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Motivation

• Monte Carlo (MC) generators crucial for HEP predictions

• Precision of theory predictions lower than experimental precision

• Improvement of theory precision crucial to find the BSM physics

• Intensive MC developments before High Lumi & EIC...

• Baseline MCs based on collinear factorization

• Hot topic: 3D hadron structure

• Recently new developments to include physics of Transverse Momentum Dependent (TMD)

factorization in MCs

Today: TMD PB method

a MC approach to obtain QCD predictions based on TMD PDFs

Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Lett.B 772 (2017) 446 & JHEP 01 (2018) 070

Image: James LaPlante/Sputnik Animation, MIT CAST & Jefferson Lab
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Standard MC generators: what can be improved?

• Every element of event generation has its

uncertainty:

ME, PS, PDFs, non-perturbative models, EW

corrections, multi parton interactions, underlying

events, hadronization, ...

• The way how we combine different generation

stages has also uncertainties

matching, merging...

The accuracy of each element can be improved

but fundamental problem remains:

mismatch in kinematics originating from collinear

assumption

TMD PB method addresses this issue
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What is the TMD Parton Branching method?

All this is true!
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TMD PB method in a nutshell

Plan for today:

1. Why a new method?

2. Intro to TMD PB method

3. limits/similarities to other approaches

4. Phenomenology & technical developments
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Motivation



Collinear factorization theorem in MCs

σ =
∑
qq

∫
dx1dx2fq(x1, µ

2)fq(x2, µ
2)σ̂qq(x1, x2, µ

2,Q2)

Basis of many QCD calculations BUT

• proton structure in 1D only

• for some observables also the transverse degrees of freedom have to be

taken into account

→ soft gluons need to be resummed:

• Transverse Momentum Dependent (TMD) factorization

theorems

baseline: low q⊥ Collins-Soper-Sterman (CSS)

• In practice Monte Carlos needed: Parton Showers (PS)

issues:

- treatment of k⊥ in the evolution

- consistency of the forward (i.e. this from which PDFs are

being obtained) and backward (i.e. PSs) approaches
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MC predictions

Collinear factorization: base assumption for MC generators

σ =
∑
qq

∫
dx1dx2fq(x1, µ

2)fq(x2, µ
2)σ̂qq(x1, x2, µ

2)

• kinematics of ME according to PDFs → incoming

partons do not have transverse momenta

• PS applied. Transverse momentum generated

PDFs extracted from approaches based on

forward evolution PSs done in terms of backward

evolution with PDFs as an input

In practical applications the evolution in forward and

backward calculations doesn’t match

• 4-momenta of incoming partons adjusted to

compensate for kT → partons’ kinematics does not

correspond to initial PDF
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Parton Branching Method: Idea

Develop a MC approach in which transverse momentum kinematics will be treated without any mismatch

between matrix element (ME) and Parton Shower (PS)

→ Transverse Momentum Dependent (TMD) factorization & TMD PDFs (TMDs)

σ =
∑
qq

∫
d

2k⊥1d
2k⊥2

∫
dx1dx2Aq(x1, k⊥1, µ

2)Aq(x2, k⊥2, µ
2)σ̂qq(x1, x2, k⊥1, k⊥2, µ

2)

• kinematics of ME generated according to TMD

PDFs → incoming partons have transverse momenta

Enough to describe the inclusive spectra, e.g. Z p⊥

Let’s see how far the PB method has got in practice! 7
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d
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2)Aq(x2, k⊥2, µ
2)σ̂qq(x1, x2, k⊥1, k⊥2, µ

2)

• kinematics of ME generated according to TMD

PDFs → incoming partons have transverse momenta

Enough to describe the inclusive spectra, e.g. Z p⊥

• For exclusive observables: TMD PS

consistent forward and backward evolution

kT at each branching fixed by TMD PDF

→ NO adjustment of the kinematics in the ME

needed after showering

Let’s see how far the PB method has got in practice! 7



Required Blocks

To realize the PB idea, several elements developed
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Educational power of the PB method

In PB, inclusive observables, e.g. Z p⊥, generated without

PS (because of k⊥ in TMD)

→ clear way of studying different evolution setups!

i.e. enough to change the element of interest in evolution

equation, produce new TMD and generate ME to get the

prediction.

The effect not blurred by PS!
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TMD evolution equation



Evolution in the TMD PB method

Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Lett.B 772 (2017) 446 & JHEP 01 (2018) 070

Ãa

(
x, k2
⊥, µ

2
)

= ∆a

(
µ

2
, µ

2
0

)
Ãa

(
x, k2
⊥, µ

2
0

)
+
∑
b

∫
d2µ⊥1

πµ2
⊥1

Θ
(
µ

2
⊥1 − µ

2
0

)
Θ
(
µ

2 − µ2
⊥1

)
×∆a

(
µ

2
, µ

2
⊥1

)∫ zM

x

dzPR
ab

(
z, µ2
⊥1

)
Ãb

(
x

z
, |k⊥1|2, µ2

⊥0

)
∆b

(
µ

2
⊥1, µ

2
⊥0

)
+ ...

Intuitive probabilistic interpretation ⇐⇒ easy to solve by Monte Carlo (MC) :

• Sudakov form factor ∆a

(
µ2, µ2

0

)
= exp

(
−∑b

∫ µ2

µ2
0

dµ′2

µ′2
∫ zM

0 dz zPR
ba

(
z, µ′2

))
probability of an evolution without resorvable branchings between µ2

0 and µ2

• Splitting function PR
ab(z, µ2) - probability of b → a

PR
qq & PR

gg - divergent for z → 1 ⇔ soft gluons: zM defines resolvable and non-resolvable branchings

Ã = xA, z- splitting variable, x = zx1, z ∈ (0, 1)
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Transverse momentum in PB

• starting distribution at µ2
0:

Ãa,0(x, k2
⊥0, µ

2
0) = f̃a,0(x, µ2

0) 1
πq2

s
exp

(
−k2
⊥0

q2
s

)
• Initial distribution f̃a,0(x, µ2

0) obtained from fits to inclusive DIS data

• Intrinsic transverse momentum k⊥0 constraint from DY data

• transverse momentum k calculated at each branching

ka = kb − qc ,

k of the propagating parton is a sum of intrinsic transverse momentum and

all emitted transverse momenta

k = k0 −
∑

i qi → TMD from parton branching

How to relate q⊥ and the evolution scale µ′ ? → Ordering condition
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Angular Ordering (AO)

PB implements AO

• angles of emitted partons increase from the hadron side towards hard

scattering

S. Catani, G. Marchesini, B. Webber (CMW):

AO included when the scale associated with the rescaled transverse momentum

q⊥ = (1− z)µ′

AO assures PB TMDs do not have IR singularities
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Effect of zM on PDFs

PB integrated TMDs (iTMDs): f̃a(x, µ2) =
∫
dk2
⊥Ãa(x, k⊥, µ

2)

By introducing zM , terms O(1− zM ) skipped compared to DGLAP

When zM ≈ 1, this effect not visible
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Bigger zM → more branchings

When a soft gluon is emitted:

• x unchanged

• flavour unchanged

→ this emission unnoticeable in the integrated distribution

This is not necessarily true at the level of TMDs!
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Effect of ordering & zM on TMDs

1704.01757, 1708.03279

p⊥- ordering

q2
⊥ = 1µ′2

virtuality ordering

q2
⊥ = (1-z)µ′2

angular ordering

q2
⊥ = (1− z)2µ′2

Recall: k = k0 −
∑

i qi

p⊥- ordering: IR divergent TMDs

virtuality- and angular ordering: difference between zM only in the small k⊥ region at higher scales, with AO

barely visible → AO assures IR safe TMDs

Note: All these TMDs after integration over k⊥ give the same collinear PDF
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Soft gluon resolution scale zM

Issues related to ordering:

1. soft gluon resolution scale zM

• DGLAP: zM = 1
• AO: q0 - the minimal emitted transverse momentum for which a branching can be resolved

q⊥ = (1− z)µ′ → zM (µ′) = 1− q0/µ
′

zM dynamical, i.e. scale dependent

2. scale in αs : αs (µ′2) or αs (q2
⊥)

PB limits for integrated TMDs (iTMDs): f̃a(x, µ2) =
∫
dk2
⊥Ãa(x, k⊥, µ

2)

• zM = 1 & αs (µ′2)→ DGLAP

• zM (µ′) = 1− q0/µ
′, LO P & αs (q⊥)→: CMW

Baseline MCs use PDFs obtained with fixed zM ≈ 1 and PS with dynamical zM

AO zM ⇐⇒ soft gluon resummation
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Sudakov Resummation



Sudakov resummation in PB

Motivated by AO, PB Sudakov factorized:

∆a(µ2
, µ

2
0) = exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2

[∫ zdyn(µ′)

0

dz
kq(αs )

1− z
− dq(αs )

])

×exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2

∫ zM≈1

zdyn(µ′)
dz

kq(αs )

1− z

)
.

by introducing

zdyn(µ′) = 1− q0/µ
′

both perturbative and non-perturbative regions are taken into account:

∆a(µ2
, µ

2
0) = ∆(P)

a

(
µ

2
, µ

2
0, q0

)
·∆(NP)

a

(
µ

2
, µ

2
0, ε, q

2
0

)
.

P: z < zdyn ⇐⇒ q⊥ > q0

NP: zdyn < z < zM (zM = 1− ε with ε� 1), ⇐⇒ q⊥ < q0
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Perturbative resummation in PB & CSS

PB Sudakov form factor for AO:

∆a(Q2, q2
0 )(P) = exp

(
−
∫ Q2

q2
0

dq2
⊥

q2
⊥

(∫ zM=1− q⊥
Q

0 dz
(
ka(αs (q⊥)) 1

1−z

)
− d(αs (q⊥))

))

notice:
∫ 1− q⊥

Q
0 dz

(
1

1−z

)
= 1

2 ln

(
Q2

q2
⊥

)

Collins-Soper-Sterman (CSS) Sudakov form factor:

√
S(P) =

exp
(
− 1

2

∫ Q2

c0/b
2

dµ2

µ2

[
Ai

(
αs (µ2)

)
ln
(

Q2

µ2

)
+ Bi

(
αs (µ2)

)])
dσ

dq⊥
∼
∫

d
2
b exp(ib · q⊥)

∫
dz1dz2H(Q2)

F1(z1, b, scales)F2(z2, b, scales) + Y

F = f ⊗ C ⊗
√
S

where
√
S =
√
S (P)S (NP)

We can compare: ka ⇐⇒ A and d ⇐⇒ B, order

by order in αs

• LL (A1), NLL (A2, B1) coefficients in

Sudakov the same in PB and CSS
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NNLL:

B2:

Renormalization group transformations mix the B, C , and H

MS resummation scheme: B corresponds to d

Difference coming from different schemes proportional to β0

A3:

double logarithmic part in PB: Paa = 1
1−z ka + ... (part of the DGLAP P)

collinear anomaly: at NNLL ka and Aa do not coincide Becher & Neubert

→ NNLL resummation in the PB Sudakov not achievable by implementing NNLO P

BUT can be done with effective coupling!

Banfi, El-Menoufi & Monni; Catani, de Florian & Grazzini:

αeff
s = αs

(
1 +

∑
n

(αs
2π

)n K(n)
)

K(1) = CA

(
67
18 − π2

6

)
− 5

9 Nf

K(2) = C 2
A

(
245
24 − 67

9 ζ2 + 11
6 ζ3 + 11

5 ζ
2
2

)
+ CFNf

(
− 55

24 + 2ζ3

)
+ CANf

(
− 209

108 + 10
9 ζ2 − 7

3 ζ3

)
− 1

27 N
2
f +

πβ0
2

(
CA

(
808
27 − 28ζ3

)
− 224

54 Nf

)
PB: recently implemented A3 with αeff

s
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PB with A3

NEW RESULTS
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Non-perturbative Sudakov

if zM ≈ 1- non - perturbative PB Sudakov included, similarly to CSS:

∆(NP)
a (µ2, µ2

0, ε, q0) = exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2
∫ 1−ε

1−q0µ
′ dz

ka(αs )
1−z

)
=

exp

(
− ka(αs )

2 ln

(
µ2

µ2
0

)
ln

(
q2

0
ε2µ0µ

))
Logarithmic structure resembles CS kernel D of the modern CSS (CSS2)

∆CSS2
a (b,Q,Q0, µ0) =

exp

(
−
∫ µ2

Q

µ2
0

dµ′2

µ′2

(
γk (αs ) ln

(
Q2

µ′2

)
+ γj (αs )

))
× exp

(
D(b, µ0)ln Q2

Q2
0

)

Later on: extract the CS kernel from the PB approach

but first:

Using dynamical zM = 1− q0
µ′ ⇐⇒ skipping the non-perturbative Sudakov

in the evolution has interesting consequences
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Effect of zM on TMDs and PDFs



Effect of zM on TMDs and PDFs

zM = 1− 10−5 , zM = 1− q0
µ′ & q0 = 1 GeV

Recall:

k = k0 −
∑

i qi

∆a = exp

(
−∑b

∫ µ2

µ2
0

dµ′2

µ′2
∫ zM

0 dz z PR
ba (z, αs )

)
• bigger zM → more branchings

Notice bump around k⊥ = 1 GeV with dyn zM

Remark: toy model: k = −qi=n

kt from last branching only

(a la Kimber-Martin-Ryskin-Watt )

F. Hautmann, L. Keersmaekers, A. Lelek, A. M. van Kampen

Nucl.Phys.B 949 (2019) 114795 21



Effect of zM on TMDs and PDFs

zM = 1− 10−5 , zM = 1− q0
µ′ & q0 = 1 GeV

Recall:

k = k0 −
∑

i qi

∆a = exp

(
−∑b

∫ µ2

µ2
0

dµ′2

µ′2
∫ zM

0 dz z PR
ba (z, αs )

)
• bigger zM → more branchings

Notice bump around k⊥ = 1 GeV with dyn zM

Remark: toy model: k = −qi=n

kt from last branching only

(a la Kimber-Martin-Ryskin-Watt )

F. Hautmann, L. Keersmaekers, A. Lelek, A. M. van Kampen

Nucl.Phys.B 949 (2019) 114795 21



Interplay of the perturbative and non-perturbative region

Let’s focus on dyn zM = 1− q0
µ′ Ãa,0(x, k2

⊥0, µ
2
0) = f̃a,0(x, µ2

0) 1
π2
s

exp

(
−k2
⊥0

q2
s

)

qs = 0.5 GeV & :q0 = 0.7 GeV, q0 = 1.0 GeV, q0 = 1.3 GeV q0 = 1.0 GeV & :qs = 0.3 GeV, qs = 0.5 GeV, qs = 0.7 GeV

bla

• large q0 → less branchings

• large q0: matching of intrinsic distribution with the evolution visible

• low q0: intrinsic k⊥ distribution smeared by the evolution

What if we change intrinsic k⊥?

bla
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• large q0 → less branchings

• large q0: matching of intrinsic distribution with the evolution visible

• low q0: intrinsic k⊥ distribution smeared by the evolution

What if we change intrinsic k⊥?

bla

• with large intrinsic k⊥ smooth distributions

• intrinsic k⊥ affects only the low k⊥ region & does not affect iTMD → problem for measurements

Interplay between pert. and non-pert. effects in the low k⊥ with dyn zM 22



And what about zM ≈ 1?

zM = 1 − 10−5 & qs = 0.5 GeV, zM = 1 − 10−5 & qs = 0.0001 GeV
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• effect of intrinsic k⊥ visible only for small scales in the low k⊥ region

• For higher scales it is completely smeared by the evolution effects

• exception: very large-x where there is no space for evolution
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And what about zM ≈ 1?

zM = 1 − 10−5 & qs = 0.5 GeV, zM = 1 − 10−5 & qs = 0.0001 GeV
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• effect of intrinsic k⊥ visible only for small scales in the low k⊥ region

• For higher scales it is completely smeared by the evolution effects

• exception: large-x where there is no space for evolution

→ large-x data should be used to fit intrinsic kt
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Fits of iTMDs in PB



Fit method

Bermudez Martinez, Connor, Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Rev.D 99 (2019) 7, 074008

The parameters of the initial parton distributions have to be obtained from the fits to the experimental data

→ xFitter S. Alekhin, Eur.Phys.J.C 75 (2015) 7, 304

First iTMDs are fitted:

• kernel Kab(x′′, µ2, µ2
0) from PB

• convolution with the starting distribution f0,b

f̃a(x, µ2) =
∫
dx′f0,b(x′, µ2

0) x
x′ Kba

(
x
x′ , µ

2, µ2
0

)
• f̃a(x, µ2) convoluted with ME to obtain the F2

• the procedure repeated with different f0,b until the minimal χ2 is found.

To obtain TMDs:

• TMD kernel K b
a (x′′, k⊥, k

2
⊥0, µ

2, µ2
0) from PB

• convoluted with the initial distribution A0,b

xAa(x, k⊥, µ
2) =

∫
dx′A0,b(x′, k2

⊥0, µ
2
0) x

x′ Kba

(
x
x′ , k

2
⊥, k

2
⊥0, µ

2, µ2
0

)
where A0,b(x′, k2

⊥,0, µ
2
0) = f̃b,0(x, µ2

0) 1
πq2

s
exp

(
−k2
⊥0

q2
s

)
, with f0,b from the fit of iTMDs

The intrinsic transverse momentum is not constrained by the xFitter fit procedure, here fixed to qs = 0.5 GeV

recently constrained from DY → see later
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Baseline PB distributions

Bermudez Martinez, Connor, Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Rev.D 99 (2019) 7, 074008

PB iTMDs are obtained from HERAPDF2.0 recipe: the same

parametrization, heave flavour scheme, uncertainty calculation etc.

H1, ZEUS, Eur.Phys.J.C 75 (2015) 12, 580

Two scenarios, both very similar χ2/d.o.f. ≈ 1.21:

• PB-NLO-HERAI+II-2018-set1: αs

(
µ′2
)

, reproduces HERAPDF2.0

• PB-NLO-HERAI+II-2018-set2: αs

(
q2
⊥
)

, different HERAPDF2.0

• data: HERA H1 and ZEUS combined DIS measurement

• range: 3.5 < Q2 < 50000 GeV2, 4 · 10−5 < x < 0.65

• model uncertainties: variation of mc , mb , µ0 (Set2: q0 as a cut in αs )

• initial parametrization in a form of HERAPDF2.0

TMDs and iTMDs available in TMDlib
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TMDlib & TMDplotter

F. Hautmann et al., Phys.J.C 74 (2014) 3220

N.A. Abdulov et al., Eur.Phys.J.C 81 (2021) 8, 752

A library for TMDs, PDFs and unintegrated

parton distributions (uPDFs)

allows for easy access to commonly used

TMDs, PDFs and uPDFs

TMDplotter allows for web based plotting

of distributions implemented in TMDlib &

LHAPDF.
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Fits with dynamical zM

NEW RESULTS

• Standard MCs use dynamical zM in PSs but PDFs are fitted with fixed zM
→ Fits with dynamical zM needed

• Is it possible to obtain reasonable fit with dynamical zM within PB framework?

• Which q0 value to choose?

When low Q2 data included in the fit, the χ2/d.o.f of the fit gets

worse with increasing q0 but it’s still reasonable

q0 = 0.5 GeV: χ2/d.o.f = 1.25

q0 = 1.0 GeV: χ2/d.o.f = 1.37

Possible to obtain good fit with dynamical zM even with low Q2
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Photon TMD

H. Jung, S. Taheri Monfared, T. Wening, Phys.Lett.B 817 (2021) 136299

α2
s ∼ α over a wide range of scales

→ necessary to include electroweak (EW) corrections

in the evolution

QED corrections included in the PB evolution by

incorporating QED splitting functions for Pqq , Pqγ ,

Pγq and Pγγ

PB (i)TMDs refitted & photon TMD obtained

other flavors in the ”old” PBset2 not affected

difference in shape at large kt from Pgg and no analogue in QED

Contributions from γγ → ll known to be sizable at high invariant mass

with the photon TMD, the calculation possible with PB
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PB predictions for DY



Predictions for DY

Drell-Yan process:

• is a ”standard candle” for electroweak precision measurements at LHC

• helps to understand the QCD evolution, resummation, factorization (collinear, transverse

momentum dependent (TMD))

• used for extraction of the PDFs

• at low mass and low energy gives access to partons’ intrinsic k⊥

• ...

The description of the DY data in a wide kinematic regime is

problematic
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DY with PB TMDs and Cascade3

Bermudez Martinez et al., Phys.Rev.D 99 (2019) 7, 074008

S. Baranov et al., Eur.Phys.J.C 81 (2021) 5, 425

PB TMDs are used by TMD MC generator CASCADE3 to obtain predictions

• ME obtained from standard automated methods used in collinear physics (Pythia, MCatNLO,...) with k

added according to TMD

• DY collinear ME

• Generate k⊥ of qq according to TMDs

(mDY fixed, x1, x2 change)

• compare with the 8 TeV ATLAS measurement

Phys. Rev. D 99, 074008 (2019)
In collinear MC transverse momentum comes from PS⇔ in PB method it is included in TMD

•For exclusive observables: Initial State TMD Parton Shower (PS)

•Final State PS, Hadronization via Pythia 30
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PB TMDs and MCatNLO for DY

A. Bermudez Martinez et al., Phys.Rev.D 100 (2019) 7, 074027

• standard MCatNLO: when ME matched with PS, subtraction terms (for soft and collinear contribution)

must be used to avoid double counting

• Subtraction term depends on the PS to be used

• PB TMDs have similar role to PS

→ subtraction term has to be used to combine PB TMDs with NLO cross section

• PB uses AO, similar to Herwig6

→ MCatNLO + Herwig6 subtraction used by PB TMD + MCatNLO calculation

MCatNLO calculation with subtraction

k included in ME according to PB TMD
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DY from fixed-target up to LHC

A. Bermudez Martinez et al., Eur.Phys.J.C 80 (2020) 7, 59

• Low and middle p⊥ spectrum well described. At higher p⊥ from Z+ jets important → see later

• Good description of DY from experiments in different kinematic ranges: NuSea, R209, Phenix, Tevatron,

LHC. No tuning/adjusting of the method for different
√
s

• ”low q⊥ crisis” A. Bacchetta et al., Phys. Rev. D 100, 014018 (2019):

perturbative fixed order calculations in collinear factorization not able to describe DY pT spectra at fixed

target experiments for pT/mDY ∼ 1 → we confirm this:

• at larger masses and LHC energies the contribution from soft gluons in the region of p⊥/mDY ∼ 1 is

small and the spectrum driven by hard real emission.

• at low DY mass and low
√
s even in the region of p⊥/mDY ∼ 1 the contribution of soft gluon emissions

essential 32



Fitting of intrinsic kt



Intrinsic kt vs center-of-mass energy & DY mass

NEW RESULTS

Pythia, Herwig: the intrinsic k⊥ is center-of-mass dependent

T. Sjostrand, Peter Z. Skands, JHEP 03 (2004) 053

Stefan Gieseke, Michael H. Seymour, Andrzej Siodmok, JHEP 06 (2008) 001

In PB/Cascade the situation different when PB-NLO-HERAI+II-2018-set2 is used

Method:

• replicas of PB-NLO-HERAI+II-2018-set2 created with qs scanned scanned between qs = 0.1 and

qs = 2.0 GeV with a step of 0.1 GeV;

• prediction for each DY measurement obtained with each replica;

• for each measurement, the qs providing the best χ2 was extracted.

I. Bubanja et al., Eur.Phys.J.C 84 (2024) 2, 154

In PB the
√
s and mDY dependence of intrinsic kt much weaker than in other MCs 33



Intrinsic kt vs center-of-mass energy for dynamical zM

NEW RESULTS

The center-of-mass dependence of the intrinsic kt comes from the treatment of soft gluons

study with models with zM = 1− q0
µ′ for different q0 values & αs (q⊥)

fixed zM ≈ 1↔ q0 → 0

I. Bubanja et al., 2404.04088

When q0 O(1GeV) is used, intrinsic kt depends on center-of-mass energy

The slope increases with increasing q0

Including non-perturbative Sudakov (zM → 1) & αs (q⊥) crucial for intrinsic kt (almost) independent of
√
s
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CS kernel



Recall: Non-perturbative Sudakov

In CSS formalism:

• Evolution of the TMD with respect to ζ given by CS kernel

∂ ln f̃f /H (x,bt ,ζ,µ)

∂ ln
√
ζ

= D(bt , µ)

• Sudakov form factor of the modern CSS (CSS2)

∆CSS2
a (b,Q,Q0, µ0) = exp

(
−
∫ µ2

Q

µ2
0

dµ′2

µ′2

(
γk (αs ) ln

(
Q2

µ′2

)
+ γj (αs )

))
× exp

(
D(b, µ0)ln Q2

Q2
0

)
The logarithmic structure in PB the same when non-perturbative Sudakov included

∆a(µ2
, µ

2
0) = ∆(P)

a

(
µ

2
, µ

2
0, q0

)
·∆(NP)

a

(
µ

2
, µ

2
0, ε, q

2
0

)
.

if zM ≈ 1- non - perturbative PB Sudakov included, similarly to CSS:

∆(NP)
a (µ2, µ2

0, ε, q0) = exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2
∫ 1−ε

1−q0µ
′ dz

ka(αs )
1−z

)
= exp

(
− ka(αs )

2 ln

(
µ2

µ2
0

)
ln

(
q2

0
ε2µ0µ

))
CS kernel:

• contains non-perturbative information

• can be extracted from measurements

• is the only QCD function which is largely unknown
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Models for numerical studies

We study 4 PB models which differ in the amount of (soft) radiation.

Amount of radiation modelled in terms of αs and zM

Models with fixed zM ≈ 1:

• αs (q2
⊥), αs = αs (max(q2

0 , q
2
⊥)), q0 = 1.0 GeV (red)

• αs (µ′2) (blue)

Models with αs (q2
⊥) and dynamical zM = 1− q0/µ

′ (i.e. no non-perturbative Sudakov ):

• q0 = 1.0 GeV (purple)

• q0 = 0.5 GeV (orange)
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CS kernel

NEW RESULTS

The method of A. Bermudez Martinez and A. Vladimirov (Phys.Rev.D 106 (2022) 9, L091501) used to extract CS kernel from PB DY

predictions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
b [GeV 1]

0.2
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0.4

0.6

0.8

1.0

(b
;2

 G
eV

)

 s(q2
T)  & zM = 1 10 5 

 s( ′2)  & zM = 1 10 5 
 s(q2

T)  & zM = 1 q0
′ , q0 = 1.0 GeV 

 s(q2
T)  & zM = 1 q0

′ , q0 = 0.5 GeV 

D(b, µ0) =
ln(Σ1(b)/Σ2(b))−ln Z(Q1,Q2)−2∆R (Q1,Q2;µ0)

4 ln(Q2/Q1)
− 1

Σ1 and Σ2 - Hankel transformed DY cross sections

∆R (Q1, Q2;µ0) =
∫Q1
Q2

dµ
µ
γF (µ, Q1) − 2 ln

Q1
Q2

∫Q2
µ0

dµ
µ
γk (µ)

Z(Q1, Q2) =
α2

em(Q1)|CV (Q1,µQ1
)|2

α2
em(Q2)|CV (Q2,µQ2

)|2

where CV is the hard coefficient function.

All terms except Σ1/Σ2 are perturbative and known up to

up to N3LO

• The extracted kernels in PB more than just the ∆NP
a : it is a cumulative effect of many branchings,

governed by αs and zM .

• different modelling of radiation can lead to a very different kernel behaviour, including different slopes.
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CS kernel

NEW RESULTS

The method of A. Bermudez Martinez and A. Vladimirov (Phys.Rev.D 106 (2022) 9, L091501) used to extract CS kernel from PB DY

predictions

• The extracted kernels in PB more than just the ∆NP
a : it is a cumulative effect of many branchings,

governed by αs and zM .

• different modelling of radiation can lead to a very different kernel behaviour, including different slopes.

• The curves spread over a wide range, covering extractions from other groups
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Exlusive observables



Backward evolution and TMD shower

S. Baranov et al., Eur.Phys.J.C 81 (2021) 5, 425

• For inclusive observables (e.g. DY) ME + TMDs

• For exclusive observables: PS

Cascade3: Initial State TMD PS guided by the PB TMDs

We start from a final parton a at a given x and µ and we it evolve back till µ0

Πa

(
µ2, µ2

0

)
= exp

(
−∑b

∫ µ2

µ2
0

dµ′2

µ′2
∫ 1

0
dz zPR

ab

(
z, µ2

) Ãb (x,k′⊥,µ
′)

Ãa(x,k⊥,µ′)

)

• currently the Final State PS, Hadronization via Pythia
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Jet measurements

Measurements with jets allow to test our understanding of QCD by comparing predictions from different MCs

What do we look at?

• azimuthal correlations

• jet multiplicity

• jet p⊥

Are the TMDs important for high p⊥ effects?
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TMD effects at high p⊥

Bermudez Martinez, Hautmann, Mangano, Phys.Lett.B 822 (2021) 136700

It is commonly known that TMD effects play a role at scales O(few GeV)

Can TMDs also play a role at higher scales?

PB TMD: at µ ∼ O(1 GeV) TMD is a gaussian with

ΛQCD < σ < O(1 GeV). Effect of the evolution: k⊥ accumulated in each

step → TMD broadening
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kt

,µ
) What is the contribution to the emission of an extra jet of

p⊥ < µ from the k⊥-broadening of the TMD?

Rj (x, k⊥, µ
2) =

∫∞
k2
⊥

dk′2⊥Ãj (x,k′⊥,µ
2)∫

dk′2⊥Ãj (x,k′⊥,µ
2)

at LHC the contribution from high k⊥ tail to jet emission

comparable to perturbative emissions via hard ME!
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TMDs and MLM Multi-Jet Merging

Bermudez Martinez, Hautmann, Mangano, Phys.Lett.B 822 (2021) 136700

Recall: DY at high p⊥: large corrections from higher orders

TMD merging procedure developed (at LO)

extension of MLM method NPB 632 (2002) 343–362 to the TMD case
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• The merged prediction provides good description of the data in the whole DY p⊥ spectrum

• jet multiplicity in Z+ jets production well described, also for multiplicities larger than the maximum nb

of jets in MEs

41



PB TMD in azimuthal correlations

H. Yang et al., Eur.Phys.J.C 82 (2022) 8, 755

PB was used to compare azimuthal correlations in dijets and Z+jets

• sensitive to soft radiation

• probe of colour/spin correlations:

different initial state, different FSR → potential interference between initial and final state different

→ Comparing these two processes one can look for the hints of factorization breaking

dijet data well described by PB TMD + MCatNLO

small deviation in ∆Φ = π - to be studied further

Still missing: data for Z+jets at high p⊥
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PB at CMS



PB at CMS

Predictions from the PB method used in several CMS publications, e.g.:

• Measurements of jet multiplicity and jet transverse momentum in multijet events in proton-proton

collisions at
√

13 TeV Eur.Phys.J.C 83 (2023) 8, 742

• Azimuthal correlations in Z+jets events in proton-proton collisions at
√

13 TeV

Eur.Phys.J.C 83 (2023) 8, 722

Madrgrap +Cascade3 merged prediction (for N > 2)

agree with data, similarly to HERWIG ++.

The predictions from Madgraph+Cascade agree with

the measurements (in the regions where MPI effects

are negligible) 43



PB at HERA



Lepton-Jet Correlation & 1-jettiness in DIS

Predictions from the PB method used in two H1 publications

• Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using

Machine Learning for Unfolding Phys.Rev.Lett. 128 (2022) 13, 132002

• Measurement of the 1-jettiness event shape observable in deep-inelastic electron-proton scattering at

HERA 2403.10109

Lepton-jet production e + p → e + jet + X sensitive to

TMDs when lepton-jet imbalance

qjet
⊥ = |−→p⊥e +−→p⊥jet| small

←→ small deviation from π in azimuthal angle

∆Φjet = |π − (Φe − Φjet)|
Cascade + KaTie describe the data reasonably well at

lower qjet
⊥ /Q and ∆Φ

τ → 0: 2 jets, one along the beam direction from ISR

and the other by the hard collision with the electron

τ → 1: > 2 jets

Cascade+KaTie gives good description at lower τ
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High-energy factorization



TMD Splitting functions

• Concept from high-energy factorization (Catani &

Hautmann 94′)

k⊥ - factorization for DIS:

F 0(x,Q2) =
∫

[dk]
∫

dz
z σ̂(z, k,Q2, µ)G0

(
x
z , k, µ

)
G0 - solution of BFKL equation

• originally TMD Pqg calculated

Pqg

(
αs , z, k

′
⊥, q̃⊥

)
=
αs TF

2π

q̃2
⊥z(1−z)

(q̃2
⊥+z(1−z)k′2⊥)2

[
q̃2
⊥

z(1−z) + 4(1− 2z)q̃⊥ · k′⊥ − 4
(q̃⊥·k

′
⊥)2

k′2⊥
+ 4z(1− z)k′2⊥

]
where q̃⊥ = k⊥ − zk′⊥

k′

z

Hard
interaction

k

q

Properties:

• well defined collinear and high energy limits:

- for k′2⊥ � k2
⊥, after angular average:

TMD Pqg → LO DGLAP Pqg

- for finite k′2⊥, k′2⊥ ∼ O(k2
⊥):

expansion in (k′2⊥/q̃
2
⊥)n, with z-dependent coefficients

resummation of ln 1
z at all orders in αs via convolution with TMD

gluon Green’s functions

• positive definite

Other channels by Gituliar, Hentschinski, Kusina, Kutak & Serino (2015− 2017)
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High energy kt-factorization & PB

Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek, Phys.Lett.B 833 (2022) 137276

Idea: replace DGLAP P by TMD P

goal: incorporate both small-x and Sudakov contributions

Ãa

(
x, k2
⊥, µ

2
)

= ∆a

(
µ2, µ2

0

)
Ãa

(
x, k2
⊥, µ

2
0

)
+∑

b

∫ d2µ⊥1
πµ2
⊥1

Θ
(
µ2
⊥1 − µ2

0

)
Θ
(
µ2 − µ2

⊥1

)
∆a

(
µ2, µ2

⊥1

) ∫ zM
x

dzPR
ab (z, k⊥ + (1− z)µ⊥1, µ⊥1)Ãb

(
x
z , |k⊥ + (1− z)µ⊥1|2, µ2

⊥1

)

What to do with the Sudakov form factor?

• collinear ∆a

(
µ2, µ2

0

)
• newly constructed TMD Sudakov

∆a

(
µ2, µ2

0

)
→ ∆a

(
µ2, µ2

⊥1, k
2
⊥,
)

= exp

(
−∑b

∫ µ2

µ2
0

dµ′2

µ′2
∫ zM

0 dz zP
R
ba

(
z, k2
⊥, µ

′2)), P - angular averaged P

momentum sum rule & unitarity crucial

Only with TMD Sudakov momentum sum rule satisfied

First parton branching algorithm to TMDs and PDFs

which includes TMD P and fulfils momentum sum

rule

first step towards a full TMD MC covering the

small-x
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Summary & Conclusions

• TMD Parton Branching: a MC method to obtain QCD collider predictions based on TMDs

• PB: TMD evolution equation to obtain TMDs; TMDs can be used in TMD MC generators to obtain

predictions:

- fits with xFitter

- matching NLO ME with PB TMDs

- merging

- TMD PS

Discussed today:

• the PB TMD evolution equation and its relation to other approaches (DGLAP, CMW, CSS, high

energy factorization)

• the soft gluon resolution scale and its interplay with the intrinsic kt

• fits of the PB (i)TMDs to HERA and DY data

• examples of the PB method applications: DY at different
√
s, mDY , DY+jets, azimuthal correlations in

Z+jest and multijets, jets at DIS

The TMD PB method: flexible & widely applicable MC approach to obtain QCD high energy predictions

Thank you!
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