Microlensing signatures of extended dark objects
using machine learning

BeyondWIMPS
Durham University
March 2024

Miguel Crispim Romao

U] ]
IPPP
Durham University "g}i};g?ynl

miguel.romao@durham.ac.uk




Outline

e |Introduction
o Motivation
o Microlensing of Compact Dark Objects
e Machine Learning Signatures of Dark Objects
o OGLE2 Adaptive Cadence
o Regular Daily Cadence
e Current Work
e (onclusions and Outlook



Introduction




Introduction
Motivation

e Plenty and diverse evidence for Dark Matter
o Astrophysical
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Introduction
Motivation

e Plenty and diverse evidence for Dark Matter
o  Cosmological

ESA astro-ph/0604561, doi:10.1038/nature04805



Introduction
Motivation

All evidence is gravitational. Nonetheless, the dominant paradigm has been field theoretical.
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Introduction

Microlensing of Compact Dark Objects

e Matter bends space, changing geodesics traveled by light
e Different from strong lensing as images do not resolve
o Instead anincrease in brightness is obserserved

Wikipedia



Introduction
Microlensing of Compact Dark Objects

Depending on the nature of the lens, different brightness magnification profiles emerge...
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Introduction
Microlensing of Compact Dark Objects

Let's define the source-lens-observer geometry and associated quantities:
e [:Impactangle (i.e. lens position) gl
e 0:Ilmage angles
e ¢ Impact parameter
and the normalised quantities

Croon, McKeen, Raj 2020

Observer

e u=g¢g/r=po6. = ; T
el BT~

° T= G/GE l /'""‘\j\)\g—élGM/fC? éource

e x=D /D, e
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is the Einstein angle for a point lens at B=0 and r_=D, . the associated Einstein radius.



Introduction
Microlensing of Compact Dark Objects

The position of the images, T, are given by the solutions of the lens equation

m(7)

U =T —
T
where m(T1) is the mass profile of the lens, which accounts for the distribution of the lens mass
projected onto the lens plane
m(r) = [, doo fgzo d\ p(rgvo? + A\?2)
Jo dr¥?p(rey)
The total magnification, p, will be given by the sum of the magnifications of each of each image

91' d@l . Ti dTi
=25 a2
-1 -1
:Z 1— m(;—l) ‘1 4 m(;’z) . ldm(n)
- T T T dm
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Introduction
Microlensing of Compact Dark Objects

For a point-like lens, such as a Primordial Black-Hole (PBH) we have m(1)=1 and the lens equation

has two solutions, leading to
u? +2

o T

Therefore, when the lens “crosses” its Einstein radius, u=1, we can observe a magnification p=1.34.

To connect to surveys, we notice that while traversing its plane, the lens impact parameter is related

to the survey time, t, as
\/2 <t—t0>2
U ={/ug+
g

where U, is the lens minimal (hormalised) impact parameter, t. is the lens “Einstein crossing time”, i.e.

the time it takes for the lens to cross its Einstein radius, and t the time of the magnification peak.

11



Introduction

Microlensing of Compact Dark Objects

One can then easily simulate the magnification of a point-like lens.

Surveys look for light curves with this shape and count the number of

matching events. This can be used to constraint the fraction of Dark Matter

composed by PBH:

VE (:E) = 2u1.34 (I)’I‘E (x)/tE (u, 5, is such that pusu, ;,)21.34, u, ;,=1 for point-like)
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Machine Learning Signatures of
Dark Objects

Microlensing signatures of extended dark objects using machine learning
Miguel Crispim Roméo (IPPP, Durham), Djuna Croon (IPPP, Durham)

https://arxiv.org/abs/2402.00107 (submitted to PRD)
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Machine Learning Signatures of Dark Objects
Extended Dark Objects

So far we have only discussed point-like dark lenses, m(1)=1
However, many dark objects not only have substructure, but have extended structures and can
be markedly not point-like
Croon, McKeen, Raj 2020 and 2020, studied extended dark objects and constrained their
population using microlensing data from EROS-2 (Magellanic Clouds) and OGLE-IV (Galatic
Bulge) surveys
o Two types of objects are of special interest for the work presented herein:
m Boson Stars: gravitationally stable structures composed of scalar fields. Exhibiting
a more disperse m(T)
m  Navarro-Frenk-White (NFW) subhalos: products of hierarchical clustering of cold
DM. Exhibiting a more peaked m(1)
o For sufficiently flat density profiles, the caustics empact the constraints

14



Machine Learning Signatures of Dark Objects
Extended Dark Objects

1.0

Caustics can emerge!
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Machine Learning Signatures of Dark Objects

Extended Dark Objects

Croon, McKeen, Raj 2020
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Machine Learning Signatures of Dark Objects
Extended Dark Objects

Besides constraining the fraction of DM composed of these objects, could we detect them?
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Machine Learning Signatures of Dark Objects
Machine Learning Microlensing

How are microlensing events detected, then?

e Images of a source are captured at
different times with a certain cadence

e Areference image sets a baseline
magnitude/flux for the source

e Differences between animage and the
reference allow to see the changes in
magnitude/flux

o The light curve is the time series of
the magnitude/flux over time

+ HSC data
[y est-fit ML model

1 1 1 1
5000 10000 15000 20000
time from the beginning of our observation [sec]

Niikura, H, et al - Subaru/HSC observation

25000
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Machine Learning Signatures of Dark Objects
Machine Learning Microlensing

Data is not readily available
o  Only analysed and human-annotated
events are released
Analyses have a very constraining
pre-analysis cuts focused on point-like

microlensing signatures

Nonetheless, we can perform a

phenomenological study

o  Simulate light curves for multiple
astrophysical phenomena

o Use quantities derived from the time
series to perform a classification

task

Table 1. Selection Criteria for High-quality Microlensing Events in OGLE GVS Fields.

Criteria

Remarks

Number

All stars in databases

1,856,529,265

X2, /dof < 2.0

npia > 3

No variability outside a window centered
on the event (duration of the window depends
on the field)

Centroid of the additional flux coincides with
the source star centroid

X3+ = >;(Fi—Fhase) /o > 32 Significance of the bump 23,618

A > 0.1 mag Rejecting low-amplitude variables

Nbump = 1 Rejecting objects with multiple bumps 18,397
Fit quality:

X2, /dof < 2.0 X2 for all data

X1 /dof < 2.0 X2 for |t —to| < tg

o(tg)/tg < 0.5 Einstein timescale is well measured

T = U0 = o Event peaked between tin and tmax, which are
moments of the first and last observation of a
given field

uy <1 Maximum impact parameter

tg < 500d Maximum timescale

A > 0.4mag if tg > 100days  Long-timescale events should have high ampli-
tudes

I, <21.0 Maximum /-band source magnitude

Fy, > —Fnin Maximum negative blend flux, corresponding 460

to I = 20.5 mag star

Mroz, P. et al 2020

j

What is released

19



Machine Learning Signatures of Dark Objects

Machine Learning Microlensing

e MicroLIA (Godines, D. et al 2019) a python package
(github.com/Professor-G/MicroLIA)
o  Simulation of light curves (of some astrophysical
phenomena)
o  Extraction of time series features
o  Machine learning classification between different
classes
e Produces 74 features from the light curve, and from its
derivative (total 148)
e Simulates galactic sources suitable for an OGLE-inspired
study plus a constant class (noise)
o (Cataclysmic Variables (CV)
o RRLyrae & Cepheid Variables (VARIABLE)
o  Miralong-period variables (LPV)
o  Point-like microlensing (ML)

Feature Description

Above 1 Ratio of data points that are above 1 standard deviation from the median.
Above 3 Ratio of data points that are above 3 standard deviations from the median
Above 5 Ratio of data points that are above 5 standard deviations from the median

Absolute Energy

The sum over the squared values of the time-series

‘Absolute Sum of Changes’

The absolute value of the sum over the consecutive changes in the time-series.

Amplitudet Difference between the 27 and 98" percentile of the time-series

Autocorrelation Similarity between observations as a function of a time lag between them.

Below 1 Ratio of data points that are below 1 standard deviation from the median

Below 3 Ratio of data points that are below 3 standard deviation from the median.

Below 5 Ratio of data points that are below 5 standard deviation from the median.

3 ‘A measure of non-linearity in the time series, introduced by Schreiber and Schmitz (1097)

Check Duplicate

Checks whether any in the time-series repeat at least twice

Check Max Duplicate’

Checks whether the maximum value in the time-series repeats

Check Min Duplicate’

Checks whether the minimum value in the time-series repeats.

Check Max Last Loc'

Measures the first location of the maximum value, relative to the length of the time-series

Check Min Last Loc'

Measures the first location of the minimum value, relative to the length of the time-series.

Complexity Measured by “stretching”the time-series and calculating the length of the resulting line, introduced by Batista et al_ (2014)
Con® Number of clusters containing three or more consecutive observations larger than the baseline value plus 3 standard deviations.
Con2 Number of clusters containing three or more consecutive observations larger than the baseline value plus 2 standard deviations.

Count Above’

Number of measurements in the time-series greater than the mean value.

Count Below’

Number of measurements in the time-series smaller than the mean value.

Returns the normalized first location of the maximum value in the time-series.

First Loc Max'

First Loc M Returns the normalized first location of the minimurn value in the time-series
Tntegrate Tntegration of the time-series using the trapezoidal rule.
Kurtosis

Longest Strike Above’

‘A measure of the peakedness of the lightcurve relative to a normal distribution
The length of the longest sequence of consecutive measurements in the time-series greater than the mean value.

Tongest Strike Below!

The length of the longest sequence of consecutive measurements in the time-series smaller than the mean value.

Mean Absolute Change'

The mean over the absolute differences between subsequent measurements.

Mean Change

The mean over the differences between subsequent measurements.

Mean Second Derivative’

The mean value of a central approximation of the second derivative.

Median Absolute Deviation’

Mean average distance between each measurement and the mean value.

Median Buffer Range’

Ratio of points that are between + 20% of the amplitude value over the mean.

Median Buffer Range 2

Ratio of points that are between + 10% of the amplitude value over the mean.

Peak Detection

Calculates the number of peaks in the time-series

Ratio of Recurring Points

Relative number of time-series values that appear more than once.

Root Mean Squared

The root mean square deviation of the time-series.

Sample Entropy’

The sample entropy of the time-series as developed by Richman and Moorman (2000)

Shannon Entropy

Measures the amount of information carried by a signal (Shannon and Weaver, 1949).

Skewness'" Measures the asymmetry of the time-series.
STD! The standard deviation of the time-series.

STD Over Mean® Ratio of standard deviation to mean value.

Stetson)' Variability index first suggested by Stetson (1096) which measures the correlation between each measurement.
StetsonK'® Index first suggested by Stetson (1006) which serves as a robust kurtosis measure.

Stetsonl. Variability index first suggested by Stetson (1006) to distinguish between different types of variation

Sum Values' Sum over all time-series measurements.

Time Reversal Asymmetry!

Measures the asymmetry of a series upon time-reversal (Schreiber and Schmitz, 2000).

von Neumann Ratio!

The mean square successive difference divided by the sample variance.

Godines, D et al 2019
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Machine Learning Signatures of Dark Objects
Machine Learning Microlensing

MicroLIA classification step implements a Random Forest classifier: an ensemble method that uses
smaller, weaker, learners: small decision trees to produce a strong learner.
Each tree is trained on a subset of the data and recursively partitions it into each of the classes we

want to predict

Data comesin
l Splitting nodes

partition data§
Leaf nodes are - & é

predictions

The final prediction is the average of the predictions of the weaker learners (wisdom of the crowd).

21



Machine Learning Signatures of Dark Objects

Machine Learning Microlensing

In Godines, D. et al 2019 they found that point-like
microlensing events could be isolated from other galactic

sources.

Godines, D et al 2019
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Machine Learning Signatures of Dark Objects

Machine Learning Microlensing

e \We extended MicroLIA to simulate BS and NFW light curves
o Same cadence
o  Same noise model (Gaussian)
e Improved MicroLIA features extraction pipeline
o  Corrected an error with derivative time series implementation
o Adapted the code for parallel simulation
o Demanded that p=1.34 for at least one timestamp
e Produced two datasets each with 100k light curves per class
o  OGLE2 timestamps
m Adaptive cadence using OGLE2 timestamps of real events
m  Mimics OGLE2 survey sensitivity
o "Perfect” daily cadence timestamps
m Ideal case to study the impact of cadence
e Dataset released with the paper doi.org/10.5281/zenodo.10566869

23



Machine Learning Signatures of Dark Objects
Machine Learning Microlensing

For the classification task we used a Histogram-Based Gradient Boosted Machine, another type of
ensemble learners (implemented using scikit-1learn).

In Random Forests, the weak learners are independent of each other. In Gradient Boosted Machines,
the weak learners are trained sequentially on the prediction error of the previous iteration

6?% 5 @%@

F1(X) trained on targety F2(X) = F1(X) + h1(X) FB(X) = FZ(X) + h2(X)
w/ h1 trained on residual w/ hztrained on residual
y-F,X v - F,X)

and the final prediction is F(X)=F,,(X)=F,, ,(X)+h,, .(X).
Code: gitlab.com/miguel.romao/microlensing-extended-objects-machine-learning

24



True label

Machine Learning Signatures of Dark Objects
OGLE2 Timestamps Analysis

We find that there is a considerable overlap between microlensing sources.

However, Boson Star light curves appear to be the most distinguishable between them.

Confusion Matrix All vs All OGLE-IT Timestamps
w/ OGLE-II Timestamps 1.0 ) |
1.0 .
BS 9801 3.620-04 4.02¢-05 2.61e-01 2.41e-01 0.00-+0( /
0.8 e = 0.8 ]
CV H.20e-03 0.00e-+000.00e-+000.00e+00 6.39¢-04 NFW and pOIﬂ’F like 2
ML are very mixed =
— L |
LPV [0.00e+000.00e-+0( 0.00e+000.00e--000.00e-+0( Z 0.6
/ 9;/
ML H.236-01 1.20e-04 n.()()«-wo 3.50e-01 0.00e-+0( 04 ;i:
=
NFW [1.456-01 0.00e-+000.00e-+00{4.886-01 4.166-01/0.00¢-+0( =
0.2 ot
Q - e
VARIABLE/8.09¢-05 1.21e-04 0.00¢+000.00¢-+000.00¢-+00 [RNUSEN = ROC curve for BS (AUC = 0.73)
—— ROC curve for ML (AUC = 0.65)
o A AN < o 00 - ;
By O 8 > & & ROC curve for NFW (AUC = 0.62) |
~ X . .
N
&g High purity of BS for 0.0 02 04 06 08 10
. = ahigh cut on the False Positive Rate (Positive label: 1)
Predicted label

classifier output
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Machine Learning Signatures of Dark Objects
OGLE2 Timestamps Analysis

Indeed, we are able to isolate Boson Stars! The 10 more confidently
classified BS events exhibit
the caustics very clearly!

10 Most Distinctive Boson Star Light Curves

Boson Star Events w/ OGLE-IT Timestamps w/ OGLE-II Timestamps
10 ’ Predicted Label 0.92
SR 0.93
0.8 e CV
LPV £ 0.94
= e ML =
= -
% 08 o NFW 509
I VARIABLE 2 0.96
=04 oo
o “0.98
0.2 T L
/ 0.99
T —100 =75 —50 —25 0 25 50 75 100

Timestamp — t, (days)

Sweet spot T_~2 exactly
where the caustics emerge
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Machine Learning Signatures of Dark Objects

OGLE2 Timestamps Analysis

The input to our classifier were 148 features, so which ones are relevant for the task?

Implemented a Backward Sequential Feature Selection loop: removes a feature each step, keeping
the best ones. Found that around 25 features are important to differentiate between microlensing

classes!

For Boson Stars, complexity was found to be the most important.

Sequential Feature Selection w/ OGLE-II Timestamps

ROC AUC

Geometric Mean
BS

ML

NFW

25 Features

=

10

60

80 100 120 140

Number of Features

0.10

0.08

% 0.06

Xity

Comple

o
=]
=

0.0

2

0.00

Boson Star Events
w/ OGLE-II Timestamps

Complexity is the

standard deviation of

the time series
self-difference
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Machine Learning Signatures of Dark Objects

Regular Cadence Timestamps Analysis

OGLE2 has irregular and low cadence. How much would our results improve if we could have regular

daily cadence?

Confusion Matrix All vs All
w/ Regular Daily Cadence

BS FEEEERUR 1.60e-04 0.00e+-00 2.62e-01 1.99e-01 3.99e-05

CV 1.62e-04 PREERRIN0.00e-+00 0.00e4-00 0.00e+00 0.00e+0C

LPV {0.00e+00 0.00e+00 jRUZEERY 0.00e+00 0.00e+00 0.00e+-0C

True label

ML 2.09e-02 4.04e-05 0.00e+00 CAEEEUN 3.04e-01 0.00e-+0(

NFW 3.28e-02 0.00e+000.00e+004.13e-01 SEEEER0.00e+-0!
\

VARIABLE 7.95¢-05 0.00e+000.00e+00 3.98¢e-05 0.00e+00 K

¢ & & ¥
N

Predicted label

1.0

0.6

0.4

0.2

0.0

Easier to isolate NFW at
low false positive rate cuts!

NFW seem better isolated!

True Positive Rate

1.0

0.0

Regular Daily Cadence

—— ROC curve for BS (AUC = 0.81)
—— ROC curve for ML (AUC = 0.75)
ROC curve for NFW (AUC = 0.74)

0.0

0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)
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Machine Learning Signatures of Dark Objects
Regular Cadence Timestamps Analysis

Evidence at the

possibility of isolating
NFW events with high

\NEW Events w/ Regular Daily Cadence

confidence

1.0

0.0

Ly

.. Predicted Label
e BS

e CV

o LPV

e ML

e NFW

VARIABLE

w
e
34

Minmaxed Magnitude

100 Most Distinctive ML vs NF'W

Light Curves

0.0

o
[N

o
=~

o
>

o
o)

w/ Regular Daily Cadence

— ML
NFW

1
(Timestamp — ty)/tr

Harder to
interpret what is
happening, but it
seems that our
classifier is
picking up
“narrower”
peaks
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Ongoing Work
Motivation

Our first study on machine learning microlensing of extended objects was very exciting! However, a
few things stand out:
e QOur dataset does not include possible sources of misclassification, (e.g. binary lenses)
e  QOur simulation made use of a simplistic noise model
e The methodology is detached from what surveys do
o  Surveys implement cuts based on point-like microlensing light curve profiles
o No machine learning is applied to the light curves themselves, which are a by-product of
analyses
e How do we take our message across?
o  We need to bring our extended object light curve models to the astronomer community
o We need to expand our analysis to include more realistic noise models and simulations
o Look for ongoing community efforts in astrophysics

In a sense: we need to reach out to astronomers, especially those associated with surveys!
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Ongoing Work
Reaching out to Astronomers

We (Djuna and I) have teamed up with MicroLIA's main author Daniel Godines, and our first stop is
the ELASTICC dataset:
e Extended LSST Astronomical Time Series Classification Challenge
o LSST: Legacy Survey of Space and Time
m To be conducted by Vera C. Rubin Observatory
o Inherited parts of PLAsTICC (P for photometric), Kessler, R et all 2019
m  And its Kaggle challenge Hlozek, R et all 2023
e Multiple sources, goth galactic and extragalactic
o  However, a clear focus on supernovae as ELASTICC is hosted by the DESC: Dark
Energy Science Collaboration
e Science purposed
ELASTICC presents the first simulation of LSST alerts, with millions of synthetic transient light
curves and host galaxies. The data is being used to test broker alert systems and classifiers, and
develop the infrastructure for LSST's Dark Energy Science Collaboration Time-Domain needs.
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Ongoing Work

Reaching out to Astronomers

Dataset available online: portal.nersc.gov/cfs/Isst/DESC TD PUBLIC/ELASTICC/
e Includes O(2M) labeled simulated light curves
o  Of which O(200k) galactic sources

Eclipsing Binaries (94934)

0-Scuti (29499)

RR Lyrae (20047)

Cepheid Variables (19672)

Dwarf Nova (11464)

Microlensing Point-like Lens, PyLIMA (10635) > Two different simulations of
Microlensing Point-like Lens, GenLens (9371 point-ike microlensing
Microlensing Binary Lens (5123)
M-dwarf flare (2655)

We are very interested
in new classes like this
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Ongoing Work

Reaching out to Astronomers

Preliminary classification study on ELAsTICC

0.8 1 e .
/ Too easy a classification?
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Ongoing Work
Not all is well

The classifier is picking up simulation differences, not Physics...
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Ongoing Work
Not all is well

The classifier is picking up simulation differences, not Physics...

Maybe thisis a
microlensing light
curve?

Calibrated Flux
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Ongoing Work
Not all is well

The classifier is picking up simulation differences, not Physics...
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Likewise here...



Ongoing Work
Going the extra mile

In fact, things get worse... using the rubin-sim (github.com/Isst/rubin_sim) package (since
ELAsTICC is streaming to brokers, no simulation code is available), which simulates Vera
Rubin Observatory conditions and noise model, we have simulated point-like microlensing
events and inject them into ELAsTICC dataset
o The classifier was capable to completely separate our simulation of point-like
microlensing light curves and those present in ELASTICC...
Unfortunately, this means that we cannot "bring your own light curve models” and produce
new ELAsTICC-compatible light curves and perform an analysis with that data...
So what now?
o  While we cannot inject our extended object light curves into ELAsTICC, we can produce a
dataset of microlensing light curves adapted to Vera Rubin Observatory
o Staytuned...
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Conclusions and Outlook




Conclusions
And outlook

Dark matter composition might include extended dark objects, such as NFW subhalos and
Boson Stars
These objects produce microlensing events, which can be detected by surveys
The extended nature of these objects endows their light curves with unique signatures, such
as caustics
Using machine learning on the time-series features of their light curves, these objects could,
in fact, be discovered using microlensing surveys

o Boson Stars exhibit a distinct profile

o NFW subhalos might require higher (at least more regular) cadence

o Interestingly, our results did not extend the feature set: in principle better sensitivity

could be achieved with new dedicated features
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Conclusions
And outlook

e Moving forward we need to close the gap between our phenomenological study and survey
analyses

o  Approaching what the community is doing (especially around LSST)

o Deploying more realistic survey noise models

o  Broadening the classification analysis to include new classes of light curves
e Surveys seem to have too strict a selection criterion

o  Are we missing out on (more) exotic objects?

o How feasible would be a "“model independent” search?
e Finally, there is the exciting prospect that NFW light curves could be isolated

o  Specific time series features that capture some unique signature?

o  Go beyond the features, what could we do with the light curve itself?
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Thank you!
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n+1
Backups

Simulation details:
Gaussian (in fact, Poissonian) noise
Tm~U(0.5,5)
t.~N(u=30,0=10)
(14(0,1)  for ML
up ~ Q U(0,1.5) for BS

(U(0,1.1) for NFW

Cuts:
M=1.34
And MicroLIA criteria: magnitude greater than 30 at least for 1/3 timestamps, etc

These are minimal cuts, no fits to microlensing curves are performed.
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Backups

NFW Evepts

w/ OGLE-II Timestamps

Predicted Label

4

BS
CvV
LPV
ML

NFW
VARIABLE

TTIL
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Feature Rank
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complexity
median buffer range
ratio recurring points
amplitude
medianAbsDev
FluxPercentileRatioMid80
count below
cusum
shapiro wilk
mean change
longest strike above (derivative)
mean second derivative
number of crossings
LinearTrend
longest strike below (derivative)
sample entropy
FluxPercentileRatioMid65
mean change(derivative)
longest strike above
mean n abs max (derivative)
FluxPercentileRatioMid20
quantile (derivative)
check min last loc
Gskew

check max last loc (derivative)

stetsonJ (derivative)
half mag amplitude ratio
FluxPercentileRatioMid80
median buffer range
count below
medianAbsDev
check max last loc
longest strike below
complexity
PercentDifferenceFluxPercentile
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shapiro wilk (derivative)
FluxPercentileRatioMid65
number of crossings
number cwt peaks
number cwt peaks (derivative)
time reversal asymmetry (derivative)
FluxPercentileRatioMid35
peak detection(derivative)
mean n abs max (derivative)
longest strike above (derivative)
check min last loc
quantile (derivative)
sample entropy (derivative)
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