Collider Phenomenology Eleni Vryonidou

STFC school, Durham 2-6/9/24

LHC is a top factory **Rich phenomenology:**

pair production

00000

associated production

Eleni Vryonidou

4 tops

connection to Higgs physics

Top physics Why study the top quark?

- 1. Heaviest known particle: Strong coupling to the Higgs
- 2. Portal to new physics: e.g. EWSB, composite Higgs
- of production channels

3. LHC is a top factory: precise access to top properties through a lot

SMEFT school 2022

Top has a special place in the Universe Stability of the vacuum

SMEFT school 2022

Top quark is a special quark Spin Corrolations The to ℓ^+, \bar{d} Spin i esserved! ν, u

Top Spin effects

Lepton+ or d emitted in the top spin direction

 $d\Gamma$ $1 + p k_i \cos \theta$ $\Gamma d\cos\theta$ We can check how the top is produced!

Eleni Vryonidou

Spin analysing power

SMEFT school 2022

Weak interaction and W polarisation

$$f_0 = \frac{m_t^2}{2m_W^2 + m_t^2} = 70\%$$

$$\frac{1}{2} \sim 30\% \quad f_R \sim 0\%$$

for
$$m_b = 0$$

Status of top measurements

Model	E _{CM} [TeV]	$\int \mathcal{L} dt [fb^{-1}]$] Measurement	The
tī	13	36.1 fb ⁻¹	$\sigma =$ 826.4 ± 3.6 ± 19.6 pb	$\sigma = 8$
\mathbf{t}_{t-chan}	13	3.2 fb^{-1}	$\sigma =$ 247 ± 6 ± 46 pb	$\sigma =$
tŦW	13	36.1 fb ⁻¹	$\sigma =$ 870 ± 130 ± 140 fb	$\sigma =$
tīZ	13	139 fb $^{-1}$	$\sigma = 990 \pm 50 \pm 80~{ m fb}$	$\sigma =$
tīH	13	80 fb $^{-1}$	$\sigma = 670 \pm 90 + 110 - 100$ fb	$\sigma = 1$
tīγ	13	36.1 fb ⁻¹	$\sigma =$ 521 ± 9 ± 41 fb	$\sigma =$
tZj	13	139 fb $^{-1}$	$\sigma = 97 \pm 13 \pm 7~{ m fb}$	$\sigma = 1$
4t	13	139 fb $^{-1}$	$\sigma=$ 24 $+$ 7 $-$ 6 fb	$\sigma = 1$

Eleni Vryonidou

•

Status of top measurements

Model	E _{CM} [TeV]	$\int \mathcal{L} dt [fb^{-1}]$] Measurement	The
tī	13	36.1 fb ⁻¹	$\sigma =$ 826.4 ± 3.6 ± 19.6 pb	$\sigma = 8$
\mathbf{t}_{t-chan}	13	3.2 fb^{-1}	$\sigma =$ 247 ± 6 ± 46 pb	$\sigma =$
tŦW	13	36.1 fb ⁻¹	$\sigma =$ 870 ± 130 ± 140 fb	$\sigma =$
tīZ	13	139 fb $^{-1}$	$\sigma = 990 \pm 50 \pm 80~{ m fb}$	$\sigma =$
tīH	13	80 fb $^{-1}$	$\sigma = 670 \pm 90 + 110 - 100$ fb	$\sigma = 1$
tīγ	13	36.1 fb ⁻¹	$\sigma =$ 521 ± 9 ± 41 fb	$\sigma =$
tZj	13	139 fb $^{-1}$	$\sigma = 97 \pm 13 \pm 7~{ m fb}$	$\sigma = 1$
4t	13	139 fb $^{-1}$	$\sigma=$ 24 $+$ 7 $-$ 6 fb	$\sigma = 1$

Eleni Vryonidou

۰.

New Physics searches at the LHC

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

New Physics searches at the LHC

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

$$\left(\frac{p^2}{M^2}\right) + \left(\frac{p^2}{M^2}\right)^2 + \cdots$$

STFC HEP school 2024

STFC HEP school 2024

$$\left(\frac{p^2}{M^2}\right) + \left(\frac{p^2}{M^2}\right)^2 + \cdots$$

STFC HEP school 2024

STFC HEP school 2024

STFC HEP school 2024

STFC HEP school 2024

 $\mathcal{L}_{NP}(\varphi, Z')$

$\mathcal{L}_{SM}(\varphi) + \mathcal{L}_{Dim6}(\varphi) + \cdots$

$$\varphi) = \frac{C}{\Lambda^2} (\bar{f}\gamma^{\mu} f) (\bar{f}\gamma_{\mu} f)$$

 c/Λ^2 can be linked to High Scale physics: Matching and Running

STFC HEP school 2024

EFT for New Physics Low Energy Effective Theory without the Z'

New Interaction

Rate

 $\frac{1}{-M^2}$

Eleni Vryonidou

 $\mathcal{L}_{SM}(\varphi) + \mathcal{L}_{Dim6}(\varphi) + \cdots$

Modified interactions suppressed by the scale of New Physics

Energy The way to probe New Physics in the absence of light states

STFC HEP school 2024

EFT for New Physics Low Energy Effective Theory without the Z'

New Interaction

 $\frac{1}{-M^2}$

Eleni Vryonidou

Modified interactions suppressed by the scale of New Physics

STFC HEP school 2024

Does the effective theory work? An example of a successful EFT:

Energy of β -decay: ~MeV violating unitarity

Energy borrowed from the vacuum A virtual W-boson exchange

- Fermi formulated his theory in the 1930's
- It described β-decay data very well
- But this is not the full theory: cross-section rising with energy,

1983 Discovery of W-boson at CERN UA1 and UA2 $M_w = 80 \text{ GeV} >> Q_\beta$

STFC HEP school 2024

Why use an effective theory?

Top-bottom: We know the full theory but it's too complicated EFT simplifies the calculation by only including the relevant interactions It focuses on the relevant scale Examples: SCET, HQEFT

Bottom-up: We don't know the full theory, we are trying to describe measurements and guess the full theory Efficient to characterise new physics Examples: **SMEFT**, Fermi Theory (when formulated in the 1930's)

STFC HEP school 2024

SMEFT for New Physics

- Focus on SMEFT:
 - only SM fields
 - respecting SM symmetries
 - valid below scale Λ
- Gauge invariant
- Higher-order corrections: renormalisable order by order in $1/\Lambda$

$$\mathcal{O}(\alpha_s) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) +$$

- Complete description

 $\mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \cdots$

Model Independent (apart from symmetries and no new light states)

STFC HEP school 2024

Let's take a tour of SMEFT $\mathcal{L}_{\text{eff}} = \mathcal{L}^{(4)} + \sum_{D>4} \sum_{i} \frac{c_i^{(D)}}{\Lambda^{D-4}} \mathcal{O}_i^{(D)}$

STFC HEP school 2024

Let's take a tour of SMEFT $\mathcal{L}_{\text{eff}} = \mathcal{L}^{(4)} + \sum_{D > 4} \sum_{i} \frac{c_i^{(D)}}{\Lambda^{D-4}} \mathcal{O}_i^{(D)}$ Processes and observables

STFC HEP school 2024

STFC HEP school 2024

Measurements Constraints

STFC HEP school 2024

Measurements Constraints UV

STFC HEP school 2024

Measurements Constraints UV Huge effort to improve each one of these steps!

Eleni Vryonidou

STFC HEP school 2024

SNE Cimension-5

 $\mathcal{L} = \frac{C}{\Lambda} (L^{T} \epsilon \phi) C(\phi^{T} \epsilon L) + h.c.$ $\mathcal{L} = \frac{c}{\Lambda} (L^{T} \epsilon \phi) C(\phi^{T} \epsilon L) + h.c.$

 $m_{\nu} = c \frac{v^2}{\Lambda}$ Majorana neuţrino mass $m_{\nu} = c - \Lambda$ Neutrino masses of 0.01-0.1 eV imply $\Lambda \sim 10^{15}$ TeV!!!

Possible UV completion: see-saw model

$$\mathcal{L} = -y_D \overline{L} \epsilon \phi^* \nu_R - \frac{1}{2} M_R \nu_R^T C \nu_R + \text{H.c.}$$

SCHOOL - JUNE 2015

HIGGSTOOLS SCHOOL - JUNE 2015

Eleni Vryonid

Weinberg (1979)

 $N \sim \nu_R$

 $\nu \sim \nu_L \qquad m_\nu \sim m_D^2/M_R$

 M_{D}

FABIO MALTONI

FABIO MALTONI

SME T dimension-5

 $\mathcal{L} = \frac{C}{\Lambda} (L^{T} \epsilon \phi) C(\phi^{T} \epsilon L) + h.c.$ $\mathcal{L} = \frac{c}{\Lambda} (L^{T} \epsilon \phi) C(\phi^{T} \epsilon L) + h.c.$

 $m_{\nu} = c \frac{v^2}{\Lambda}$ Majorana neuţrino mass $m_{\nu} = c - \Lambda$ Neutrino masses of 0.01-0.1 eV imply $\Lambda \sim 10^{15}$ TeV!!!

Possible UV completion: see-saw model

$$\mathcal{L} = -y_D \overline{L} \epsilon \phi^* \nu_R - \frac{1}{2} M_R \nu_R^T C \nu_R + \text{H.c.}$$

SCHOOL - JUNE 2015

HIGGSTOOLS SCHOOL - JUNE 2015

Eleni Vryonic

Weinberg (1979)

$\nu \sim \nu_L \qquad m_\nu \sim m_D^2/M_R$ $N \sim \nu_R$ M_{R}

FABIO MALT Not relevant for LHC physics

59(2499) operators at dim-6:

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{\nu}G^{C\mu}_{ ho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{w}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}W^{J\rho}W^{K\mu}$					$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
	$\chi^2 \rho^2$		$a/b^2 X \phi$		$ab^2 (c^2 D)$	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
	A Y	0	$(\bar{I} - \mu \mu -) - L - \Pi Z I$	$O^{(1)}$	$(\varphi \varphi D)$			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{\mu\nu}_{\mu\nu}G^{\mu\mu\nu}$	Q_{eW}	$(l_p \sigma^{\mu\nu} e_r) \tau^* \varphi W^*_{\mu\nu}$	$Q_{\varphi l}^{\sim}$	$(\varphi' i D_{\mu} \varphi)(l_p \gamma^{\mu} l_r)$			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}iD^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$					$Q_{ad}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{dug}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu} B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$Q_{quad}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_n^{\alpha j})^T C\right]$		$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{\alpha}\right)\right]$	$(j)^T C q_r^{\beta}$	$\left[(q_s^{\gamma m})^T C l_t^n\right]$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[Cq_{r}^{\beta k} \right] \left[(q_{s}^{\gamma m})^{T} Cl_{t}^{n} \right]$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$\left[(u_s^\gamma)^T C e_t\right]$

Warsaw basis of dimension-6 operators

 $\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$

Buchmuller, Wyler Nucl. Phys. B268 (1986) 621-653

Grzadkowski et al arxiv:1008.4884

59 operators in flavour universal scenario 2499 if fully general

STFC HEP school 2024

59 operators in flavour universal scenario 2499 if fully general

STFC HEP school 2024

59 operators in flavour universal scenario 2499 if fully general

Is there any hope?

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions

STFC HEP school 2024

59 operators in flavour universal scenario 2499 if fully general

Is there any hope?

- Not all operators enter in all observables

<100 operators for the LHC

Many observables available We can make "reasonable" assumptions Flavour (universality, MFV...) CP conservation

STFC HEP school 2024

59 operators in flavour universal scenario 2499 if fully general

Is there any hope?

- Not all operators enter in all observables
- Many observables available

Many observables available We can make "reasonable" assumptions Flavour (universality, MFV...) CP conservation

STFC HEP school 2024

Warsaw Example Interaction Class

 $\psi^2 H^3 : (\varphi^{\dagger} \varphi) \ (\bar{q}_i \, u_j \, \tilde{\varphi})$ $\psi^2 H^2 D : (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{q}_i \gamma^{\mu} q_j)$ $\psi^2 XH : (\bar{q}_i \,\sigma^{\mu\nu} \, u_j \,\tilde{\varphi}) B_{\mu\nu}$ $\psi^4: (\bar{q}_i \gamma^\mu q_j)(\bar{q}_k \gamma_\mu q_l)$ Assuming i = j = 3

Impact

Warsaw Example Interaction Class

 $\psi^2 H^3 : (\varphi^{\dagger} \varphi) \ (\bar{q}_i \, u_j \, \tilde{\varphi})$ $\psi^2 H^2 D : (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{q}_i \gamma^{\mu} q_j)$ $\psi^2 XH : (\bar{q}_i \,\sigma^{\mu\nu} \, u_j \,\tilde{\varphi}) B_{\mu\nu}$ $\psi^4: (\bar{q}_i \gamma^\mu q_j)(\bar{q}_k \gamma_\mu q_l)$ Assuming i = j = 3

Impact

Warsaw Example Interaction Class

 $\psi^2 H^3 : (\varphi^{\dagger} \varphi) \ (\bar{q}_i \, u_j \, \tilde{\varphi})$ $\psi^2 H^2 D : (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{q}_i \gamma^{\mu} q_j)$ $\psi^2 XH : (\bar{q}_i \,\sigma^{\mu\nu} \, u_j \,\tilde{\varphi}) B_{\mu\nu}$ $\psi^4: (\bar{q}_i \gamma^\mu q_j)(\bar{q}_k \gamma_\mu q_l)$ Assuming i = j = 3

Impact

Warsaw Example Class

$$\psi^{2}H^{3}: (\varphi^{\dagger}\varphi) \ (\bar{q}_{i} u_{j} \tilde{\varphi})$$
Higgs-fer

$$\psi^{2}H^{2}D: (\varphi^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{q}_{i} \gamma^{\mu} q_{j})$$
gauge-f

$$\psi^{2}XH: (\bar{q}_{i} \sigma^{\mu\nu} u_{j} \tilde{\varphi})B_{\mu\nu}$$
dif

$$\psi^{4}: (\bar{q}_{i} \gamma^{\mu} q_{j})(\bar{q}_{k} \gamma_{\mu} q_{l})$$
four f

Assuming i = j = 3

Interaction

Impact

- rmion (Yukawa)
- fermion (Z,W)
- pole
- fermion

ttH

- ttZ production, Wtb, single top
- ttZ, ttA, WtB (ttVH)
- top pair production, single top, ttH, ttV, tttt

From Operators to Observables

Operators have different impact on particle interactions 1) Modification of SM vertices 2) New Lorentz structures (3) Indirect effect due to impact on input parameters and canonical normalisation of fields

sensitivity on different operators

Fit data to extract EFT coefficients

What is next? Study particular processes and observables to maximise

SMEFT in practice

EFT has a global character

Eleni Vryonidou

EFT pathway to New Physics

EFT pathway to New Physics

Eleni Vryonidou

EFT pathway to New Physics

Eleni Vryonidou

$C_i^6(\mu)$

EFT interpretations Data interpretation at different levels

- Inclusive (fiducial) cross-section ×
- Differential parton level ×
- Differential particle level
- Detector level

LHC EFT WG effort:

https://indico.cern.ch/category/12671/

Global fit Setup Theory

Best available prediction for the SM NLO QCD for SMEFT

Faithful uncertainty estimate Avoid under- and over-fitting Validated on pseudo-data (closure test)

Fit Methodology

Output

Observables

Data

Top-pair production W-helicities, asymmetry

Dataset	\sqrt{s},\mathcal{L}	Info	Observables	$n_{\rm dat}$	Rei
ATLAS_tt_8TeV_1jets	8 TeV, 20.3 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	7	[46]
CMS_tt_8TeV_ljets	$8 { m TeV}$, 20.3 fb ⁻¹	lepton+jets	$1/\sigma d\sigma/dy_{t\bar{t}}$	10	[47]
CMS_tt2D_8TeV_dilep	$8 { m TeV}$, 20.3 fb ⁻¹	dileptons	$1/\sigma d^2\sigma/dy_{t\bar{t}}dm_{t\bar{t}}$	16	[48]
ATLAS_tt_8TeV_dilep (*)	$8 { m TeV}, 20.3 { m fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[54]
CMS_tt_13TeV_ljets_2015	$13 { m ~TeV}, 2.3 { m ~fb^{-1}}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	8	[51]
CMS_tt_13TeV_dilep_2015	$13 \text{ TeV}, 2.1 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[53]
CMS_tt_13TeV_ljets_2016	13 TeV, 35.8 \rm{fb}^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	10	[52]
CMS_tt_13TeV_dilep_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	7	[56]
ATLAS_tt_13TeV_ljets_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	9	[55]
ATLAS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	W hel. fract	F_0, F_L, F_R	3	[49]
CMS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	\boldsymbol{W} hel. fract	F_0, F_L, F_R	3	[50]
ATLAS_CMS_tt_AC_8TeV (*)	$8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	charge asymmetry	A_C	6	[57]
ATLAS_tt_AC_13TeV (*)	$8 { m TeV}$, 20.3 fb ⁻¹	charge asymmetry	A_C	5	[58]

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_t_tch_8TeV_inc	8 TeV, 19.7 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[83]
ATLAS_t_tch_8TeV	8 TeV, 20.2 fb^{-1}	t-channel	$d\sigma(tq)/dy_t$	4	[85]
CMS_t_tch_8TeV_dif	8 TeV, 19.7 fb^{-1}	<i>t</i> -channel	$d\sigma/d y^{(t+\bar{t})} $	6	[84]
$CMS_t_sch_8TeV$	8 TeV, 19.7 fb^{-1}	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[87]
ATLAS_t_sch_8TeV	8 TeV, 20.3 fb^{-1}	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[86]
ATLAS_t_tch_13TeV	13 TeV, 3.2 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[88]
CMS_t_tch_13TeV_inc	13 TeV, 2.2 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[90]
CMS_t_tch_13TeV_dif	13 TeV, 2.3 fb^{-1}	<i>t</i> -channel	$d\sigma/d y^{(t+\bar{t})} $	4	[89]
CMS_t_tch_13TeV_2016 (*)	13 TeV, 35.9 fb^{-1}	t-channel	$d\sigma/d y^{(t)} $	5	[91]

	Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
	ATLAS_tW_8TeV_inc	8 TeV, 20.2 fb^{-1}	inclusive (dilepton)	$\sigma_{ m tot}(tW)$	1	[95]
	ATLAS_tW_inc_slep_8TeV (*)	8 TeV, 20.2 fb^{-1}	inclusive (single lepton)	$\sigma_{ m tot}(tW)$	1	[101]
-	CMS_tW_8TeV_inc	8 TeV, 19.7 fb^{-1}	inclusive	$\sigma_{\rm tot}(tW)$	1	[96]
	ATLAS_tW_inc_13TeV	$13 { m TeV}, 3.2 { m fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tW)$	1	[97]
_	CMS_tW_13TeV_inc	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tW)$	1	[98]
-	ATLAS_tZ_13TeV_inc	$13 \text{ TeV}, 36.1 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tZq)$	1	[100]
-	ATLAS_tZ_13TeV_run2_inc (*)	$13 \text{ TeV}, 139.1 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[102]
	CMS_tZ_13TeV_inc	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm fid}(Wb\ell^+\ell^-q)$	1	[99]
-	CMS_tZ_13TeV_2016_inc (*)	13 TeV, 77.4 fb ⁻¹	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[103]

Dataset	$\sqrt{s}, \; \mathcal{L}$	Info	Observables	N_{dat}	Ref
LEP2_WW_diff (*)	$[182, 296] { m GeV}$	LEP-2 comb	$d^2\sigma(WW)/dE_{ m cm}d\cos\theta_W$	40	[128]
ATLAS_WZ_13TeV_2016 (*)	13 TeV, 36.1 fb^{-1}	fully leptonic	$d\sigma^{ m (fid)}/dm_T^{WZ}$	6	[129]
ATLAS_WW_13TeV_2016 (*)	13 TeV, 36.1 fb^{-1}	fully leptonic	$d\sigma^{ m (fid)}/dm_{e\mu}$	13	[130]
CMS_WZ_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	fully leptonic	$d\sigma^{({\rm fid})}/dp_T^Z$	11	[131]

4 tops, ttbb, toppair associated production

[]
[70]
[7 9]
[78]
[71]
[7 6]
[77]
[72]
[73]
[81]
[74]
[75]
[<mark>80</mark>]
[72]
[73]
[74]
[75]
[80]

Single top t-, s-channel

tW, tZ

Diboson

 $\sqrt{s}, \ \mathcal{L}$ Info Observables $n_{\rm dat}$ Ref. Dataset $gg{\rm F},\,{\rm VBF},\,Vh,\,t\bar{t}h$ ATLAS_CMS_SSinc_RunI (*) 7+8 TeV, 20 fb⁻¹ Incl. μ 20 [114] $h \to \gamma\gamma, VV, \tau\tau, b\bar{b}$ ATLAS_SSinc_RunI (*) 8 TeV, 20 fb⁻¹ Incl. μ_i^f $h\to Z\gamma, \mu\mu$ 2 [115] $gg{\rm F},\,{\rm VBF},\,Vh,\,t\bar{t}h$ $13 \text{ TeV}, 80 \text{ fb}^{-1}$ 16 ATLAS_SSinc_RunII (*) [116] Incl. μ $h \to \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b}$ $gg{\rm F},\,{\rm VBF},\,Wh,\,Zh\ t\bar{t}h$ $13 \text{ TeV}, 36.9 \text{ fb}^{-1}$ 24CMS_SSinc_RunII (*) Incl. μ_i^f [117] $h \to \gamma \gamma, WW, ZZ, \tau \tau, b\bar{b}$

Higgs signal strengths

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	N_{dat}	Ref
CMS_H_13TeV_2015 (*)	13 TeV, 35.9 fb $^{-1}$	gg F, VBF, Vh , $t\bar{t}h$ $h \rightarrow ZZ, \gamma\gamma, b\bar{b}$	$d\sigma/dp_T^h$	9	[121]
ATLAS_ggF_13TeV_2015 (*)	13 TeV, 36.1 fb ^{-1}	gg F, VBF, Vh , $t\bar{t}h$ $h \rightarrow ZZ(\rightarrow 4l)$	$d\sigma/dp_T^h$	9	[122]
ATLAS_Vh_hbb_13TeV (*)	$13 \text{ TeV}, 79.8 \text{ fb}^{-1}$	Wh, Zh	$d\sigma^{ m (fid)}/dp_T^W$ $d\sigma^{ m (fid)}/dp_T^Z$	2 3	[123]
ATLAS_ggF_ZZ_13TeV (*)	$13 \text{ TeV}, 79.8 \text{ fb}^{-1}$	$ggF, h \rightarrow ZZ$	$\sigma_{\rm ggF}(p_T^h, N_{\rm jets})$	6	[116]
CMS_ggF_aa_13TeV (*)	$13 \text{ TeV}, 77.4 \text{ fb}^{-1}$	$ggF, h o \gamma\gamma$	$\sigma_{\rm ggF}(p_T^h, N_{\rm jets})$	6	[124]

Higgs differential

Observables

Data

Top-pair production W-helicities, asymmetry

Dataset	\sqrt{s},\mathcal{L}	Info	Observables	$n_{\rm dat}$	Rei
ATLAS_tt_8TeV_1jets	8 TeV, 20.3 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	7	[46]
CMS_tt_8TeV_ljets	$8 { m TeV}$, 20.3 fb ⁻¹	lepton+jets	$1/\sigma d\sigma/dy_{t\bar{t}}$	10	[47]
CMS_tt2D_8TeV_dilep	$8 { m TeV}$, 20.3 fb ⁻¹	dileptons	$1/\sigma d^2\sigma/dy_{t\bar{t}}dm_{t\bar{t}}$	16	[48]
ATLAS_tt_8TeV_dilep (*)	$8 { m TeV}, 20.3 { m fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[54]
CMS_tt_13TeV_ljets_2015	$13 { m ~TeV}, 2.3 { m ~fb^{-1}}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	8	[51]
CMS_tt_13TeV_dilep_2015	$13 \text{ TeV}, 2.1 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[53]
CMS_tt_13TeV_ljets_2016	13 TeV, 35.8 \rm{fb}^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	10	[52]
CMS_tt_13TeV_dilep_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	dileptons	$d\sigma/dm_{t\bar{t}}$	7	[56]
ATLAS_tt_13TeV_ljets_2016 (*)	$13 \text{ TeV}, 35.8 \text{ fb}^{-1}$	lepton+jets	$d\sigma/dm_{t\bar{t}}$	9	[55]
ATLAS_WhelF_8TeV	$8 { m TeV}$, 20.3 fb ⁻¹	W hel. fract	F_0, F_L, F_R	3	[49]
CMS_WhelF_8TeV	$8 { m TeV}, 20.3 { m fb}^{-1}$	\boldsymbol{W} hel. fract	F_0, F_L, F_R	3	[50]
ATLAS_CMS_tt_AC_8TeV (*)	$8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	charge asymmetry	A_C	6	[57]
ATLAS_tt_AC_13TeV (*)	$8 { m TeV}$, 20.3 fb ⁻¹	charge asymmetry	A_C	5	[58]

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_t_tch_8TeV_inc	8 TeV, 19.7 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[83]
ATLAS_t_tch_8TeV	8 TeV, 20.2 fb^{-1}	<i>t</i> -channel	$d\sigma(tq)/dy_t$	4	[85]
CMS_t_tch_8TeV_dif	8 TeV, 19.7 fb^{-1}	<i>t</i> -channel	$d\sigma/d y^{(t+\bar{t})} $	6	[84]
$CMS_t_sch_8TeV$	8 TeV, 19.7 fb^{-1}	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[87]
ATLAS_t_sch_8TeV	8 TeV, 20.3 fb^{-1}	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[86]
ATLAS_t_tch_13TeV	13 TeV, 3.2 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[88]
CMS_t_tch_13TeV_inc	13 TeV, 2.2 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[90]
CMS_t_tch_13TeV_dif	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t+\bar{t})} $	4	[89]
CMS_t_tch_13TeV_2016 (*)	13 TeV, 35.9 fb^{-1}	t-channel	$d\sigma/d y^{(t)} $	5	[91]

_						
_	Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
_	ATLAS_tW_8TeV_inc	8 TeV, 20.2 fb^{-1}	inclusive (dilepton)	$\sigma_{ m tot}(tW)$	1	[95]
	ATLAS_tW_inc_slep_8TeV (*)	8 TeV, 20.2 fb^{-1}	inclusive (single lepton)	$\sigma_{ m tot}(tW)$	1	[101]
_	CMS_tW_8TeV_inc	8 TeV, 19.7 fb^{-1}	inclusive	$\sigma_{\rm tot}(tW)$	1	[96]
	ATLAS_tW_inc_13TeV	$13 { m ~TeV}, 3.2 { m ~fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tW)$	1	[97]
_	CMS_tW_13TeV_inc	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	inclusive	$\sigma_{\rm tot}(tW)$	1	[98]
_	ATLAS_tZ_13TeV_inc	13 TeV, 36.1 fb^{-1}	inclusive	$\sigma_{\rm tot}(tZq)$	1	[100]
_	ATLAS_tZ_13TeV_run2_inc (*)	13 TeV, 139.1 fb^{-1}	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[102]
	CMS_tZ_13TeV_inc	13 TeV, 35.9 fb^{-1}	inclusive	$\sigma_{\rm fid}(Wb\ell^+\ell^-q)$	1	[99]
_	CMS_tZ_13TeV_2016_inc (*)	13 TeV, 77.4 fb^{-1}	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[103]

Dataset	$\sqrt{s}, \ \mathcal{L}$	Info	Observables	N_{dat}	Ref
LEP2_WW_diff (*)	$[182, 296] { m GeV}$	LEP-2 comb	$d^2\sigma(WW)/dE_{ m cm}d\cos\theta_W$	40	[128]
ATLAS_WZ_13TeV_2016 (*)	13 TeV, 36.1 fb^{-1}	fully leptonic	$d\sigma^{ m (fid)}/dm_T^{WZ}$	6	[129]
ATLAS_WW_13TeV_2016 (*)	13 TeV, 36.1 fb^{-1}	fully leptonic	$d\sigma^{ m (fid)}/dm_{e\mu}$	13	[130]
CMS_WZ_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	fully leptonic	$d\sigma^{ m (fid)}/dp_T^Z$	11	[131]

4 tops, ttbb, toppair associated production

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CMS_ttbb_13TeV	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[70]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CMS_ttbb_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{ m tot}(t\bar{t}b\bar{b})$	1	[79]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ATLAS_ttbb_13TeV_2016 (*)	13 TeV, 35.9 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[78]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CMS_tttt_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[71]
ATLAS_tttt_13TeV_run2 (*)13 TeV, 137 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}t\bar{t}t)$ 1[77]CMS_ttZ_8TeV8 TeV, 19.5 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}Z)$ 1[72]CMS_ttZ_13TeV13 TeV, 35.9 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}Z)$ 1[73]CMS_ttZ_ptZ_13TeV (*)13 TeV, 77.5 fb^{-1}total xsec $d\sigma(t\bar{t}Z)/dp_T^Z$ 4[81]ATLAS_ttZ_8TeV8 TeV, 20.3 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}Z)$ 1[75]ATLAS_ttZ_13TeV13 TeV, 3.2 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}Z)$ 1[75]ATLAS_ttZ_13TeV13 TeV, 36 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}Z)$ 1[72]CMS_ttW_8_TeV8 TeV, 19.5 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[72]CMS_ttW_13TeV13 TeV, 35.9 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[73]ATLAS_ttW_13TeV13 TeV, 35.9 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[74]ATLAS_ttW_13TeV13 TeV, 32 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[73]ATLAS_ttW_13TeV13 TeV, 35.9 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[74]ATLAS_ttW_13TeV13 TeV, 3.2 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[75]ATLAS_ttW_13TeV13 TeV, 3.2 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[75]ATLAS_ttW_13TeV13 TeV, 36 fb^{-1}total xsec $\sigma_{tot}(t\bar{t}W)$ 1[75]	CMS_tttt_13TeV_run2 (*)	13 TeV, 137 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[76]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ATLAS_tttt_13TeV_run2 (*)	13 TeV, 137 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[77]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CMS_ttZ_8TeV	$8 \text{ TeV}, 19.5 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[72]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CMS_ttZ_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[73]
ATLAS_ttZ_8TeV 8 TeV, 20.3 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}Z)$ 1 [74] ATLAS_ttZ_13TeV 13 TeV, 3.2 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}Z)$ 1 [75] ATLAS_ttZ_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}Z)$ 1 [76] ATLAS_ttZ_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}Z)$ 1 [72] CMS_ttW_8_TeV 8 TeV, 19.5 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [72] CMS_ttW_13TeV 13 TeV, 35.9 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [73] ATLAS_ttW_8TeV 8 TeV, 20.3 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [74] ATLAS_ttW_13TeV 13 TeV, 32 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [74] ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [75] ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [80]	CMS_ttZ_ptZ_13TeV (*)	13 TeV, 77.5 fb ⁻¹	total xsec	$d\sigma(t\bar{t}Z)/dp_T^Z$	4	[81]
ATLAS_ttZ_13TeV 13 TeV, 3.2 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}Z)$ 1 [75] ATLAS_ttZ_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}Z)$ 1 [80] CMS_ttW_8_TeV 8 TeV, 19.5 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [72] CMS_ttW_13TeV 13 TeV, 35.9 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [73] ATLAS_ttW_13TeV 13 TeV, 35.9 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [74] ATLAS_ttW_13TeV 13 TeV, 32 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [75] ATLAS_ttW_13TeV 13 TeV, 3.2 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [75] ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [80]	ATLAS_ttZ_8TeV	8 TeV, 20.3 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[74]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ATLAS_ttZ_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[75]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ATLAS_ttZ_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[80]
CMS_ttW_13TeV 13 TeV, 35.9 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [73] ATLAS_ttW_8TeV 8 TeV, 20.3 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [74] ATLAS_ttW_13TeV 13 TeV, 3.2 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [75] ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [80]	CMS_ttW_8_TeV	8 TeV, 19.5 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[72]
ATLAS_ttW_8TeV 8 TeV, 20.3 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [74] ATLAS_ttW_13TeV 13 TeV, 3.2 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [75] ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [80]	CMS_ttW_13TeV	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[73]
ATLAS_ttW_13TeV 13 TeV, 3.2 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [75] ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [80]	ATLAS_ttW_8TeV	8 TeV, 20.3 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[74]
ATLAS_ttW_13TeV_2016 (*) 13 TeV, 36 fb ⁻¹ total xsec $\sigma_{tot}(t\bar{t}W)$ 1 [80]	ATLAS_ttW_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[75]
	ATLAS_ttW_13TeV_2016 (*)	13 TeV, 36 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[80]

Single top t-, s-channel

tW, tZ

Diboson

STFC HEP school 2024

Dataset	$\sqrt{s}, \; \mathcal{L}$	Info	Observables	$n_{\rm dat}$	Ref.
ATLAS_CMS_SSinc_RunI (*)	7+8 TeV, 20 fb ⁻¹	Incl. μ_i^f	$ggF, VBF, Vh, t\bar{t}h$ $h \rightarrow \gamma\gamma, VV, \tau\tau, b\bar{b}$	20	[114]
ATLAS_SSinc_RunI (*)	$8 { m TeV}, 20 { m fb}^{-1}$	Incl. μ_i^f	$h ightarrow Z\gamma, \mu\mu$	2	[115]
ATLAS_SSinc_RunII (*)	$13 \text{ TeV}, 80 \text{ fb}^{-1}$	Incl. μ_i^f	$gg {\rm F}, {\rm VBF}, Vh, t\bar{t}h$ $h\to \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b}$	16	[116]
CMS_SSinc_RunII (*)	$13 \text{ TeV}, 36.9 \text{ fb}^{-1}$	Incl. μ_i^f	$ \left \begin{array}{l} gg {\rm F}, {\rm VBF}, Wh, Zh t\bar{t}h \\ h \rightarrow \gamma\gamma, WW, ZZ, \tau\tau, b\bar{b} \end{array} \right. $	24	[117]

Higgs signal strengths

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_H_13TeV_2015 (*)	13 TeV, 35.9 fb $^{-1}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$d\sigma/dp_T^h$	9	[121]
ATLAS_ggF_13TeV_2015 (*)	13 TeV, 36.1 fb $^{-1}$	$ \begin{array}{ c c c c c } ggF, VBF, Vh, t\bar{t}h \\ h \rightarrow ZZ (\rightarrow 4l) \end{array} $	$d\sigma/dp_T^h$	9	[122]
ATLAS_Vh_hbb_13TeV (*)	$13 \text{ TeV}, 79.8 \text{ fb}^{-1}$	Wh, Zh	$d\sigma^{ m (fid)}/dp_T^W$ $d\sigma^{ m (fid)}/dp_T^Z$	2 3	[123]
ATLAS_ggF_ZZ_13TeV (*)	$13 \text{ TeV}, 79.8 \text{ fb}^{-1}$	$ggF, h \rightarrow ZZ$	$\sigma_{\rm ggF}(p_T^h, N_{\rm jets})$	6	[116]
CMS_ggF_aa_13TeV (*)	$13 \text{ TeV}, 77.4 \text{ fb}^{-1}$	$gg\mathrm{F},h ightarrow\gamma\gamma$	$\sigma_{\rm ggF}(p_T^h, N_{\rm jets})$	6	[124]

Higgs differential

Category	Processes	$n_{ m dat}$
	$t\bar{t}$ (inclusive)	94
	$tar{t}Z,tar{t}W$	14
Top quark production	single top (inclusive)	27
TOP QUARK PRODUCTION	tZ, tW	9
	$tar{t}tar{t},tar{t}bar{b}$	6
	Total	150
	Run I signal strengths	22
Higgs production	Run II signal strengths	40
and decay	Run II, differential distributions & STXS	35
	Total	97
	LEP-2	40
Diboson production	LHC	30
	Total	70
Baseline dataset	Total	317

Full fit: individual

Individual: only one non-zero C_i (optimistic, unrealistic)

What does that mean for the UV scale?

Full fit: individual

Individual: only one non-zero C_i

(optimistic, unrealistic)

What does that mean for the UV scale?

Strongly coupled Weakly coupled

 $\mathcal{C}_i^6(\mu)$ Λ^2

Full fit: marginalised

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Eleni Vryonidou

All coefficients allowed to be non-zero

Bounds significantly worse in a marginalised fit

For weakly coupled theories Λ bound below the TeV scale: **EFT Validity**???

STFC HEP school 2024

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

From EFT to the UV Single-field extensions of the SM

[Name	Spin	SU(3)	SU(2)	U(1)	Param.	Name	Spin	SU(3)	SU(2)	U(1)	Para
[S	0	1	1	0	(M_S, κ_S)	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$	(M_{Δ_1})
	S_1	0	1	1	1	(M_{S_1}, y_{S_1})	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$	(M_{Δ_3})
Scalars	φ	0	1	2	$\frac{1}{2}$	$(M_{\varphi}, Z_6 \cos \beta)$	Σ	$\frac{1}{2}$	1	3	0	(M_{Σ})
	[1]	0	1	3	0	(M_{Ξ},κ_{Ξ})	Σ_1	$\frac{1}{2}$	1	3	-1	(M_{Σ_1})
	Ξ_1	0	1	3	1	$(M_{\Xi_1},\kappa_{\Xi_1})$	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$	(M_U)
Z'	B	1	1	1	0	(M_B, \hat{g}_H^B)	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$	(M_D)
\٨/'	B_1	1	1	1	1	(M_{B_1},g_{B_1})	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$	(M_{Q_1})
vv	W	1	1	3	0	(M_W, \hat{g}^W_H)	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$	(M_{Q_5})
	W_1	1	1	3	1	$(M_{W_1}, \hat{g}^{arphi}_{W_1})$	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$	(M_{Q_7})
	N	$\frac{1}{2}$	1	1	0	(M_N,λ_N)	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$	(M_{T_1})
VLL	E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$	(M_{T_2})
VLQ	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	(M_T, s_L^t)	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$	$(M_{TB}$

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

From EFT to the UV Single-field extensions of the SM

	Name	Spin	SU(3)	SU(2)	U(1)	Param.	Name	Spin	SU(3)	SU(2)	U(1)	Para
	S	0	1	1	0	(M_S, κ_S)	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$	(M_{Δ_1})
	S_1	0	1	1	1	(M_{S_1}, y_{S_1})	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$	(M_{Δ_3})
Scalars	φ	0	1	2	$\frac{1}{2}$	$(M_{\varphi}, Z_6 \cos \beta)$	Σ	$\frac{1}{2}$	1	3	0	(M_{Σ})
	Ξ	0	1	3	0	(M_{Ξ},κ_{Ξ})	Σ_1	$\frac{1}{2}$	1	3	-1	(M_{Σ_1})
	Ξ_1	0	1	3	1	$(M_{\Xi_1},\kappa_{\Xi_1})$	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$	(M_U)
Z'	B	1	1	1	0	(M_B, \hat{g}_H^B)	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$	(M_D)
\٨/'	B_1	1	1	1	1	(M_{B_1},g_{B_1})	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$	(M_{Q_1})
vv	W	1	1	3	0	(M_W, \hat{g}^W_H)	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$	(M_{Q_5})
	W_1	1	1	3	1	$(M_{W_1}, \hat{g}^{arphi}_{W_1})$	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$	(M_{Q_7})
	N	$\frac{1}{2}$	1	1	0	(M_N, λ_N)	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$	(M_{T_1})
VLL	E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$	(M_{T_2})
VLQ	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	(M_T, s_L^t)	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$	$(M_{TB}$

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

T

Tree-level matching dictionary de Blas et al. JHEP 03 (2018) 109

 $\frac{M_T^2}{M_T^2}$

 $\frac{1}{2} \frac{M_T^2}{n^2}$

 $y_t \frac{M_T^2}{v^2}$

From EFT to UV Single-field extensions of the SM

	Name	Spin	SU(3)	SU(2)	U(1)	Param.	Name	Spin	SU(3)	SU(2)	U(1)
	S	0	1	1	0	(M_S, κ_S)	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
	S_1	0	1	1	1	(M_{S_1}, y_{S_1})	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
Scalars	φ	0	1	2	$\frac{1}{2}$	$(M_{\varphi}, Z_6 \cos \beta)$	Σ	$\frac{1}{2}$	1	3	0
	[1]	0	1	3	0	(M_{Ξ},κ_{Ξ})	Σ_1	$\frac{1}{2}$	1	3	-1
	Ξ_1	0	1	3	1	$(M_{\Xi_1}, \kappa_{\Xi_1})$	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
Z'	B	1	1	1	0	(M_B, \hat{g}_H^B)	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
\٨/'	B_1	1	1	1	1	(M_{B_1},g_{B_1})	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
vv	W	1	1	3	0	(M_W, \hat{g}^W_H)	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
	W_1	1	1	3	1	$(M_{W_1}, \hat{g}^{arphi}_{W_1})$	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
	N	$\frac{1}{2}$	1	1	0	(M_N,λ_N)	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
VLL	E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
VLQ	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	(M_T, s_L^t)	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Fix coupling and set bound on mass or the other way round

THANK YOU

Eleni Vryonidou

