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● Plenty and diverse evidence for Dark Matter
○ Astrophysical

dx.doi.org/10.1093/mnras/249.3.523 dx.doi.org/10.1093/mnras/249.3.523
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● Plenty and diverse evidence for Dark Matter
○ Cosmological

ESA astro-ph/0604561, doi:10.1038/nature04805
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All evidence is gravitational. Nonetheless, the dominant paradigm has been field theoretical.

Wikipedia

What about here?

Dark celestial objects that 
can be 
detectable/constrained 
using microlensing!
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● Matter bends space, changing geodesics traveled by light
● Different from strong lensing as images do not resolve

○ Instead an increase in brightness is obserserved

Wikipedia
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Depending on the nature of the lens, different brightness magnification profiles emerge…

British Astronomical 
Association OGLE collaboration



Let’s define the source-lens-observer geometry and associated quantities: 
● β: Impact angle (i.e. lens position)
● θ: Image angles
● ξ: Impact parameter

and the normalised quantities
● u = ξ/rE=β/θE
● τ = θ/θE
● x=DL/DS 

Where

is the Einstein angle for a point lens at β=0 and rE=DLθE the associated Einstein radius.

Introduction
Microlensing of Compact Dark Objects
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Croon, McKeen, Raj 2020



Introduction
Microlensing of Compact Dark Objects

The position of the images, τi, are given by the solutions of the lens equation

where m(τ) is the mass profile of the lens, which accounts for the distribution of the lens mass 
projected onto the lens plane

The total magnification, μ, will be given by the sum of the magnifications of each of each image
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Introduction
Microlensing of Compact Dark Objects

For a point-like lens, such as a Primordial Black-Hole (PBH) we have m(τ)=1 and the lens equation 
has two solutions, leading to

Therefore, when the lens “crosses” its Einstein radius, u=1, we can observe a magnification μ=1.34.

To connect to surveys, we notice that while traversing its plane, the lens impact parameter is related 
to the survey time, t, as

where u0
 is the lens minimal (normalised) impact parameter, tE is the lens “Einstein crossing time”, i.e. 

the time it takes for the lens to cross its Einstein radius, and t0the time of the magnification peak.
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Introduction
Microlensing of Compact Dark Objects

One can then easily simulate the magnification of a point-like lens.

Surveys look for light curves with this shape and count the number of
matching events. This can be used to constraint the fraction of Dark Matter
composed by PBH:

12

Survey 
efficiency

Halo profile 
(isothermal)220 km/s

(u1.34 is such that μ(u≤u1.34)≥1.34, u1.34=1 for point-like)

Number of 
observed 
stars

Total 
observation 
time

Min and 
maximal 
observable 
crossing times Green, Kavanagh  2020
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Microlensing signatures of extended dark objects using machine learning
Miguel Crispim Romão (IPPP, Durham), Djuna Croon (IPPP, Durham)
https://arxiv.org/abs/2402.00107 (submitted to PRD)

https://arxiv.org/abs/2402.00107


Machine Learning Signatures of Dark Objects
Extended Dark Objects
● So far we have only discussed point-like dark lenses, m(τ)=1
● However, many dark objects not only have substructure, but have extended structures and can 

be markedly not point-like
● Croon, McKeen, Raj 2020 and 2020, studied extended dark objects and constrained their 

population using microlensing data from EROS-2 (Magellanic Clouds) and OGLE-IV (Galatic 
Bulge) surveys

○ Two types of objects are of special interest for the work presented herein:
■ Boson Stars: gravitationally stable structures composed of scalar fields. Exhibiting 

a more disperse m(τ)
■ Navarro-Frenk-White (NFW) subhalos: products of hierarchical clustering of cold 

DM. Exhibiting a more peaked m(τ)
○ For sufficiently flat density profiles, the caustics empact the constraints
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Machine Learning Signatures of Dark Objects
Extended Dark Objects
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Where τm=rlens/rE  =θlens/θE

τm(x)

Croon, McKeen, Raj 2020
Caustics can emerge!
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Croon, McKeen, Raj 2020

rlens rlens

Caustics impact 
constraints

EROS-2
OGLE-IV



Machine Learning Signatures of Dark Objects
Extended Dark Objects

Besides constraining the fraction of DM composed of these objects, could we detect them?

17

Here are already anticipating that the caustics will play a role 
for 0.8≤τm≤3



Machine Learning Signatures of Dark Objects
Machine Learning Microlensing

How are microlensing events detected, then?

● Images of a source are captured at 
different times with a certain cadence

● A reference image sets a baseline 
magnitude/flux for the source

● Differences between an image and the 
reference allow to see the changes in 
magnitude/flux

○ The  light curve is the time series of 
the magnitude/flux over time

18
Niikura, H, et al - Subaru/HSC observation



Machine Learning Signatures of Dark Objects
Machine Learning Microlensing
● Data is not readily available

○ Only analysed and human-annotated 
events are released

● Analyses have a very constraining 
pre-analysis cuts focused on point-like 
microlensing signatures

● Nonetheless, we can perform a 
phenomenological study

○ Simulate light curves for multiple 
astrophysical phenomena

○ Use quantities derived from the time 
series to perform a classification 
task

19What is released

Mroz, P. et al 2020



Machine Learning Signatures of Dark Objects
Machine Learning Microlensing
● MicroLIA (Godines, D. et al 2019) a python package 

(github.com/Professor-G/MicroLIA)
○ Simulation of light curves (of some astrophysical 

phenomena)
○ Extraction of time series features
○ Machine learning classification between different 

classes
● Produces 74 features from the light curve, and from its 

derivative (total 148)
● Simulates galactic sources suitable for an OGLE-inspired 

study plus a constant class (noise)
○ Cataclysmic Variables (CV)
○ RR Lyrae & Cepheid Variables (VARIABLE)
○ Mira long-period variables (LPV)
○ Point-like microlensing (ML) 20

Godines, D et al 2019



Machine Learning Signatures of Dark Objects
Machine Learning Microlensing

MicroLIA classification step implements a Random Forest classifier: an ensemble method that uses 
smaller, weaker, learners: small decision trees to produce a strong learner.
Each tree is trained on a subset of the data and recursively partitions it into each of the classes we 
want to predict

The final prediction is the average of the predictions of the weaker learners (wisdom of the crowd).

21

Data comes in

Leaf nodes are
predictions

Splitting nodes
partition data

…



Machine Learning Signatures of Dark Objects
Machine Learning Microlensing
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In Godines, D. et al 2019 they found that point-like 
microlensing events could be isolated from other galactic 
sources.

This shows a lot of promise! But how do Boson Stars and 
NFW subhalos (and in general other extended objects) fit in 
this picture?

● Can we isolate them?
○ Especially from point-like light curves?

● Could they be “polluting” point-like observations?

Godines, D et al 2019



● We extended MicroLIA to simulate BS and NFW light curves
○ Same cadence
○ Same noise model (Gaussian)

● Improved MicroLIA features extraction pipeline
○ Corrected an error with derivative time series implementation
○ Adapted the code for parallel simulation
○ Demanded that μ≥1.34 for at least one timestamp 

● Produced two datasets each with 100k light curves per class
○ OGLE2 timestamps

■ Adaptive cadence using OGLE2 timestamps of real events
■ Mimics OGLE2 survey sensitivity

○ “Perfect” daily cadence timestamps
■ Ideal case to study the impact of cadence

● Dataset released with the paper doi.org/10.5281/zenodo.10566869

Machine Learning Signatures of Dark Objects
Machine Learning Microlensing
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For the classification task we used a Histogram-Based Gradient Boosted Machine, another type of 
ensemble learners (implemented using scikit-learn).

In Random Forests, the weak learners are independent of each other. In Gradient Boosted Machines, 
the weak learners are trained sequentially on the prediction error of the previous iteration

and the final prediction is F(X)=FM(X)=FM-1(X)+hM-1(X).
Code: gitlab.com/miguel.romao/microlensing-extended-objects-machine-learning

Machine Learning Signatures of Dark Objects
Machine Learning Microlensing
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F1(X) trained on target y       F2(X) = F1(X) + h1(X)
w/ h1 trained on residual
                 y - F1(X)

      F3(X) = F2(X) + h2(X)
w/ h2 trained on residual
                 y - F2(X)

…



We find that there is a considerable overlap between microlensing sources.

However, Boson Star light curves appear to be the most distinguishable between them.

Machine Learning Signatures of Dark Objects
OGLE2 Timestamps Analysis
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High purity of BS for
a high cut on the 
classifier output

NFW and point-like 
ML are very mixed



Indeed, we are able to isolate Boson Stars! 

Machine Learning Signatures of Dark Objects
OGLE2 Timestamps Analysis
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Sweet spot τm~2 exactly 
where the caustics emerge

The 10 more confidently 
classified BS events exhibit 
the caustics very clearly!



The input to our classifier were 148 features, so which ones are relevant for the task?

Implemented a Backward Sequential Feature Selection loop: removes a feature each step, keeping 
the best ones. Found that around 25 features are important to differentiate between microlensing 
classes!

For Boson Stars, complexity was found to be the most important.

Machine Learning Signatures of Dark Objects
OGLE2 Timestamps Analysis
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Complexity is the 
standard deviation of 
the time series 
self-difference



OGLE2 has irregular and low cadence. How much would our results improve if we could have regular 
daily cadence?

Machine Learning Signatures of Dark Objects
Regular Cadence Timestamps Analysis
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NFW seem better isolated!

Easier to isolate NFW at 
low false positive rate cuts!



Machine Learning Signatures of Dark Objects
Regular Cadence Timestamps Analysis
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Evidence at the 
possibility of isolating 
NFW events with high 
confidence

Harder to 
interpret what is 
happening, but it 
seems that our 
classifier is 
picking up 
“narrower” 
peaks



               
Current Work

 

30



Our first study on machine learning microlensing of extended objects was very exciting! However, a 
few things stand out:

● Our dataset does not include possible sources of misclassification, (e.g. binary lenses)
● Our simulation made use of a simplistic noise model
● The methodology is detached from what surveys do

○ Surveys implement cuts based on point-like microlensing light curve profiles
○ No machine learning is applied to the light curves themselves, which are a by-product of 

analyses
● How do we take our message across?

○ We need to bring our extended object light curve models to the astronomer community
○ We need to expand our analysis to include more realistic noise models and simulations
○ Look for ongoing community efforts in astrophysics

In a sense: we need to reach out to astronomers, especially those associated with surveys!

Ongoing Work
Motivation

31



We (Djuna and I) have teamed up with MicroLIA’s main author Daniel Godines, and our first stop is 
the ELAsTiCC dataset:

● Extended LSST Astronomical Time Series Classification Challenge
○ LSST: Legacy Survey of Space and Time

■ To be conducted by Vera C. Rubin Observatory
○ Inherited parts of PLAsTiCC (P for photometric), Kessler, R et all 2019

■ And its Kaggle challenge Hlozek, R et all 2023
● Multiple sources, goth galactic and extragalactic

○ However, a clear focus on supernovae as ELAsTiCC is hosted by the DESC: Dark 
Energy Science Collaboration 

● Science purposed
ELAsTiCC presents the first simulation of LSST alerts, with millions of synthetic transient light 
curves and host galaxies. The data is being used to test broker alert systems and classifiers, and 
develop the infrastructure for LSST’s Dark Energy Science Collaboration Time-Domain needs.

Ongoing Work
Reaching out to Astronomers

32



Dataset available online:  portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/
● Includes O(2M) labeled simulated light curves

○ Of which O(200k) galactic sources
■ Eclipsing Binaries (94934)
■ δ-Scuti (29499)
■ RR Lyrae (20047)
■ Cepheid Variables (19672)
■ Dwarf Nova (11464)
■ Microlensing Point-like Lens, PyLIMA (10635)
■ Microlensing Point-like Lens, GenLens (9371
■ Microlensing Binary Lens (5123)
■ M-dwarf flare (2655)

Ongoing Work
Reaching out to Astronomers

33

We are very interested 
in new classes like this

Two different simulations of 
point-like microlensing

http://portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/


Preliminary classification study on ELAsTiCC 

Ongoing Work
Reaching out to Astronomers

34

Too easy a classification?

This is odd



The classifier is picking up simulation differences, not Physics…

Ongoing Work
Not all is well
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The classifier is picking up simulation differences, not Physics…

Ongoing Work
Not all is well
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Maybe this is a 
microlensing light 
curve?

But one needs a lot more imagination for these



The classifier is picking up simulation differences, not Physics…

Ongoing Work
Not all is well

37Likewise here…



● In fact, things get worse… using the rubin-sim (github.com/lsst/rubin_sim) package (since 
ELAsTiCC is streaming to brokers, no simulation code is available), which simulates Vera 
Rubin Observatory conditions and noise model, we have simulated point-like microlensing 
events and inject them into ELAsTiCC dataset

○ The classifier was capable to completely separate our simulation of point-like 
microlensing light curves and those present in ELAsTiCC…

● Unfortunately, this means that  we cannot “bring your own light curve models” and produce 
new ELAsTiCC-compatible light curves and perform an analysis with that data…

● So what now?
○ While we cannot inject our extended object light curves into ELAsTiCC, we can produce a 

dataset of microlensing light curves adapted to Vera Rubin Observatory
○ Stay tuned…

Ongoing Work
Going the extra mile

38
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● Dark matter composition might include extended dark objects, such as NFW subhalos and 
Boson Stars

● These objects produce microlensing events, which can be detected by surveys
● The extended nature of these objects endows their light curves with unique signatures, such 

as caustics
● Using machine learning on the time-series features of their light curves, these objects could, 

in fact, be discovered using microlensing surveys
○ Boson Stars exhibit a distinct profile
○ NFW subhalos might require higher (at least more regular) cadence
○ Interestingly, our results did not extend the feature set: in principle better sensitivity 

could be achieved with new dedicated features

Conclusions
And outlook
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● Moving forward we need to close the gap between our phenomenological study and survey 
analyses

○ Approaching what the community is doing (especially around LSST)
○ Deploying more realistic survey noise models
○ Broadening the classification analysis to include new classes of light curves

● Surveys seem to have too strict a selection criterion
○ Are we missing out on (more) exotic objects?
○ How feasible would be a “model independent” search?

● Finally, there is the exciting prospect that NFW light curves could be isolated
○ Specific time series features that capture some unique signature?
○ Go beyond the features, what could we do with the light curve itself?

Conclusions
And outlook
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Thank you!
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Simulation details:
Gaussian (in fact, Poissonian) noise
τm~U(0.5,5)
tE~N(μ=30,σ=10)

Cuts: 
μ≥1.34
And MicroLIA criteria: magnitude greater than 3σ at least for 1/3 timestamps, etc
These are minimal cuts, no fits to microlensing curves are performed.

n+1
Backups

44



n+1
Backups

45



n+1
Backups

46



n+1
Backups

47


