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QUESTION 1: HALO

The halo is the region populated by dark matter with a galaxy at its centre. One can show
that the rotation curves of galaxies can be reproduced if the dark matter mass distribution
scales scales like

ρ(r) =
v2c
4πG

1

r2
⇒ M(r) =

v2cr

GN

where vc is a constant circular velocity and GN is Newtons constant. Here the goal is to
show that an ideal, isotropic gas in hydrostatic equilibrium with gravity with a Maxwell
velocity distribution

f(v⃗) = N exp

(
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)
,

predicts such a mass distribution.

a) Show that the mean square velocity squared ⟨v2⟩ is proportional to the temperature
of an ideal gas.

b) Calculate the mean speed for the Maxwell Boltzmann distribution

⟨v2⟩ =
∫ ∞

0

v2f(v)dv

and solve for the velocity distribution σ using the result from a). Using the ideal gas
law you should find the relation between the pressure p(r) and the density ρ(r),

p(r) = σ2ρ(r) .

Hint:
∫∞
−∞ e−x2/bdx =

√
bπ

c) Balance the force exerted by the hydrostatic pressure on a volume element with
surface A perpendicular to r and infinitesimal thickness dr with the gravitational
force. Solve the resulting differential equation for the matter-energy density using
the ansatz ρ(r) = a/r2 and fix the constant a. Hint: You can use

Fhydro = Fgrav

(P (r + dr)− P (r))A = −GN
M(r)

r2
= −ρAdr

GNM(r)

r2
.

and the relation for spherically symmetric mass distributions

dM(r)

dr
= 4πr2ρ(r) .



QUESTION 2: CMB

The cosmic microwave background (CMB) radiation is the relic of the recombination era
when photons for the first time were free to travel through the universe without constantly
being scattered off free electrons and protons. Today the CMB is an almost perfect black
body radiation with a temperature of TCMB = 2.725K.

a) What is the wavelength and frequency of the CMB today? hint: The CMB is black-
body radiation. Use Wiens displacement law λpeak = b/T with b = 2.9× 10−3mK.

b) Why do we know that the temperature of the CMB at decoupling was 3000 K? What
was its wavelength then? Would it have been visible to the human eye and can you
guess its color?

c) How old was the universe when the night sky turned black? Hint: This should
happen at the latest when the black-body spectrum has an average temperature of
T ≈ 700 K (the Draper point).

d) Go to https://lambda.gsfc.nasa.gov/bau/ and solve the CMB challenge. Understand
what the parameter mean and try to get the fit right (don’t click answer yet!) Why
does the flatness of the universe depend on the first three parameters, but not on the
Hubble constant, the spectral index and the re-ionization redshift?

https://lambda.gsfc.nasa.gov/bau/


QUESTION 3: COSMIC EXPANSION

The expansion of the Universe is described by a time-dependent solution to the Einstein
equations

Rµν(t)−
1

2
gµν(t)R(t) + Λ(t) =

Tµν(t)

M2
Pl

, (1)

where Rµν(t) is the Ricci tensor, which measures how much curvature the spacetime has,
R(t) = Rµ

µ(t) is it’s trace, gµν is the metric tensor, Tµν is the stress-energy tensor and MPl

is the Planck scale. The cosmological constant is a time-independent parameter in general
relativity. The early Universe can be described as a uniform, relativistic fluid so that we
can assume the stress energy tensor for a perfect fluid

T µν = (ρ+ P )uµuν − Pgµν ,

where uµ is the 4-velocity, ρ is the mass-energy density and P is the hydrostatic pressure.

a) Show that if the trace of the energy momentum tensor vanishes it follows that P/ρ =
1/3. The trace of the stress energy tensor is proportional to the mass scales in the
theory. Explain why it is ok to set it to zero for a relativistic fluid. Argue that a
cosmological constant with Tµν = ρvacgµν with ρvac > 0 corresponds to negative
pressure. Finally, what is the relation for P/ρ for non-relativistic matter?

b) Using the Friedmann equation relating the mass-energy density and the evolution of
the scale factor shown in the lecture

ρ(t) =
3

8πGN

(
ȧ(t)

a(t)

)2

(2)

and the evolution of the scale factor dependence for a matter, radiation and a cos-
mological constant with density ρvac = ΛM2

Pl dominated Universe to show that

a(t) ∝


t−2/3 matter dominated ,
t−1/2 radiation dominated ,
e
√
Λ t Λ dominated .

(3)



QUESTION 4: DIRECT DETECTION

Direct searches for Dark Matter are shielded detectors placed underground, which try to
measure interactions of Dark Matter with targets made from different elements. A recent
summary plot of direct detection bounds is shown in Fig. 1. Experimental bounds are
shown as solid lines, projected bounds are shown as dashed lines. Possible signal candida-
tes are shown as colored regions, while the thick, dashed orange line demarks the neutrino
floor.

Fig 1: Direct Detection bounds from various experiments. (adapted from Snowmass, 1310.8327 )

a) The local dark matter density is ρ = 0.3 GeV/cm3. How many dark matter particles
would you expect in a 2L bottle if the dark matter had a mass of 5 GeV or 500 GeV?

b) Explain the general shape of the exclusion limits (the sharp drop at a ∼ 10 GeV and
the linear slope for higher masses)! Can you explain the differences in the excluded
regions from different experiments? What would you guess is the scaling for the
sensitivity with mass and runtime of these experiments?

You are now an experimentalist working in a Direct Detection collaboration considering
two detectors. The first is based on a Germanium target and the second has a Xenon target:

Germanium Xenon
Energy Threshold Et 1 keV 5 keV
Energy Interval ∆E (1-40) keV (5-40) keV
Target Mass M 1 kg 35 kg
Target Element Mass mA 65 GeV 122 GeV
Mass Number A 73 131

http://arxiv.org/abs/1310.8327


The goal is to provide the best possible limit on a theory predicting a

1) light dark matter candidate Mχ = 5 GeV ,
2) heavy dark matter candidate Mχ = 500 GeV .

In both cases the commissioned runtime is T = 100 days.

c) Direct detection experiments are limited by the nuclear recoil energy threshold of
the target material Et. In terms of the velocity v of the Dark Matter particle and the
scattering angle θ, the recoil energy is given by

ER = v2
µ2
N

mA

(1− cos θ) , (4)

in which the reduced mass is given by µN = mAMχ

mA+Mχ
. Compute the minimal velocity

vmin for the Germanium and Xenon detector and the two Dark Matter masses given
above (note, that v is given as a fraction of c = 3 × 105 km/s using the units in the
table.)

d) The Dark Matter velocity distribution follows a Maxwell-Boltzmann distribution

f(v) = N e−v2/v20 , (5)

with v0 = 220 km/s the circular velocity of the Dark Matter halo and N = 1/(
√
πv0)

3 .
Integrate over the solid angle to obtain the velocity distribution f(|v|). Plot this
function and discuss what it implies for the velocities you have derived in c)? Does
it even make sense to consider very fast Dark Matter particles or should the velocity
distribution be cut off at a certain speed vmax?

e) The expected rate for WIMP interactions can be expressed as

R ≈ A2

2µ2
P Mχ

σ0ρχ

∫ vmax

vmin

f(v)

v
dv ·∆E , (6)

in which µP = mNMχ

mN+Mχ
is the reduced mass of the Dark Matter and a Nucleon (eitehr

proton or neutron) mN ≈ 1 GeV. The local dark matter density ρχ = 0.3 GeV/cm3

and the velocity distribution given above are astrophysical inputs. The mass of the
Dark Matter candidate and the cross section σ0 = 1 · 10−38 cm2 are quantities pro-
vided by your particle physics colleague. Compute the expected number of events
N = R · T · M for the two detectors and both the heavy and light Dark Matter
candidate. (Make sure you are using consistent units!)



TABLE IV. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for

known mean background b ranging from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98
1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.00, 1.73
3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.00, 2.78
4 1.47, 8.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84, 9.99 1.53, 9.49 1.25, 8.99 0.93, 8.49 0.43, 7.99 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.00, 4.99
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.00, 8.99
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30

10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 5.91,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,14.81 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,18.50 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,18.55 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4.48,17.52
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4.99,18.99
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6.04,20.02
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6.47,21.16
19 12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52 8.55,23.52

TABLE V. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for

known mean background b ranging from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.00, 0.92
1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 0.00, 1.03 0.00, 1.01 0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00, 0.98
2 0.00, 1.57 0.00, 1.38 0.00, 1.27 0.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00, 1.05
3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.29 0.00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.14
4 0.00, 2.83 0.00, 2.56 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1.45 0.00, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.24
5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00, 1.48 0.00, 1.39 0.00, 1.32
6 0.00, 5.47 0.00, 4.54 0.00, 3.73 0.00, 3.02 0.00, 2.40 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.00, 1.55 0.00, 1.47
7 0.00, 6.53 0.00, 5.53 0.00, 4.58 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.00, 1.69
8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.00, 1.95
9 0.00, 9.30 0.00, 8.30 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.00, 2.45

10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.00, 3.00
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.00, 3.69
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.00, 4.42
13 2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.00, 5.22
14 2.83,15.50 2.13,14.50 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.55
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8.52 0.00, 7.52
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.00, 8.99
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.00,10.02
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.00,11.16
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,18.51 3.05,17.51 2.21,16.51 1.58,15.51 0.67,14.51 0.00,13.51 0.00,12.51
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52 3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.00,13.52
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Tab.1: Lower and upper bound on the expected events for a 90% confidence level and a
given number of signal n0 and background b events. ( Feldman, Cousins, 9711021)

f) Now assume that you measured 3 signal events during the runtime, but also 2 back-
ground events. Table 1 gives the lower and upper bound on the expected events for
a 90% confidence level and a given number of signal n0 and background b events.
Use these numbers and the formulas in d) to derive a bound on the cross section σ0

for the two experiments and scenarios described above.

Tab.2: Input values for spin-dependent cross sections. ( Tovey et al., PLB 488 17(2000),
0005041)

http://arxiv.org/abs/physics/9711021
https://arxiv.org/pdf/hep-ph/0005041


g) You theorist friend comes back and is excited. A new model for dark matter could
explain many of the observations. The theorist explains that the model includes a
dark matter candidate χ with mass Mχ = 15 GeV and a new particle, a scalar S
that interacts with Standard Model particles and the dark matter and has a mass
MS = 300 GeV. The scalar S interacts exclusively with neutron spin with some
coupling constant g. Use Table to find the best possible target material for a direct
detection experiment to probe such a dark matter model. Now estimate the cross
section. Draw a Feynman diagram and use dimensional analysis and your knowledge
of Feynman rules to estimate σ(χN → χN). How long would it take you with a 10
kg target detector to be able to discover the signal of this model.

h) What is the neutrino floor (the dashed orange line in Fig.1)? Why does it have a simi-
lar shape as the exclusion limits? Should it be the same for different target elements?
Look into (Billard, Strigari, Figueroa-Feliciano, 1307.5458).

http://arxiv.org/abs/1307.5458v3

