STFC school, Durham 2-6/9/24

Collider Phenomenology Eleni Vryonidou

LHC is a top factory Rich phenomenology:

pair production

00000

 associated production

top loops

connection to Higgs physics

Eleni Vryonidou SMEFT school 2022

Top physics Why study the top quark ?

- 1. Heaviest known particle: Strong coupling to the Higgs
- 2. Portal to new physics: e.g. EWSB, composite Higgs
- of production channels

3. LHC is a top factory: precise access to top properties through a lot

Top has a special place in the Universe **Stability of the vacuum**

Spin Correlations The t decays be hadronising Spin interved! *t b* ℓ^+, \overline{d} W^+ ν*, u* is a special qu

Eleni Vryonidou SMEFT school 2022

Top Spin effects

the tops themselves and from the choice of the "spin-1 $\Gamma \, d \cos \theta$ dΓ = $1+p k_i \cos\theta$ 2 We can check how the top is produced!

LAL - Cours d'Automne 2019 Fabio Maltoni 117 (1988).
La Cours d'Automne 2019 Fabio Maltoni 117 (1998) Fabio Maltoni 117 (1999) Fabio Maltoni 117 (1999) Fabio Malto

nin *k* LAL - Cours d'Automne 2019 Fabio Maltoni 117 Lepton+ or d emitted in the top spin direction

Spin analysing power

 -0.37

Weak interaction and W polarisation W polarisation

Only left-handed tops in the decay! it's only the tL that takes part to the interaction.

 \mathcal{N} and \mathcal{N} and \mathcal{N} and \mathcal{N} and \mathcal{N}

$$
f_0 = \frac{m_t^2}{2m_W^2 + m_t^2} = 70\%
$$

$$
\frac{1}{2} \sim \frac{30\%}{200} f_R \sim 0\%
$$

$$
for m_b = 0
$$

Status of top measurements Top Quark Production Cross Section Measurements Model ECM **[TeV]** ^R ^L dt[fb1] **Measurement Theory Reference** *Status: March 2022* **Model** ECM **[TeV]** ^R ^L dt[fb1] **Measurement Theory Reference** 3 16 IUS OF IOD THEASUICH IE 115 <u>t</u> t¯t 8 20.2 fb¹ = 242.9 ± 1.7 ± 8.6 pb = 252.9 + 13.3 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109 tutus on top invadurandinume $\frac{1}{\sqrt{2}}$, 5 0.3 fb1 $\frac{1}{\sqrt{2}}$, 5 $\frac{1}{\sqrt{2}}$, 5 $\frac{1}{\sqrt{2}}$, 68.2 pb (1) $\frac{1}{\sqrt{2}}$, 68.2 pb (1) $\frac{1}{\sqrt{2}}$, 68.3 pb (1) \blacksquare ttakan 13 $\overline{12}$ for $\overline{12}$ $\overline{13}$ or $\overline{14}$ $\overline{14}$ $\overline{16}$ $\overline{12}$ $\overline{16}$ $\overline{16}$ $\overline{16}$

ATLAS Preliminary

Run 1,2 p

ATLASS Press **Press** Press P

Eleni Vryonidou by a strong tta algorithan 8 20.3 fb1 = 89.6 **pp (NL)** Support 79.7 **pp (NL)** Support 79.7 + 7.4 pp (NL) EPIC 77 (2017) 5311 0 1.1 pp (NL) Support 79.2 + 7.4 pp (NL) Support 79.7 + 7.4 pp (NL) Support 79.7 + 7.4 pp (NL) Support 79.7

^L dt[fb1] **Measurement Theory Reference**

t¯t 13 36.1 fb¹ = 826.4 ± 3.6 ± 19.6 pb = 832 + 40 45 pb (top++ NNLO+NNLL) EPJC 80 (2020) 528

t $\mathbf{1}_{\mathcal{A}}$, $\mathbf{1}_{\mathcal{A}}$,

t τ 7 τ 7 τ 7 τ 3.1 τ 3.1 τ 3.1 τ 3.1 τ 1.1 τ 3.1 τ 3.1

t τ 7 τ 7 τ 7 τ 3.1 τ 3.1 τ 3.1 τ 3.1 τ 1.1 τ 3.1 τ 3.1

t \mathbb{R}^n . The 242.9 fb1 \mathbb{R}^n is a 252.9 \mathbb{R}^n in the 252.9 \mathbb{R}^n in the 242.9 \mathbb{R}^n in the 252.9 \math

t $\mathbf{f}_{\mathbf{a}}$ is $\mathbf{f}_{\mathbf{a}}$ is $\mathbf{f}_{\mathbf{a}}$ for $\mathbf{f}_{\mathbf{a}}$ for $\mathbf{f}_{\mathbf{a}}$ ($\mathbf{f}_{\mathbf{a}}$) if $\mathbf{f}_{\mathbf{a}}$ is $\mathbf{f}_{\mathbf{a}}$ ($\mathbf{f}_{\mathbf{a}}$) if $\mathbf{f}_{\mathbf{a}}$ ($\mathbf{f}_{\mathbf{a}}$) if $\mathbf{f}_{\mathbf{a}}$ ($\$

Status of top measurements Top Quark Production Cross Section Measurements Model ECM **[TeV]** ^R ^L dt[fb1] **Measurement Theory Reference** *Status: March 2022* **Model** ECM **[TeV]** ^R ^L dt[fb1] **Measurement Theory Reference** 3 16 IUS OF IOD THEASUICH IE 115 <u>t</u> t¯t 8 20.2 fb¹ = 242.9 ± 1.7 ± 8.6 pb = 252.9 + 13.3 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109 tutus on top invadurandinume $\frac{1}{\sqrt{2}}$, 5 0.3 fb1 $\frac{1}{\sqrt{2}}$, 5 $\frac{1}{\sqrt{2}}$, 5 $\frac{1}{\sqrt{2}}$, 68.2 pb (1) $\frac{1}{\sqrt{2}}$, 68.2 pb (1) $\frac{1}{\sqrt{2}}$, 68.3 pb (1) \blacksquare ttakan 13 $\overline{12}$ for $\overline{12}$ $\overline{13}$ or $\overline{14}$ $\overline{14}$ $\overline{16}$ $\overline{12}$ $\overline{16}$ $\overline{16}$ $\overline{16}$

ATLAS Preliminary

Run 1,2 p

ATLASS Press **Press** Press P

Eleni Vryonidou by a strong tta algorithan 8 20.3 fb1 = 89.6 **pp (NL)** Support 79.7 **pp (NL)** Support 79.7 + 7.4 pp (NL) EPIC 77 (2017) 5311 0 1.1 pp (NL) Support 79.2 + 7.4 pp (NL) Support 79.7 + 7.4 pp (NL) Support 79.7 + 7.4 pp (NL) Support 79.7

^L dt[fb1] **Measurement Theory Reference**

t¯t 13 36.1 fb¹ = 826.4 ± 3.6 ± 19.6 pb = 832 + 40 45 pb (top++ NNLO+NNLL) EPJC 80 (2020) 528

t $\mathbf{1}_{\mathcal{A}}$, $\mathbf{1}_{\mathcal{A}}$,

t τ 7 τ 7 τ 7 τ 3.1 τ 3.1 τ 3.1 τ 3.1 τ 1.1 τ 3.1 τ 3.1

t τ 7 τ 7 τ 7 τ 3.1 τ 3.1 τ 3.1 τ 3.1 τ 1.1 τ 3.1 τ 3.1

t \mathbb{R}^n . The 242.9 fb1 \mathbb{R}^n is a 252.9 \mathbb{R}^n in the 252.9 \mathbb{R}^n in the 242.9 \mathbb{R}^n in the 252.9 \math

t $\mathbf{f}_{\mathbf{a}}$ is $\mathbf{f}_{\mathbf{a}}$ is $\mathbf{f}_{\mathbf{a}}$ for $\mathbf{f}_{\mathbf{a}}$ for $\mathbf{f}_{\mathbf{a}}$ ($\mathbf{f}_{\mathbf{a}}$) if $\mathbf{f}_{\mathbf{a}}$ is $\mathbf{f}_{\mathbf{a}}$ ($\mathbf{f}_{\mathbf{a}}$) if $\mathbf{f}_{\mathbf{a}}$ ($\mathbf{f}_{\mathbf{a}}$) if $\mathbf{f}_{\mathbf{a}}$ ($\$

Model-dependent Model-Independent

SUSY, 2HDM...
simplified models, EFT

New particles New Interactions of SM particles

New Physics searches at the LHC

anomalous couplings, EFT

New Physics searches at the LHC

Model-dependent Model-Independent

SUSY, 2HDM...

simplified models, EFT

New particles New Interactions of SM particles

anomalous couplings, EFT

STFC HEP school 2024

STFC HEP school 2024

STFC HEP school 2024

$$
\frac{p}{2}\bigg) + \left(\frac{p^2}{M^2}\right)^2 + \cdots
$$

STFC HEP school 2024

STFC HEP school 2024

$$
\frac{p}{2}\bigg) + \left(\frac{p^2}{M^2}\right)^2 + \cdots
$$

STFC HEP school 2024

STFC HEP school 2024

STFC HEP school 2024

STFC HEP school 2024

 $\mathcal{L}_{NP}(\varphi, Z')$

$\mathcal{L}_{SM}(\varphi)+\mathcal{L}_{Dim6}(\varphi)+\cdots$

$$
\rho) = \frac{C}{\Lambda^2} (\bar{f} \gamma^\mu f)(\bar{f} \gamma_\mu f)
$$

11

c/Λ2 can be linked to High Scale physics: Matching and Running

12

EFT for New Physics Low Energy Effective Theory without the Z'

Modified interactions suppressed by the scale of New Physics

The way to probe New Physics in the absence of light states Energy

Rate

New Interaction

 $\mathcal{L}_{SM}(\varphi)+\mathcal{L}_{Dim6}(\varphi)+\cdots$

Z

 $\frac{1}{-M^2}$

12

EFT for New Physics Low Energy Effective Theory without the Z'

 $\frac{1}{-M^2}$

Modified interactions suppressed by the scale of New Physics

New Interaction

13

1983 Discovery of W-boson at CERN UA1 and UA2 $M_w=80$ GeV $>>$ Q_B

Does the effective theory work? An example of a successful EFT:

- $n \rightarrow p + e^- + \bar{\nu}_e$ Fermi formulated his theory in the 1930's
	- It described β-decay data very well
		-
	- But this is not the full theory: cross-section rising with energy,

Energy borrowed from the vacuum A virtual W-boson exchange

Energy of β-decay: ~MeV violating unitarity

Why use an effective theory?

Top-bottom: We know the full theory but it's too complicated EFT simplifies the calculation by only including the relevant interactions It focuses on the relevant scale Examples: SCET, HQEFT

Bottom-up: We don't know the full theory, we are trying to describe measurements and guess the full theory Efficient to characterise new physics Examples: **SMEFT**, Fermi Theory (when formulated in the 1930's)

- Focus on SMEFT:
	- only SM fields
	- respecting SM symmetries
	- valid below scale Λ
- Gauge invariant \blacktriangledown
- Higher-order corrections: renormalisable order by order in 1/Λ \triangleright

$$
{\cal O}(\alpha_s)+{\cal O}\left(\frac{1}{\Lambda^2}\right)+
$$

- Complete description ●
-

SMEFT for New Physics

15

✔

 $\mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right)+\cdots$

• Model Independent (apart from symmetries and no new light states) $\blacktriangleright\!\!\!\blacktriangleleft\!$

Let's take a tour of SMEFT SM Theory of SM E $\mathcal{L}_{\text{eff}} = \mathcal{L}^{(4)} + \sum$ $D > 4$ \sum i $c_i^{(D)}$ $\frac{C_i^2}{\Lambda^{D-4}}$ $\mathcal{O}_i^{(D)}$ i

Eleni Vryonidou STFC HEP school 2024

Let's take a tour of SMEFT SM Theory of SM E $\mathcal{L}_{\text{eff}} = \mathcal{L}^{(4)} + \sum$ $D > 4$ \sum i $c_i^{(D)}$ $\frac{C_i^2}{\Lambda^{D-4}}$ $\mathcal{O}_i^{(D)}$ i Processes and observables

Eleni Vryonidou STFC HEP school 2024

i Processes and observables

Eleni Vryonidou STFC HEP school 2024

Eleni Vryonidou

i Processes and observables

Eleni Vryonidou STFC HEP school 2024

i Processes and observables

Sensitivity Measurements Constraints

Eleni Vryonidou STFC HEP school 2024

Sensitivity Measurements Constraints UV

Eleni Vryonidou STFC HEP school 2024

i Processes and observables

nuge enon to improve each one or t Measurements Constraints UV Huge effort to improve each one of these steps!

Eleni Vryonidou

i Processes and observables

Eleni Vryonidou STFC HEP school 2024

SMEFT dimension-5 MAJORANA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEU
Internacional de la contenta de la

 \mathbf{D} Constraint \mathbf{C} on \mathbf{C} and \mathbf{C} and \mathbf{C} and \mathbf{C} and \mathbf{C} and \mathbf{C} MAJORANA NEUTRINOS (MAJORANA NEUTRINOS).
Majorana neutrinos (majorana neutrinos (majorana neutrinos (majorana neutrinos (majorana).
Majorana neutrinos (majorana neutrinos (majorana neutrinos). $\mathcal{L} =$ *c* $\frac{C}{\Lambda}(L^T\epsilon\phi)C(\phi^T\epsilon L) + h.c.$ $\Lambda^{(2 \vee \vee)^{j}(\gamma)}$ v^2 \mathcal{L} \equiv \mathcal{C} $\frac{d}{d}\left(\frac{d}{d}\right)^{L}$ One lepton number violating operator at dim-5

17

When the Higgs fields acquires a vev this term give rise to a Majorana neutrino mass I have a set in the amplitude vertice vertices with $\frac{1}{2}$ $m_{\nu} = c$ *v*2 Λ I now calculate the amplitude value of \mathbf{I} $m_{\nu} = c$ Λ Majorana neutrino mass Neutrino masses of 0.01-0.1eV imply $\Lambda \sim 10^{15}$ TeV!!!

HiggsTools School - June 2015 Fabio Maltoni With a Dirac mass term and a Dirac mass term and a Majorana one (very isometric of SU(2)). One can discusse the SU(2) of SU(2) and Dirac mass

Eleni Vryonio HiggsTools School - June 2015 Fabio Maltoni (Fabio Maltoni)

Eleni Vryonid

⇒ grows with energy

 $N \sim \nu_R$ *M_R*

 $\nu \sim \nu_L$ *m*_{ν} ~ *m*_{D}² $\frac{2}{D}/M_R$

⇒ grows with energy = unitarity violations **Possible UV completion: see-saw model** • **Soondre dimension of the dimension of the dimension**

Majorana neutrino mass implies New Physics before 1015 GeV

Weinberg (1979)

$$
\mathcal{L} = -y_D \overline{L} \epsilon \phi^* \nu_R - \frac{1}{2} M_R \nu_R^T C \nu_R + \text{H.c.}
$$

SMEFT dimension-5 MAJORANA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEUTRINOSA NEU
Internacional de la contenta de la

 \mathbf{D} Constraint \mathbf{C} on \mathbf{C} and \mathbf{C} and \mathbf{C} and \mathbf{C} and \mathbf{C} and \mathbf{C} MAJORANA NEUTRINOS (MAJORANA NEUTRINOS).
Majorana neutrinos (majorana neutrinos (majorana neutrinos (majorana neutrinos (majorana).
Majorana neutrinos (majorana neutrinos (majorana neutrinos). $\mathcal{L} =$ *c* $\frac{C}{\Lambda}(L^T\epsilon\phi)C(\phi^T\epsilon L) + h.c.$ $\Lambda^{(2 \vee \vee)^{j}(\gamma)}$ v^2 \mathcal{L} \equiv \mathcal{C} $\frac{d}{d}\left(\frac{d}{d}\right)^{L}$ One lepton number violating operator at dim-5

17

When the Higgs fields acquires a vev this term give rise to a Majorana neutrino mass I have a set in the amplitude vertice vertices with $\frac{1}{2}$ $m_{\nu} = c$ *v*2 Λ I now calculate the amplitude value of \mathbf{I} $m_{\nu} = c$ Λ Majorana neutrino mass Neutrino masses of 0.01-0.1eV imply $\Lambda \sim 10^{15}$ TeV!!!

Majorana neutrino mass implies New Physics before 1015 GeV BOHOOL - JUNE 2015 **FABIO MALTO MALTO MALT** Not relevant for LHC physics

⇒ grows with energy

$\nu \sim \nu_L$ *m*_{ν} ~ *m*_{D}² $\frac{2}{D}/M_R$ $N \sim \nu_R$ *M_R*

⇒ grows with energy = unitarity violations **Possible UV completion: see-saw model** • **Soondre dimension of the dimension of the dimension**

Weinberg (1979)

$$
\mathcal{L} = -y_D \overline{L} \epsilon \phi^* \nu_R - \frac{1}{2} M_R \nu_R^T C \nu_R + \text{H.c.}
$$

HIGGSTOOLS SCHOOL - JUNE 2015

Eleni Vryonid

SMEFT@dim-6

59(2499) operators at dim-6:

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653

Grzadkowski et al arxiv:1008.4884

Warsaw basis of dimension-6 operators

 $\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$

SMEFT@dim6

59 operators in flavour universal scenario 2499 if fully general

STFC HEP school 2024

SMEFT@dim6

59 operators in flavour universal scenario 2499 if fully general $\boxed{\bigodot}$

STFC HEP school 2024

59 operators in flavour universal scenario 2499 if fully general $\left| \bigodot \right|$

SMEFT@dim6

19

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions

Is there any hope?

59 operators in flavour universal scenario 2499 if fully general $\left| \bigodot \right|$

SMEFT@dim6

19

Is there any hope?

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions

no B,L violation Flavour (universality, MFV…) CP conservation

<100 operators for the LHC

59 operators in flavour universal scenario 2499 if fully general $\left| \bigodot \right|$

SMEFT@dim6

19

Is there any hope?

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions

no B,L violation Flavour (universality, MFV…) CP conservation

X **Interaction Impact** ³ : ✏*IJKW^I ^µ*⌫ *W^J,*⌫⇢ *W ^K,µ* **Class Warsaw Example** *<u>Interaction</u>*

 $\psi^2 H^3:\,(\varphi^\dagger \varphi) \ \, (\bar q_i\, u_j\,\tilde \varphi)$ $\psi^2 H^2 D:~(\varphi^\dagger$ $\overleftrightarrow{\mathbf{\Gamma}}$ $\psi^2 H^2 D:~(\varphi^\dagger D_\mu\,\varphi)(\bar q_i\,\gamma^\mu\,q_j)$ $\psi^2 X H : (\bar{q}_i \sigma^{\mu\nu} u_i \tilde{\varphi}) B_{\mu\nu}$ ψ^4 : $(\bar{q}_i \gamma^\mu q_i)(\bar{q}_k \gamma_\mu q_l)$ Assuming $i = j = 3$

Examples of operators Dimension-6 operators of the SMEFT:

X **Interaction Impact** ³ : ✏*IJKW^I ^µ*⌫ *W^J,*⌫⇢ *W ^K,µ* **Class Warsaw Example** *<u>Interaction</u>*

 $\psi^2 H^3: \,(\varphi^\dagger \varphi) \,\,\left(\bar{q}_i \, u_j \,\tilde{\varphi} \right)$ $\psi^2 H^2 D:~(\varphi^\dagger$ $\overleftrightarrow{\mathbf{\Gamma}}$ $\psi^2 H^2 D:~(\varphi^\dagger D_\mu\,\varphi)(\bar q_i\,\gamma^\mu\,q_j)$ $\psi^2 X H : (\bar{q}_i \sigma^{\mu\nu} u_j \tilde{\varphi}) B_{\mu\nu}$ ψ^4 : $(\bar{q}_i \gamma^\mu q_j)(\bar{q}_k \gamma_\mu q_l)$ Assuming $i = j = 3$

Examples of operators Dimension-6 operators of the SMEFT:

X **Interaction Impact** ³ : ✏*IJKW^I ^µ*⌫ *W^J,*⌫⇢ *W ^K,µ* **Class Warsaw Example** *<u>Interaction</u>*

 $\psi^2 H^3:\,(\varphi^\dagger \varphi) \ \, (\bar q_i\, u_j\,\tilde \varphi)$ $\psi^2 H^2 D:~(\varphi^\dagger$ $\overleftrightarrow{\mathbf{\Gamma}}$ $\psi^2 H^2 D:~(\varphi^\dagger D_\mu\,\varphi)(\bar q_i\,\gamma^\mu\,q_j)$ $\psi^2 X H : (\bar{q}_i \sigma^{\mu\nu} u_i \tilde{\varphi}) B_{\mu\nu}$ ψ^4 : $(\bar{q}_i \gamma^\mu q_i)(\bar{q}_k \gamma_\mu q_l)$ Assuming $i = j = 3$

Examples of operators Dimension-6 operators of the SMEFT:

<u>Interaction</u>

-
-
- pole
- fermion

Examples of operators Dimension-6 operators of the SMEFT:

ttH

- ttZ production, Wtb, single top
- ttZ, ttA, WtB (ttVH)
- top pair production, single top, ttH, ttV, tttt

$$
\psi^2 H^3 : (\varphi^{\dagger} \varphi) (\bar{q}_i u_j \tilde{\varphi})
$$
 Higgs-fermion (Yukawa)
\n
$$
\psi^2 H^2 D : (\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{q}_i \gamma^{\mu} q_j)
$$
 gauge-fermion (Z,W)
\n
$$
\psi^2 X H : (\bar{q}_i \sigma^{\mu\nu} u_j \tilde{\varphi}) B_{\mu\nu}
$$
dipole
\n
$$
\psi^4 : (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l)
$$
 four fermion

Assuming $i = j = 3$

X **Interaction Impact** ³ : ✏*IJKW^I ^µ*⌫ *W^J,*⌫⇢ *W ^K,µ* **Class Warsaw Example**

From Operators to Observables

Operators have different impact on particle interactions 1) Modification of SM vertices 2) New Lorentz structures (3) Indirect effect due to impact on input parameters and canonical normalisation of fields

What is next? Study particular processes and observables to maximise

sensitivity on different operators

Fit data to extract EFT coefficients

SMEFT in practice

EFT has a global character

EFT pathway to New Physics

EFT pathway to New Physics

Eleni Vryonidou

STFC HEP school 2024

EFT pathway to New Physics

Eleni Vryonidou

$c_l^6(\mu)$

STFC HEP school 2024

EFT interpretations Data interpretation at different levels

- *S* Inclusive (fiducial) cross-section
- Differential parton level $\mathbf x$
- Differential particle level
- Detector level

LHC EFT WG effort:

https://indico.cern.ch/category/12671/

Global fit Setup Theory

Best available prediction for the SM NLO QCD for SMEFT

Faithful uncertainty estimate Avoid under- and over-fitting Validated on pseudo-data (closure test)

Fit Methodology **Output**

Observables

\vert Data \vert

Top-pair production W-helicities, asymmetry

4 tops, ttbb, toppair associated production

observable, the number of data points *n*dat, and the publication reference. Measurements indicated

Single top t-, s-channel

\mathbf{S} strengths. First of all, we consider the inclusive Higgs boson production signal produc $\mathsf{I} \mathsf{V} \mathsf{V}$ and $\mathsf{I} \mathsf{V}$ $\mathbf{c} \cdot \mathbf{v}$ are defined for \mathbf{c} and decay channels in terms of production and decay channels in terms of production and decay channels in terms of \mathbf{c} cross-section *‡ⁱ* and the branching fraction *B^f* as tW, tZ

are either not measured with a measured with a measured at all. We account for \mathbf{r} the experimental correlations between the measured signal strengths using the information Diboson

Dataset \sqrt{s}, \mathcal{L} Info Observables n_{dat} Ref. ATLAS_CMS_SSinc_RunI (*) $\begin{array}{|c|c|c|c|c|c|c|c|} \hline \end{array}$ **7+8 TeV, 20 fb**⁻¹ Incl. μ *i* $gg\mathrm{F,~VBF,}~Vh,$ $t\bar{t}h$ $20 \left[114 \right]$ $h \rightarrow \gamma \gamma, VV, \tau \tau, b\bar{b}$ ATLAS_SSinc_RunI (*) **8 TeV, 20 fb**⁻¹ $\left| \text{Incl. } \mu_i^f \right|$ $h \to Z\gamma, \mu\mu$ 2 [115] ATLAS_SSinc_RunII (*) $\begin{vmatrix} 13 & \text{TeV} & 80 & \text{fb}^{-1} \end{vmatrix}$ Incl. μ *i* $gg\mathrm{F,~VBF,}~Vh,~t\bar{t}h$ 16 [116] $h \rightarrow \gamma \gamma$, *WW*, *ZZ*, $\tau \tau$, $b\bar{b}$ $\texttt{CMS_SSinc_RunII (*)} \quad \left| \quad \textbf{13 TeV, 36.9 fb}^{-1} \quad \right| \; \text{Incl.} \; \mu_i^f$ $ggF,$ VBF, Wh, Zh $t\bar{t}h$ 24 [117] $h \rightarrow \gamma \gamma$, *WW*, *ZZ*, $\tau \tau$, $b\bar{b}$

Higgs signal strengths

120]. As in the case of top-quark production production production production production productions are obtained at <u>dia amazing maddisi maddisi with the SMEFT with the SMEFT and SMEFT and SMEFT about the SMEFT about the SMEFT a</u> Higgs differential

Eleni Vryonidou STFC HEP school 2024 22 leptonic final state [126] and the updated ATLAS measurement of *V h* associated production in the *b* ρ final state σ in the state σ measurements are however not expected to modify significantly significantly significantly significantly significantly significantly significantly significantly significantly s

Observables

\vert Data \vert

Top-pair production W-helicities, asymmetry

4 tops, ttbb, toppair associated production

observable, the number of data points *n*dat, and the publication reference. Measurements indicated

\mathbf{S} strengths. First of all, we consider the inclusive Higgs boson production signal produc $\mathsf{I} \mathsf{V} \mathsf{V}$ and $\mathsf{I} \mathsf{V}$ $\mathbf{c} \cdot \mathbf{v}$ are defined for \mathbf{c} and decay channels in terms of production and decay channels in terms of production and decay channels in terms of \mathbf{c} cross-section *‡ⁱ* and the branching fraction *B^f* as tW, tZ

are either not measured with a measured with a measured at all. We account for \mathbf{r} the experimental correlations between the measured signal strengths using the information Diboson

Eleni Vryonidou STFC HEP school 2024 22 leptonic final state [126] and the updated ATLAS measurement of *V h* associated production in the *b* ρ final state σ in the state σ measurements are however not expected to modify significantly significantly significantly significantly significantly significantly significantly significantly significantly s

Single top t-, s-channel

Higgs signal strengths

120]. As in the case of top-quark production production production production production productions are obtained at <u>dia amazing maddisi maddisi with the SMEFT with the SMEFT and SMEFT and SMEFT about the SMEFT about the SMEFT a</u> Higgs differential

Whenever available, the information on the information on the experimental correlated systematic uncer-

Full fit: individual

Individual: only one non-zero *ci* (optimistic, unrealistic)

What does that mean for the UV scale?

Full fit: individual

Individual: only one non-zero *ci*

(optimistic, unrealistic)

What does that mean for the UV scale?

Strongly coupled Weakly coupled

 c_i^6 $\int_i^b(\mu)$ Λ^2

Full fit: marginalised

28

All coefficients allowed to be non-zero

Bounds significantly worse in a marginalised fit

For weakly coupled theories Λ bound below the TeV scale: **EFT Validity???**

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

From EFT to the UV Single-field extensions of the SM

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

 $y_t\frac{M_T^2}{v^2}$

From EFT to the UV Single-field extensions of the SM

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

 $\, T \,$

Tree-level matching dictionary de Blas et al. JHEP 03 (2018) 109

 $\frac{1}{2} \frac{M_T^2}{r^2}$

 $-\frac{1}{2}\frac{M_T^2}{v^2}$

From EFT to UV Single-field extensions of the SM

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Fix coupling and set bound on mass or the other way round

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

THANK YOU

Eleni Vryonidou

STFC HEP school 2024

