
Introduction to QED & QCD
Tutorial Questions

1 Tuesday Tutorial

1. Suppose we have a plane-wave solution to the Klein-Gordon equation of the form

φ(x, t) = Ae−i(ωt−k·x).

Use the Klein-Gordon equation to find the dispersion relation, i.e. find ω in terms of k. How
do you interpret the two solutions?

Show that these solutions are eigenstates of the energy operator, i∂t, and the 3-momentum
operator, −i∇.

2. Show that the Dirac γ-matrices defined in the lectures:

γ0 = β, γk = β αk,

obey the hermiticity relation
(γµ)† = γ0γµγ0.

3. When evaluating cross sections, you will frequently need to manipulate Dirac matrices. Using
the anti-commutation relations for the γ-matrices, show that in 4 dimensions:

(i) γµγµ = 4,

(ii) γµγνγµ = −2γν ,

(iii) γµγνγλγµ = 4gνλ,

(iv) γµγνγλγργµ = −2γργλγν .

How do these change in arbitrary dimensions where gµνgµν = δµµ = d?
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4. Verify the orthonormality and completeness relations for the solutions of the Dirac equation:

ur(p)us(p) = −vr(p)vs(p) = 2m δrs, ur(p)vs(p) = vr(p)us(p) = 0,

and
2

r=1

ur(p)ur(p) = (✁p+m),
2

r=1

vr(p)vr(p) = (✁p−m).

5. Show that the Dirac hamiltonian, H = α ·p+βm, commutes with the total angular momen-
tum operator

[L+ S, H] = 0 ,

where L = x× p is the orbital angular momentum and S is the spin operator

S =
1

2


σ 0
0 σ


.

6. Using the plane-wave solutions of the Dirac equation given in the lectures, show that for
p = (0, 0, pz)

Szu1 =
1

2
u1, Szu2 = −1

2
u2, Szv1 =

1

2
v1 and Szv2 = −1

2
v2,

where Sz is the z-component of the spin operator.

2 Wednesday Tutorial

Note: if pressed for time ignore the ”arbitrary gauge” part in Q7. Q8 is partly a repetition of what
was already presented in the lectures.

7. Draw all the tree-level diagrams for Bhabha-scattering, e+(p) e−(k) → e+(p′) e−(k′) and give
the expression for the scattering amplitude, iM, in Feynman gauge. What happens in an
arbitrary gauge?

8. (a) Show that the process e+(k′) e−(k) → µ+(p′)µ−(p), in the limit me → 0, has a matrix-
element-squared given by

|M|2 = 1

4

e4

(k + k′)4
Tr [✓✓k′γµ

✓✓kγν ] Tr [(✁p+M)γµ(✁p
′ −M)γν ] ,

when summed and averaged over final and initial spins, where M is the mass of the
muon.
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(b) Show that

dσ

dΩ



e+e−→µ+µ−
=

|M|2

64π2s


1− 4M2

s
,

where s = (k + k′)2.

(c) The traces evaluate to (check if you have time!)

|M|2 = 8e4

s2

(pk)2 + (pk′)2 +M2(kk′)


.

Move to the centre-of-mass frame and let the scattering angle be θ. Show that


dσ

dΩ



e+e−→µ+µ−
=

e4

64π2s


1− 4M2

s


1 +


1− 4M2

s


cos2 θ +

4M2

s


.

(d) Find an expression for the total cross section in the high-energy limit where the mass of
the muon can be neglected.

3 Thursday Tutorial

Note: if pressed for time focus on Q9, Q10, Q12 a).

9. Write the amplitude for Compton scattering e(p) γ(k) → e(p′) γ(k′) in the form iM =
Mµνε

∗µ(k′)εν(k). Verify that this is gauge-invariant.

10. In the lectures, we found the matrix element squared for unpolarised Compton scattering was

|M|2 = 2e4


pk

pk′ +
pk′

pk
+ 2m2


1

pk
− 1

pk′


+m4


1

pk
− 1

pk′

2

.

Working in the centre-of-mass system, in the limit where the electron massm can be neglected,
show that the matrix element squared is dominated by backward scattering, θ ≃ π, where θ
is the scattering angle of the photon.

11. Use the matrix-element squared for Compton scattering to obtain the matrix-element squared
for the annihilation process e+ e− → γ γ. Again work in the centre-of-mass frame and show
that, in the high-energy limit E ≫ m,

|M|2 ≃ 4e4
1 + cos2 θ

sin2 θ
.
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(a) (b)

Figure 1: One-loop corrections to a qq̄g-vertex.

12. Consider the diagrams in figure 1. Show that the colour factors are given by

(a) tctatbδbc = − 1

2Nc

ta, and (b) ifabctbtc = −1

2
CAt

a

respectively.

13. Calculate the summed and averaged matrix-element squared, |M|2, for the quark-scattering
process ud → ud.

14. Solve the one-loop β-functions for QCD and QED:

µ2dαs

dµ2
= −11CA − 2nf

12π
α2
s, and µ2 dα

dµ2
=

1

3π
α2 ,

using as initial condition the value of the couplings at the Z mass. Sketch the solutions as a
function of µ2.
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