Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	000	0000

SHERPA for EIC

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

6.6.2024 - MC4EIC - IPPP Durham

	Krau	SS	
Sн	ERPA	for	EIC

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	000	0000

- introduction
- multijet merging
- SHERPA for DIS
- ALARIC: a new parton shower for SHERPA
- Recent use by H1
- Forthcoming attractions

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
●O	00000	00000	000000	000	0000

instead of an introduction

(executive summary)

▲□▶▲□▶▲□▶▲□▶ = のへの

F.	Krau	SS	
S⊦	IERPA	for	Ею

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	●0000	00000	000000	000	0000

multijet merging

(principles & examples applications LHC)

• • • • • • • • • • • • • • • • • • •	★ E ► < E ►	- E	900
---------------------------------------	-------------	-----	-----

F. Krauss SHERPA for EIC IPPP

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
00	O●000	00000	000000	000	0000

underlying idea

- matrix elements (ME) good for jet production
- parton showers (PS) good for jet production
- want the best of both worlds: combine them **without double counting**
- Iogic:
 - $\bullet\,$ reweight MEs with Sudakov form factors & appropriate scales in $\alpha_{{\cal S}},$
 - veto unwanted (=hard jet) emissions in PS

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outloo
00	00●00	00000	000000	000	0000

propaganda: $p_{\perp,\gamma\gamma}$ LHC in MEPs@LO vs. NNLO

(JHEP 01 (2013) 086)

multijet-merging at NLO

- sometimes "more legs" wins over "more loops"
- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- combine them into one sample, remove overlap/double-counting
- maintain NLO and LL accuracy of ME and PS
- effectively merging MC@NLO simulations, further supplemented with LO simulations for even higher FS multiplicities
- different implementations, parametric accuracy not always clear

(MEPS@NLO, FxFx, UNLOPS)

• can extend to/include EW corrections

(e.g. JHEP 06 (2022) 064; JHEP 10 (2020) 159; Phys.Rev.D 89 (2014) 11, 114006)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	0000●	00000	000000	000	0000

 first emission by MC@NLO

▲ロト▲母ト▲ヨト▲ヨト ヨーの () ()

Introduction 00	Merging 0000●	SHERPA for DIS 00000	Alaric 000000	H1 results 000	Outlook 0000

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

|▲□▶▲□▶▲□▶▲□▶ □ の⊙⊙

Introduction 00	Merging 0000●	SHERPA for DIS 00000	Alaric 000000	H1 results 000	Outlook 0000

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$

イロト イ団ト イヨト イヨ

Introduction 00	Merging 0000●	SHERPA for DIS 00000	Alaric 000000	H1 results 000	Outlook 0000

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

イロト イヨト イヨト

Introduction 00	Merging 0000●	SHERPA for DIS 00000	Alaric 000000	H1 results 000	Outlook 0000

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

イロト イヨト イヨト

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

イロト イヨト イヨト

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
00	0000●	00000	000000	000	0000

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

イロト イヨト イヨト イヨ

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
00	0000●	00000	000000	000	0000

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	OOOO	000000	000	0000

$\mathsf{SHERPA} \ \mathsf{for} \ \mathsf{DIS}$

(some examples)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	O●OOO	000000	000	0000

leading order example: di-jet production at HERA

(Eur.Phys.J.C 67 (2010) 73, data from Eur.Phys.J.C33 (2004), 477)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000		000000	000	0000

leading order example: three-jet production at HERA

(Eur.Phys.J.C 67 (2010) 73, data from Phys.Lett.B515 (2001) 17)

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 > 夕久(?)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	000●0	000000	000	0000

leading order example: jet shapes at HERA

(Eur.Phys.J.C 67 (2010) 73, data from Nucl.Phys.B545 (1999) 3)

- イロト イ理ト イヨト - ヨー シタの

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000		000000	000	0000

inclusive NC-DIS at NNLO

(Phys.Rev.D 98 (2018) 11, 114013; data from Eur.Phys.J.C75 (2015) 65)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	●00000	000	0000

ALARIC

(a new parton shower for SHERPA)

motivation

• currently used parton showers (CSSHOWER, DIRE) not NLL correct

(Phys.Rev.Lett. 125 (2020) 5, 052002)

イロト イ伺ト イヨト イヨト

due to issues with kinematics of subsequent emissions

 \longrightarrow have to go back to drawing board

• results (condensed in ALARIC):

 $\bullet\,$ revisited eikonal factorisation $\rightarrow\,$ reformulated angular ordering

- disentangled colour spectator and recoil partner
- new kinematics mapping, full event for recoil
- new role of color spectator: only fixing directions
- analytic proof of NLL accuracy

(JHEP 10 (2023) 091)

set-up of numerical tests

- compare results in $\alpha_S \rightarrow 0$ limit with NLL result
- set-up for checks
 - fixed α_s
 - leading colour $C_A = 2C_F = 3$
 - all partons massless
- example: azimuthal angle between two leading Lund-plane declusterings

(should be $\Delta \Psi_{12} = 0$)

(日)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000●00	000	0000

numerical checks

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000●00	000	0000

numerical checks

set-up of data comparison with LEP 1

- compare hadron-level results with LEP data
- perturbative set-up
 - no higher orders (no matching or merging)
 - running two-loop α_s with $\alpha_s(M_z) = 0.118$
 - use CMW scheme for soft eikonal parts
 - all partons massless, masses emulated through simplistic thresholds
 - leading colour $C_A = N_c = 3$, $C_F = \frac{N_c^2 1}{2N_c}$
- non-perturbative set-up
 - need to use PYTHIA hadronization

(ALARIC not yet ready for heavy hadron decays)

• default parameters of PYTHIA 6.4, but

PARJ(21) = 0.3, PARJ(41) = 0.4, PARJ(42) = 0.36(ALARIC)/0.45(DIRE)

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
00	00000	00000	00000●	000	0000

data comparison at LEP 1

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
00	00000	00000	00000●	000	0000

data comparison at LEP 1

▲日▶▲圖▶▲圖▶▲圖▶ ■ のQの

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	000	0000

data comparison at LHC: QCD events

(2404.14360, data from Eur.Phys.J.C 71 (2011) 1763 & Eur.Phys.J.C 74 (2014) 11)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	000	0000

data comparison at LHC: QCD events

(2404.14360, data from Eur.Phys.J.C 71 (2011) 1763 & Eur.Phys.J.C 74 (2014) 11)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Introduction	Merging	Sherpa for DIS	Alaric	H1 results	Outlook
OO	00000	00000	000000	●00	0000

SHERPA @ H1

(recent use)

	Krau	SS	
S⊦	IERPA	for	E١

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	O●O	0000

jet substructures at H1

(Phys.Lett.B 844 (2023) 138101)

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	00●	0000

groomed event shapes at H1

(2403.10134 [hep-ex])

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	00●	0000

groomed event shapes at H1

(2403.10134 [hep-ex])

- イロト (個) (注) (注) (注) 三 のへの

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	000	●000

summary & outlook

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへの

F. Krauss SHERPA for EIC IPPP

Introduction	Merging	SHERPA for DIS	Alaric	H1 results	Outlook
00	00000	00000	000000	000	0000

summary

- SHERPA one of the frontrunners in precision simulations @ LHC
 - \longrightarrow in the process of porting/adapting technology for EIC:
 - $\bullet~NC/CC~DIS$ with MEPs@NLO and $\rm NNLO precision$ available
 - photoproduction in EPA with different PDFs @ MEPS@NLO

(available in new 3.0)

- MPI model for photoproduction (needs tuning)
- modelling of hard diffraction started

(see talk by Ilkka)

(see talk by Peter)

heavy use of HERA data for bootcamp/validation/tuning

forthcoming attractions

- SHERPA 3.0.0 to be released next week (hopefully):
 - improved run-card handling
 - massively increased generation efficiency
- beyond 3.0.0:
 - ALARIC: new parton shower with increased (NLL+) precision

((N)NLO matched & merged)

- tuned cluster hadronization (and tuning Lund for SHERPA)
- tuned MPI model, adapted for photoproduction

(and also adapted for "rescattering")

(日) (同) (三) (三)

- new colour reconnection model
- long term: YFS QED simulation for DIS

Introduction 00	Merging 00000	SHERPA for DIS 00000	Alaric 000000	H1 results 000	Outlook 000●

ITATIONS

Until You Spread Your Wings, You'll Have No Idea How Far You Can Walk.

F. Krauss SHERPA for EIC IPPP

© DESPAIR.COM