in toluene.

 $n_e \sim 10^{20} \text{ cm}^{-3} = 10^{23} \text{ L}^{-1}$ 

# Strongly Confining Quantum Dots

Semiconducting nano-spheres



$$E_{\text{confinement}} = \frac{\hbar^2 \pi^2}{2a^2} \left( \frac{1}{m_e} + \frac{1}{m_h} \right) = \frac{\hbar^2 \pi^2}{2\mu a^2}$$
$$E = E_{\text{bandgap}} + E_{\text{confinement}}$$
$$= E_{\text{bandgap}} + \frac{\hbar^2 \pi^2}{2\mu a^2}$$

 $E_{kin} \sim \frac{1}{r^2}$  $E_{coulomb} \sim \frac{1}{r}$ 

60

# Fluorescence: Binary Scintillators

- Solvent: Primary target starts the signal
- Solute: Dilute fluor gets the signal out of the bulk



Energy



#### PbS QDs: Improvements



"Blind" mode

"Active" mode

### PbS QDs: Improvements



### PbS QDs: Optimism for comparison



Blanco '22: 2208.05967

DM-Electron Scattering (no background 1-photon signal)

### Daily Modulation: Small Mass



Molecular form factors and modulating rates for DM masses near threshold,  $m_{\chi} = 2$  MeV. In the contour plots, the gridded shaded regions indicate the kinematically accessible momentum transfers  $\vec{q}$  for the four molecules that comprise the unit cell of the crystal, shown at t = 0 and t = 10 h. Here,  $\vec{q}$  is given in the molecular basis,  $q_x = \vec{q} \cdot \hat{\vec{L}}, q_y = \vec{q} \cdot \hat{\vec{M}}$ , and the kinematically accessible region is defined by  $v_-(\vec{q}) < v_{\rm esc}$ .

[CB, Kahn, Lillard, McDermott: 2103.08601]

## Daily Modulation: Large Mass



Same as previous figure but for large DM masses,  $m_{\chi} = 100$  MeV. Only the nearly-spherical region near  $q \sim 0$  with inner boundary  $q_{\min} \simeq$ 1.6 keV is kinematically forbidden. As a result, the daily modulation amplitude is smaller, driven by the anisotropy of the inner secondary peaks and the tails of the primary peaks.

[CB, Kahn, Lillard, McDermott: 2103.08601]

## **Electron Recoil: Charge Signal**



Electron scattering  $\Delta E_r = (m_\chi^2/m_{\rm T}) \times 10^{-6}$ 

$$\Delta E \sim \mathcal{O}(\text{few eV}) \left(\frac{m_{\chi}}{1 \,\text{MeV}}\right)^2$$

What has such transition energies?

- Semiconductor band gaps
- Maybe atomic ionization

Electrons in crystals (exciton generation)

2

$$|\psi_i\rangle \sim u_v(r)e^{ik'\cdot r} \quad |\psi_f\rangle \sim u_c(r)e^{ik\cdot r}$$

Electrons in atoms (ionization)

$$|\psi_i\rangle \sim \psi_{\rm STO}(r_\beta) \ |\psi_f\rangle \sim e^{ik \cdot r}, r \gg a_0$$

#### Semiconductor CCDs



Essig R., et al. "Snowmass2021 Cosmic Frontier The landscape of low-threshold dark matter direct detection in the next decade" arXiv:2203.08297 (2022).

#### Nuclear Recoil: Phonon Signal



### Calorimeters





Essig R., et al. "Snowmass2021 Cosmic Frontier The landscape of low-threshold dark matter direct detection in the next decade" arXiv:2203.08297 (2022).

#### Trans-Stilbene

| s     | Platt Symbol    | Symmetry           | $\Delta E \left[ \mathrm{eV} \right]$ | Configuration amplitudes |                    |                     |                    |
|-------|-----------------|--------------------|---------------------------------------|--------------------------|--------------------|---------------------|--------------------|
| $s_1$ | $^{1}B$         | $B_u$              | 4.240                                 | $d_{7,8} = 0.94,$        | $d_{4,11} = -0.24$ |                     |                    |
| $s_2$ | ${}^{1}G^{-}$   | $B_u$              | 4.788                                 | $d_{7,10} = 0.53,$       | $d_{5,8} = 0.53,$  | $d_{6,11} = 0.37,$  | $d_{4,9} = -0.37$  |
| $s_3$ | ${}^{1}G^{-}$   | $A_g$              | 4.800                                 | $d_{7,9} = 0.53,$        | $d_{6,8} = 0.53,$  | $d_{5,11} = 0.37,$  | $d_{4,10} = -0.37$ |
| $s_4$ | $^{1}(C,H)^{+}$ | $A_g$              | 5.137                                 | $d_{7,11} = 0.41,$       | $d_{5,9} = -0.41,$ | $d_{6,10} = -0.41,$ | $d_{4,8} = -0.59$  |
| $s_5$ | $^{1}H^{+}$     | $B_u$              | 5.791                                 | $d_{5,10} = 0.54,$       | $d_{6,9} = 0.54,$  | $d_{7,12} = 0.33,$  | $d_{3,8} = 0.33$   |
| $s_6$ | ${}^{1}G^{+}$   | $A_g$              | 6.264                                 | $d_{7,9} = 0.68,$        | $d_{6,8} = -0.68$  |                     |                    |
| $s_7$ | ${}^{1}C^{-}$   | $A_g$              | 6.013                                 | $d_{7,11} = 0.66,$       | $d_{4,8} = 0.54,$  |                     |                    |
| $s_8$ | $^{1}G^{+}$     | $\overline{B_{u}}$ | 6.439                                 | $d_{7,10} = 0.65,$       | $d_{5,8} = -0.65$  |                     |                    |

Table 1: The first eight excited states  $s_{n=1...8}$ , with their energy eigenvalues  $\Delta E(s_n)$  with respect to the ground state and coefficients  $d_{ij}^{(n)}$  as calculated by Ting and McClure.

$$|s_n\rangle = \sum_{i,j>i} d_{ij}^{(n)} |\psi_i^j\rangle,$$

$$f_{g \to s_n}(\vec{q}) = \left\langle \psi_{s_n}(\vec{r}_1 \dots \vec{r}_{14}) \left| \sum_{m=1} e^{i\vec{q} \cdot \vec{r}_m} \right| \psi_G(\vec{r}_1 \dots \vec{r}_{14}) \right\rangle$$

$$= \sum_{ij} d_{ij}^{(n)} \left\langle \psi_i^j \left| e^{i\vec{q} \cdot \vec{r}} \right| \psi_G \right\rangle$$

$$= \sqrt{2} \sum_{ij} d_{ij}^{(n)} \left\langle \Psi_j(\vec{r}) \right| e^{i\vec{q} \cdot \vec{r}} |\Psi_i(\vec{r})\rangle.$$

$$T_1$$

#### Daily Modulation: Light Mediator



Same as previous figures (top) for a light mediator DM form factor  $F_{\rm DM} =$  $(\alpha m_e/q)^2$ . Here, the contour plots show  $F_{\rm DM}^2 |f(s_1)|^2$  which appears in the rate integrand; the scattering is dominated by the smallest kinematicallyallowed q. **Top:** Molecular form factors with  $q_z = 0$  and rate modulations for  $m_{\chi} = 2$  MeV. **Bottom:** Molecular form factors with  $q_z = 0$  and rate modulations for  $m_{\chi} = 100$  MeV.
## Local DM Phase Space



Baxter, D., et al. "*Recommended conventions for reporting results from direct dark matter searches*." The European Physical Journal C 81.10 (2021): 1-19.

Lin, Tongyan. "Sub-GeV dark matter models and direct detection." SciPost Physics Lecture Notes (2022): 043.