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|QCD evolution, dilute vs. dense, forward jets|
art by Piotr Kotko

A dilute system carries a few
high-x partons contributing to the
hard scattering.

A dense system carries many
low-x partons.

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

This is modeled with non-linear
evolution equations, involving
explicit non-vanishing kT .

x
x
x
x
x
x
x

Saturation implies the turnover of the gluon density, stopping
it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which
partons from the nucleus have small x.
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|Color Glass Condensate (CGC)| McLerran, Venugopalan
1994

introduction from
Morreale, Salazar 2021The CGC is an effective field theory for high energy QCD.

Partons carrying large hadron momentum fraction x are treated as static color sources ρ.

Their color charge distribution is non-perturbative and is dictated by a gauge invariant
weight functional Wx0 [ρ]. The sources generate a current Jµ,a.

The partons carrying small x are treated as a dynamical classical field Aµ,a.

Sources and fields are related by the Yang-Mills equations [Dµ, Fµν] = Jν.

The expectation value ⟨O⟩x0 of an observable O is calculated as the path integral O[ρ] in
the presence of sources from Wx0[ρ], averaged over all possible configurations ρ.

The interaction of a highly energetic color charged particle with the classical field A in the
eikonal approximation is encoded in the light-like Wilson lines

U(xT) = Pexp

{
ig

∫∞
−∞ dx+A−,a(x+, xT)t

a

}

Evolution in x of Wx[ρ] implies an infinite hierarchy (known as the B-JIMWLK hierarchy)
of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
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Cross section calculations involve particle wave functions and Wilson line correlators.
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|ITMD Factorization| For forward dijet production
in dilute-dense hadronic collisions

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

dσAB→X =

∫
dk2

T

∫
dxA
∑
i

∫
dxB
∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, µ)

For xA ≪ 1 and PT ≫ kT ∼ Qs (jets almost back-to-back).

TMD gluon distributions ϕ
(i)
gb(xA, kT , µ) satisfy non-linear evolution equations.

Partonic cross section dσ̂
(i)
gb is on-shell, but depends on color-structure i.

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

dσAB→X =

∫
dk2

T

∫
dxA
∑
i

∫
dxB
∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, kT , µ)

Originally a model interpolating between High Energy Factorization and Generalized TMD
factorization: PT ≳ kT ≳ Qs.

Partonic cross section dσ̂
(i)
gb is off-shell and depends on color-structure i.

ITMD formalism is obtained from the CGC formalism, by including so-called kinematic
twist corrections (Antinoluk, Boussarie, Kotko 2019).
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|Definition of gluon TMDs|

Resummation of gluon exchanges leads to Wilson line Uγ = Pexp

{
− ig

∫
γ

dz·A(z)

}
acting as a gauge link for the gauge invariant definition of a TMD

Fg/A(x, kT) = 2

∫
d4ξ δ(ξ+)

(2π)3 p+
A

exp
{
ixp+

Aξ
− − i⃗kT · ξ⃗T

} 〈
A
∣∣Tr{F̂i+(ξ)Uγ(ξ,0)F̂

i+(0)
}∣∣A〉
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|ITMD∗ factorization for more than 2 jets |
* only manifestly gauge invariant
contribution included

Bury, Kotko, Kutak 2018

Schematic hybrid (non-ITMD) factorization formula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n

1

fluxgy
Fg(x1, kT , µ) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2
ITMD∗ formula: replace

Fg

∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗
σ Cστ Aτ , Cστ = Nλ(σ,τ)

c

with “TMD-valued color matrix”

(N2
c − 1)

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗
σ C̃στ(x, |kT |)Aτ , C̃στ(x, |kT |) = Nλ̄(σ,τ)

c F̃στ(x, |kT |)

where each function F̃στ is one of 10 functions

F(1)
qg , F(2)

qg , F(3)
qg

F(1)
gg , F(2)

gg , F(3)
gg , F(4)

gg , F(5)
gg , F(6)

gg , F(7)
gg
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|ITMD∗ factorization for more than 2 jets|

F
(1)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
,
〈
· · ·
〉
= 2

∫
d4ξ δ(ξ+)

(2π)3P+
eik·ξ

〈
P
∣∣∣ · · · ∣∣∣P〉

F
(2)
qg (x, kT ) =

〈
Tr
[
U[□]

]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(3)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[□]U[+]

]〉
F
(1)
gg (x, kT ) =

〈
Tr
[
U[□]†]
Nc

Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉

F
(2)
gg (x, kT ) =

1

Nc

〈
Tr
[
F̂i+ (ξ)U[□]†

]
Tr
[
F̂i+ (0)U[□]

]〉
F
(3)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(4)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[−]

]〉
F
(5)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[□]†U[+]†F̂i+ (0)U[□]U[+]

]〉
F
(6)
gg (x, kT ) =

〈
Tr
[
U[□]

]
Nc

Tr
[
U[□]†]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉

F
(7)
gg (x, kT ) =

〈
Tr
[
U[□]

]
Nc

Tr
[
F̂i+ (ξ)U[□]†U[+]†F̂i+ (0)U[+]

]〉
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|ITMD gluons|

Start with dipole distribution F
(1)
qg (x, kT) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
evolved via the

BK equation formulated in momentum space supplemented with subleading corrections
and fitted to F2 data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, F
(2)
qg ,F

(1)
gg ,F

(2)
gg ,F

(6)
gg , in the mean-field

approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in 1/Nc. In this approximation, the same distributions suffice for
trijets.

For DIS one only needs F
(3)
gg

F(3)
gg (x, kT) =

παs

Nck
2
TS⊥

∫
k2T

dr2T ln
r2T
k2
T

∫
d2qT

q2
T

F(1)
qg (x, qT)F

(1)
qg (x, rT − qT)

where S⊥ is the target’s transverse area.

9999



|ITMD gluons| Bury, AvH, Kotko, Kutak 2020

Dependence of F
(1)
qg on kT below 1GeV approximated by power-like fall-off. For higher

values of |kT | it is a solution to the BK equation.

TMDs decrease as 1/|kT | for increasing |kT |, except F
(2)
gg , which decreases faster (even

becomes negative, absolute value shown here).
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|Parton-level cross sections|

Hadron-scattering process Y with partonic processes y contributing to multi-jet final state

dσY(p1, p2;k3, . . . , k2+n) =
∑
y∈Y

∫
d4k1 Py1

(k1)

∫
d4k2 Py2

(k2)dσ̂y(k1, k2;k3, . . . , k2+n)

Collinear factorization:

Pyi
(ki) =

∫
dxi

xi
fyi

(xi, µ) δ
4(ki − xipi)

kT -dependent factorization factorization:

Pyi
(ki) =

∫
d2kiT
π

∫
dxi

xi
Fyi

(xi, |kiT |, µ) δ
4(ki − xipi − kiT)

Differential partonic cross section:

dσ̂y(k1, k2;k3, . . . , k2+n) = dΦY(k1, k2;k3, . . . , k2+n)ΘY(k3, . . . , k2+n)

× flux(k1, k2)× Sy |My(k1, . . . , k2+n)|
2

Parton-level phase space:

dΦY(k1, k2;k3, . . . , k2+n) =

(
n+2∏
i=3

d4kiδ+(k
2
i −m2

i )

)
δ4(k1 + k2 − k3 − · · ·− kn+2)

p2

p1

k2

k1

k3

k4

kn+2
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|Parton-level cross sections|

eh-scattering process Y with partonic processes y contributing to multi-jet final state

dσY(p1, p2;k3, . . . , k3+n) =
∑
y∈Y

∫
d4k1 Py1

(k1) dσ̂y(k1, k2;k3, . . . , k3+n)

Collinear factorization:

Pyi
(ki) =

∫
dxi

xi
fyi

(xi, µ) δ
4(ki − xipi)

kT -dependent factorization factorization:

Pyi
(ki) =

∫
d2kiT
π

∫
dxi

xi
Fyi

(xi, |kiT |, µ) δ
4(ki − xipi − kiT)

Differential partonic cross section:

dσ̂y(k1, k2;k3, . . . , k3+n) = dΦY(k1, k2;k3, . . . , k3+n)ΘY(k3, . . . , k3+n)

× flux(k1, k2)× Sy |My(k1, . . . , k3+n)|
2

Parton-level phase space:

dΦY(k1, k2;k3, . . . , k3+n) =

(
n+3∏
i=3

d4kiδ+(k
2
i −m2

i )

)
δ4(k1 + k2 − k3 − · · ·− kn+3)

p2 = k2

p1

q

k1

k3

k4

kn+2

kn+3
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|KATIE| https://bitbucket.org/hameren/katie

• parton level tree level event generator, like Alpgen, Helac, MadGraph, etc.

• arbitrary hadron-hadron or hadron-lepton processes within the standard model (includ-
ing effective Higgs-gluon coupling) with several final-state particles.

• 0, 1, or 2 space-like initial states.

• produces (partially un)weighted event files, for example in the LHEF format.

• requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDlib (Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014).

• a calculation is steered by a single input file.

• employs an optimization stage in which the pre-samplers for all channels are optimized.

• during the generation stage several event files can be created in parallel.

• event files can be processed further by parton-shower program like CASCADE.

• (evaluation of) matrix elements separately available.
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M. A. Nefedov, Towards stability of NLO corrections in High-Energy Factorization via
Modified Multi-Regge Kinematics approximation, JHEP 08 (2020) 055, [2003.02194].

M. Hentschinski, K. Kutak, and A. van Hameren, Forward Higgs production within high
energy factorization in the heavy quark limit at next-to-leading order accuracy, Eur. Phys.
J. C 81 (2021), no. 2 112, [2011.03193]. [Erratum: Eur.Phys.J.C 81, 262 (2021)].

F. G. Celiberto, M. Fucilla, D. Y. Ivanov, M. M. A. Mohammed, and A. Papa, The next-
to-leading order Higgs impact factor in the infinite top-mass limit, JHEP 08 (2022) 092,
[2205.02681].

F. Bergabo and J. Jalilian-Marian, Single inclusive hadron production in DIS at small x:
next to leading order corrections, JHEP 01 (2023) 095, [2210.03208].

P. Taels, Forward production of a Drell-Yan pair and a jet at small x at next-to-leading
order, JHEP 01 (2024) 005. [2308.02449].

T. Altinoluk, N. Armesto, A. Kovner, and M. Lublinsky, Single inclusive particle production
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99914



|Collinear factorization in QCD at NLO|

general: Kµ = xKP
µ + x̄KP̄

µ + Kµ
⊥

one in-state: kµ
χ = xPµ

other in-state: kµ
χ = x̄P̄µ

dσLO =

∫
dxdx̄ fχ(x) fχ(x̄)dB(x, x̄)

dσNLO =

∫
dxdx̄

{
fχ(x) fχ(x̄)

[
αs

2π
dV(x, x̄)+

αs

2π
dR(x, x̄)

]
cancelling

+

[
fχ(x)

−αs

2πϵ

∫ 1
x̄

dz̄Pχ(z̄)
1

z̄
fχ

(
x̄

z̄

)
+ fχ(x̄)

−αs

2πϵ

∫ 1
x

dzPχ(z)
1

z
fχ

(
x

z

)]
dB(x, x̄)

+

[
αs

2π
fNLOχ (x) fχ(x̄)+ fχ(x)

αs

2π
fNLOχ (x̄)

]
dB(x, x̄)

}

fNLO
χ (x)−

1

ϵ

∫ 1
x

dzPχ(z)
1

z
fχ

(
x

z

)
= finite

fNLO
χ (x̄)−

1

ϵ

∫ 1
x̄

dz̄Pχ(z̄)
1

z̄
fχ

(
x̄

z̄

)
= finite

99915



a subtraction method at NLO
for real radiation in kT -factorization

Giachino, AvH,
Ziarko 2023

99916



|Notation| for a subtraction method at NLO
for real radiation in kT -factorization

Giachino, AvH,
Ziarko 2023

The Born-level formula for the cross section in hybrid kT -factorization:

σB =
1

Sn

∫
[dQ]

∫
dΦ
(
Q; {p}n

)
L
(
Q; {p}n

) ∣∣M∣∣2(Q; {p}n
)
JB
(
{p}n

)
Initial-state variables:∫
[dQ] =

∫ 1
0

dx

∫ 1
0

dx̄

∫
d2k⊥ , Qµ = kµ

χ + kµ
χ ,

{
kµ
χ = xPµ + kµ

⊥ Pµ = (E, 0, 0, E)

kµ
χ = x̄P̄µ P̄µ = (Ē, 0, 0,−Ē)

Differential phase space for the final-state momenta {p}n

dΦ
(
Q; {p}n

)
=

(
n∏
l=1

d4pl

(2π)3
δ+(p

2
l −m2

l )

)
1

(2π)4
δ

(
Q−

n∑
l=1

pl

)
The PDFs and flux factor:

L
(
Q; {p}n

)
=

Fχ
(
x, k⊥, µF({p}n)

)
fχ
(
x̄, µF({p}n)

)
8xx̄EĒ∣∣M∣∣2(Q; {p}n

)
tree-level matrix element without symmetry factors and averageing factors,

they are captured by Sn. Finally JB
(
{p}n

)
denotes the jet function.
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|Singular limits at NLO: jets|

The symbol JB includes the decision if there are enough jets for Born-level. For the real
radiation, the jet function JR does not avoid all singularities of the tree-level squared matrix
element anymore, but allows one pair of partons to become collinear,

one pair of partons to become collinear: pr||pi ⇔ n⃗r − n⃗i → 0⃗

one parton to become soft: pr → soft ⇔ Er → 0

The jet function behaves in those limits such that

JR
(
{p}n+1

) pr→soft
−−−→ JB

(
{p}r/n

)
,

JR
(
{p}n+1

) pr∥pi
−−−→ JB

(
{p}r/;in

)
,

JR
(
{p}n+1

) pr∥P,P̄
−−−→ JB

(
{p}r/n

)
,

where

{p}r/n is obtained from {p}n+1 by removing momentum pr ,

{p}r/;in is obtained by additionally replacing pi with (1+ zri)pi zri = Er/Ei

(We assume pr and also pi to be light-like.)
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|Singular limits at NLO: matrix elements|

Matrix elements are constructed from external momenta that must satisfy mometum
conservation. When

(
Q; {p}n+1

)
satisfies momentum conservation, then

(
Q; {p}

r/
n

)
and(

Q; {p}
r/;i
n

)
do not. We must introduce deformed momenta to even write down the limits:

∣∣M∣∣2(Q; {p}n+1

) pr→soft
−−−→ R̂soft(pr)⊗ Âsoft

(
Q̃; {p̃}r/n

)
∣∣M∣∣2(Q; {p}n+1

) pr∥pi
−−−→ R̂F,col

ir (pr)⊗ ÂF,col
ir

(
Q̃; {p̃}r/;in

)
∣∣M∣∣2(Q; {p}n+1

) pr∥P
−−−→ R̂I,col

χ,r (pr)⊗ ÂI,col
χ,r

(
Q̃− xrP; {p̃}

r/
n

)
In kT -factorization, we can choose to just deform the initial-state momenta:∣∣M∣∣2(Q; {p}n+1

) pr→soft
−−−→ R̂soft(pr)⊗ Âsoft

(
Q− pr; {p}

r/
n

)
∣∣M∣∣2(Q; {p}n+1

) pr∥pi
−−−→ R̂F,col

ir (pr)⊗ ÂF,col
ir

(
Q− pr + zripi; {p}

r/;i
n

)
∣∣M∣∣2(Q; {p}n+1

) pr∥P/P̄
−−−→ R̂I,col

χ/χ,r(pr)⊗ ÂI,col
χ/χ,r

(
Q− pr; {p}

r/
n

)
This opens the possibility to construct subtraction terms with only deformed initial-state
moenta.
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|Subtraction method| Frixione, Kunszt, Signer 1996
Catani, Seymour 1997

Real radiation contribution within dimensional regularization

σR(ϵ) =
1

Sn+1

∫
[dQ]

∫
dΦ
(
ϵ;Q; {p}n+1

)
L
(
Q; {p}n+1)

) ∣∣M∣∣2(Q; {p}n+1

)
JR
(
{p}n+1

)
We want to split the real-radiation integral into a finite part and a divergent part that can
be explicitly expressed as a Laurent expansion in ϵ within dimensional regularization

σR(ϵ) = σdiv
R (ϵ) + σfin

R + O(ϵ)

We define the finite “subtracted-real” integral as

σfin
R =

1

Sn+1

∫
[dQ]

∫
dΦ
(
Q; {p}n+1

){
L
(
Q; {p}n+1)

) ∣∣M∣∣2(Q; {p}n+1

)
JR
(
{p}n+1

)
−
∑
r

Subtr
(
Q; {p}n+1

)}
,

that can be integrated numerically, and

σdiv
R (ϵ) =

1

Sn+1

∑
r

∫
[dQ]

∫
dΦ
(
ϵ;Q; {p}n+1

)
Subtr

(
Q; {p}n+1

)
,

that should be integrable analytically.
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|Subtraction terms| largely following Somogyi, Trócsányi 2006

but with parameters E0, ζ0, ξ0 to restrict the phase space where the terms are active.

Final-state terms, with arguments
(
Q− pr + zripi; {p}

r/;i
n

)
for amplitudes M:

RF,col
ir ⊗AF,col

ir =
4παs

µ−2ϵ
θ(nr ·ni < 2ζ0)

θ(Er < Ei)

pi ·pr

Qir(zri)⊗
∣∣Mir

∣∣2
RF,soft

i ⊗AF,soft
i = −

4παs

µ−2ϵ
θ(Er < E0)

2

ni ·pr

∑
b

ni ·nb

ni ·pr + nb ·pr

(
M
)2
color(i,b)

RF,soco
i ⊗AF,soco

i = −
4παs

µ−2ϵ
θ(Er < E0)θ(nr ·ni < 2ζ0)

2Ci

pi ·pr

1

zri

∣∣M∣∣2
Initial-state terms, with arguments

(
Q− pr; {p}

r/
n

)
for amplitudes M:

RI,col
χr ⊗AI,col

χr =
4παs

µ−2ϵ
θ
(
x̄r < ξ0xr

) −2

Sx̄rx
Qχr(−xr/x)⊗

∣∣Mχr

∣∣2
RI,soft

χ ⊗AI,soft
χ = −

4παs

µ−2ϵ
θ(Er < E0)

2

nχ ·pr

∑
b

nχ ·nb

nχ ·pr + nb ·pr

(
M
)2
color(χ,b)

RI,soco
χ ⊗AI,soco

χ = −
4παs

µ−2ϵ
θ(Er < E0)θ

(
x̄r < ξ0xr

) 4Cχ

Sxrx̄r

∣∣M∣∣2
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|Subtraction terms| largely following Somogyi, Trócsányi 2006

but with parameters E0, ζ0, ξ0 to restrict the phase space where the terms are active.

Final-state terms, with arguments
(
Q− pr + zripi; {p}

r/;i
n

)
for amplitudes M:

RF,col
ir ⊗AF,col

ir =
4παs

µ−2ϵ
θ(nr ·ni < 2ζ0)

θ(Er < Ei)

pi ·pr

Qir(zri)⊗
∣∣Mir

∣∣2
RF,soft

i ⊗AF,soft
i = −

4παs

µ−2ϵ
θ(Er < E0)

2

ni ·pr

∑
b

ni ·nb

ni ·pr + nb ·pr

(
M
)2
color(i,b)

RF,soco
i ⊗AF,soco

i = −
4παs

µ−2ϵ
θ(Er < E0)θ(nr ·ni < 2ζ0)

2Ci

pi ·pr

1

zri

∣∣M∣∣2
Initial-state terms, with arguments

(
Q− pr; {p}

r/
n

)
for amplitudes M:

RI,col
χr ⊗AI,col

χr =
4παs

µ−2ϵ
θ
(
x̄r < ξ0xr

) −2

Sx̄rx
Qχr(−xr/x)⊗

∣∣Mχr

∣∣2
RI,soft

χ ⊗AI,soft
χ = −

4παs

µ−2ϵ
θ(Er < E0)

2

nχ ·pr

∑
b

nχ ·nb

nχ ·pr + nb ·pr

(
M
)2
color(χ,b)

RI,soco
χ ⊗AI,soco

χ = −
4παs

µ−2ϵ
θ(Er < E0)θ

(
x̄r < ξ0xr

) 4Cχ

Sxrx̄r

∣∣M∣∣2

While kµ
χ = xPµ + kµ

⊥, there is an initial-state singularity related to
the space-like gluon if the radiative momentum becomes collinear
to P, with splitting function

Qχr(ζ) =
2Cg

ζ(1+ ζ)2
⇔ Pχr(z) ≡ −zQχ(z− 1) =

2Cg

z(1− z)
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|Subtraction method| σR(ϵ) = σdiv
R (ϵ) + σfin

R + O(ϵ)

We define the finite “subtracted-real” integral as

σfin
R =

1

Sn+1

∫
[dQ]

∫
dΦ
(
Q; {p}n+1

){
L
(
Q; {p}n+1)

) ∣∣M∣∣2(Q; {p}n+1

)
JR
(
{p}n+1

)
−
∑
r

Subtr
(
Q; {p}n+1

)}
,

where the r-sum is over all final-state partons, and where Subtr
(
Q; {p}n+1

)
is given by∑

i

L
(
Q− pr + zripi; {p}

r/;i
n

)
RF

ir(pr)⊗AF
ir

(
Q− pr + zripi; {p}

r/;i
n

)
JB
(
{p}r/;in

)
+
∑

a∈{χ,χ}

L
(
Q− pr ; {p}r/n

)
RI,soft

a (pr)⊗AI,soft
a

(
Q− pr ; {p}r/n

)
JB
(
{p}r/n

)
+
∑

a∈{χ,χ}

L
(
Q− pr ; {p}r/n

)
RI,soco

a (pr)⊗AI,soco
a

(
Q− pr ; {p}r/n

)
JB
(
{p}r/n

)
+ L

(
Q− x̄rP̄ − p⊥r ; {p}

r/
n

)
RI,col

χ,r (pr)⊗AI,col
χ,r

(
Q− pr ; {p}r/n

)
JB
(
{p}r/n

)
+ L

(
Q− xrP − p⊥r ; {p}

r/
n

)
RI,col

χ,r (pr)⊗AI,col
χ,r

(
Q− pr ; {p}r/n

)
JB
(
{p}r/n

)
where also the i-sum is over all final-state partons with RF

rr(pr) ≡ 0.
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|Subtraction method| σR(ϵ) = σdiv
R (ϵ) + σfin

R + O(ϵ)

σdiv
R (ϵ) =

1

Sn+1

∑
r

∫
[dQ]

∫
dΦ
(
Q; {p}r/n

)
L
(
Q; {p}r/n)

)
JB
(
{p}r/n

)
×
{∑

i

IFir
(
ϵ,Q, {p}r/n

)
⊗AF

ir

(
Q; {p}r/n

)
+
∑

a∈{χ,χ}

IIar
(
ϵ,Q, {p}r/n

)
⊗AI

ar

(
Q; {p}r/n

)}
,

with

IFir
(
ϵ,Q, {p}r/n

)
=

∫
d4−2ϵpr

(2π)3−2ϵ
δ+(p

2
r) (1− zri)R

F
ir(pr)Θ(pr − zripi)

II,soft/socoa

(
ϵ,Q, {p}r/n

)
=

∫
d4−2ϵpr

(2π)3−2ϵ
δ+(p

2
r)R

I,soft/soco
a (pr)Θ(pr)

II,colχr

(
ϵ,Q, {p}r/n

)
=

∫
d4−2ϵpr

(2π)3−2ϵ
δ+(p

2
r)R

I,col
χr (pr)Θ(pr)

L
(
Q+ xrP; {p}

r/
n

)
L
(
Q; {p}

r/
n

)
and

Θ(q) = θ(−x < xq < 1− x) θ(−x̄ < x̄q < 1− x̄)

Only II,colχ/χ,r involve L-function =⇒ “P”-operator, must be integrated numerically.

But the Θ restrictions obstruct confortable analytic integration also for the other terms.
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|Example integrated subtraction term| F,soft

ϵ̄ = −2ϵ , πϵ =
π1−ϵ

Γ(1− ϵ)We need to calculate

LF,soft
ib (ϵ) =

−2

πϵµϵ̄

∫
d4+ϵ̄pr δ+(p

2
r)

1

ni ·pr

ni ·nb

ni ·pr + nb ·pr

θ(Er < E0) (1− zri)Θ(pr − zripi)

but find it too complicated because of Θ(pr − zripi).

Because pr⊥ − zripi⊥ vanishes both in the soft and the collinear limit, the integral

LF,soft,fin
ib,compl =

−2

π

∫
d4pr δ+(p

2
r)

1

ni ·pr

ni ·nb

ni ·pr + nb ·pr

θ(Er < E0) (1− zri)
[
Θ(pr − zripi) − 1

]
is finite and can be calculated numerically, while

LF,soft,div
ib,compl (ϵ) =

−2

πϵµϵ̄

∫
d4+ϵ̄pr δ+(p

2
r)

1

ni ·pr

ni ·nb

ni ·pr + nb ·pr

θ(Er < E0) (1− zri)

can, in principle, be calculated analytically.

Still, the explicit appearance of ni ·pr, nb ·pr and Er makes it complicated.
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|Example integrated subtraction term| F,soft

ϵ̄ = −2ϵ , πϵ =
π1−ϵ

Γ(1− ϵ)
Thus, we introduce

E(ib)
r =

nb ·pr

ni ·nb

+
ni ·pr

ni ·nb

= Er

nr ·nb + ni ·nr

ni ·nb

which vanishes in the soft limit, and becomes equal to Er in the collinear limit, so we can
define

LF,soft,fin
ib =

−2

π

∫
d4pr δ+(p

2
r)

1

ni ·pr

ni ·nb

ni ·pr + nb ·pr

×
[
Θ(pr − zripi) θ

(
Er < E0

)(
1−

Er

Ei

)
− θ
(
E(ib)
r < E0

)(
1−

E
(ib)
r

Ei

)]
which can be calculated numerically, and

LF,soft,div
ib (ϵ) =

−2

πϵµϵ̄

∫
d4+ϵ̄pr δ+(p

2
r)

1

ni ·pr

ni ·nb

ni ·pr + nb ·pr

θ
(
E(ib)
r < E0

)(
1−

E
(ib)
r

Ei

)
which is easier to calculate analytically.
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|Numerical results| for dijets, including: gg⋆ → ggg, gg⋆ → uūg,

ug⋆ → ugg, ug⋆ → uūd, ug⋆ → uūu, (u↔ d)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35  40  45  50

dσ/dkT  in  mb/GeV

integrated subtraction E0=10,ζ0=1e-4
subtracted real E0=10,ζ0=1e-4

integrated subtraction E0=90,ζ0=1e-2
subtracted real E0=90,ζ0=1e-2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  5  10  15  20  25  30  35  40  45  50

dσ/dkT  in  mb/GeV

combined E0=10,ζ0=1e-4
combined E0=90,ζ0=1e-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 40  60  80  100  120  140  160  180  200

dσ/dmax(pT)  in  mb/GeV

integrated subtraction E0=10,ζ0=1e-4
subtracted real E0=10,ζ0=1e-4

integrated subtraction E0=90,ζ0=1e-2
subtracted real E0=90,ζ0=1e-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40  60  80  100  120  140  160  180  200

dσ/dmax(pT)  in  mb/GeV

combined E0=10,ζ0=1e-4
combined E0=90,ζ0=1e-2

Ecm = 14TeV
anti-kT with R = 0.4
pT > 50GeV, |y| < 4

kT -dependent PDF: PB-NLO-HERAI+II-2018-set2 Bermudez Martinez et al. 2019
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|Divergences|
All poles in ϵ of the integrated subtraction terms are the same as in the on-shell case,
except the initial-state collinear divergence

σI,col,div
χr =

1

Sn

∫
[dQ]

∫
dΦ
(
Q; {p}n

)
L
(
Q; {p}n

) ∣∣M∣∣2(Q; {p}n
)
JB
(
{p}n

)
× αs

2π

(4π)ϵ

Γ(1− ϵ)

{
Cχr

ϵ2
−

1

ϵ

∫ 1
0

dzPreg
χr (z)

ℓχ(x/z)

z2
θ(z > x)

}

with

ℓχ(y) =
L
(
yP + x̄P̄ + k⊥; {p}n

)
L
(
xP + x̄P̄ + k⊥; {p}n

) =
Fχ
(
y, k⊥, µF({p}n)

)
/y

Fχ
(
x, k⊥, µF({p}n)

)
/x

.

Preg
χg (z) = 2CA

[
1

[1− z]+
+

1

z

]
compare with the collinear case

ℓχ(y) =
L
(
xP + yP̄ + k⊥; {p}n

)
L
(
xP + x̄P̄ + k⊥; {p}n

) =
fχ
(
y, µF({p}n)

)
/y

fχ
(
x, µF({p}n)

)
/x

P
reg
χg (z) = 2CA

[
1

[1− z]+
+

1

z
+ z(1− z) − 2

]
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|Collinear factorization in QCD at NLO|

general: Kµ = xKP
µ + x̄KP̄

µ + Kµ
⊥

one in-state: kµ
χ = xPµ

other in-state: kµ
χ = x̄P̄µ

dσLO =

∫
dxdx̄ fχ(x) fχ(x̄)dB(x, x̄)

dσNLO =

∫
dxdx̄

{
fχ(x) fχ(x̄)

[
αs

2π
dV(x, x̄)+

αs

2π
dR(x, x̄)

]
cancelling

+

[
fχ(x)

−αs

2πϵ

∫ 1
x̄

dz̄
[
P
reg
χ (z̄)+γχδ(1−z̄)

] 1
z̄
fχ

(
x̄

z̄

)
+ fχ(x̄)

−αs

2πϵ

∫ 1
x

dz
[
Preg
χ (z)+γχδ(1−z)

] 1
z
fχ

(
x

z

)]
dB(x, x̄)

+

[
αs

2π
fNLOχ (x) fχ(x̄)+ fχ(x)

αs

2π
fNLOχ (x̄)

]
dB(x, x̄)

}

fNLO
χ (x)−

1

ϵ

∫ 1
x

dz
[
Preg
χ (z)+γχδ(1−z)

] 1
z
fχ

(
x

z

)
= finite

fNLO
χ (x̄)−

1

ϵ

∫ 1
x̄

dz̄
[
P
reg
χ (z)+γχδ(1−z̄)

] 1
z̄
fχ

(
x̄

z̄

)
= finite
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|Auxiliary parton method|
AvH, Kotko, Kutak 2013

kµχ = xPµ + kµ⊥ kµχ = x̄P̄µ

kµχ = xPµ + k
µ
⊥ k

µ
1 = ΛPµ

k
µ
2 = (Λ− x)Pµ − k

µ
⊥ +O(Λ−1)

We desire to obtain the matrix element with one space-like gluon for the process

g⋆(kχ) ωχ(kχ) → ω1(p1) ω2(p2) · · · ωn(pn) e.g. g⋆(kχ) g(kχ) → g(p1) g(p2) g(p3)

and do so by replacing the space-like gluon with an on-shell auxiliary quark pair

q
(
k1(Λ)

)
ωχ(kχ) → q

(
k2(Λ)

)
ω1(p1) ω2(p2) · · · ωn(pn)

with special momenta
kµ
1 = ΛPµ , kµ

2 = pΛ
µ = (Λ− x)Pµ − kµ

⊥ +
|k⊥|

2

2(Λ− x)P·P̄ P̄µ

such that, while individually on-shell, their difference is

kµ
1 − kµ

2 = xPµ + kµ
⊥ + O

(
Λ−1

)
= kµ

χ + O
(
Λ−1

)
The matrix element with the space-like gluon is obtained by taking Λ→∞∣∣M ⋆∣∣2(kχ, kχ ; {p}n

)
= lim

Λ→∞
1

g2
sCaux

x2|k⊥|
2

Λ2

∣∣Maux∣∣2(ΛP, kχ ;pΛ, {p}n
)
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|Auxiliary parton method|
AvH, Kotko, Kutak 2013

kµχ = xPµ + kµ⊥ kµχ = x̄P̄µ

We desire to obtain the matrix element with one space-like gluon for the process

g⋆(kχ) ωχ(kχ) → ω1(p1) ω2(p2) · · · ωn(pn) e.g. g⋆(kχ) g(kχ) → g(p1) g(p2) g(p3)

and do so by replacing the space-like gluon with an on-shell auxiliary quark pair

q
(
k1(Λ)

)
ωχ(kχ) → q

(
k2(Λ)

)
ω1(p1) ω2(p2) · · · ωn(pn)

with special momenta
kµ
1 = ΛPµ , kµ

2 = pΛ
µ = (Λ− x)Pµ − kµ

⊥ +
|k⊥|

2

2(Λ− x)P·P̄ P̄µ

such that, while individually on-shell, their difference is

kµ
1 − kµ

2 = xPµ + k⊥ + O
(
Λ−1

)
= kµ

χ + O
(
Λ−1

)
The matrix element with the space-like gluon is obtained by taking Λ→∞∣∣M ⋆∣∣2(kχ, kχ ; {p}n

)
= lim

Λ→∞
1

g2
sCaux

x2|k⊥|
2

Λ2

∣∣Maux∣∣2(ΛP, kχ ;pΛ, {p}n
)

The factor x2|k⊥|
2 ensures the correct on-shell limit, 1/Λ2 selects the leading power,

1/g2
s corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor

Caux-q =
N2

c − 1

Nc
, Caux-g = 2Nc
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|Auxiliary parton method|
AvH, Kotko, Kutak 2013

kµχ = xPµ + kµ⊥ kµχ = x̄P̄µ

the auxiliary parton method can be applied to Feynman graphs, from which one can derive
eikonal Feynman rules for the auxiliary partons

µ, a

j i

= −i Ta
i,j P

µ K = δi,j
i

P·Kj i

∣∣M ⋆∣∣2(kχ, kχ ; {p}n
)

=
1

g2
sCaux

x2|k⊥|
2
∣∣Maux∣∣2(kχ , kχ ; 0 , {p}n

)

kµχ = xPµ + k
µ
⊥ kµχ

0
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|Auxiliary partons at one loop|
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV⋆ = dV⋆fam + dV⋆unf
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV⋆ = dV⋆fam + dV⋆unf

dV⋆fam is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/ϵ2, 1/ϵ poles look as if the space-like gluon were on-shell
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV⋆ = dV⋆fam + dV⋆unf

dV⋆fam is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/ϵ2, 1/ϵ poles look as if the space-like gluon were on-shell

For example, apply Λ limit on Aloop(1Q̄, 6Q, 2q̄, 3q, 4e+ , 5e−) (Bern, Dixon, Kosower 1998)

to get Aloop(1⋆, 2q̄, 3q, 4e+ , 5e−). The pole-part is proportional to the tree-level amplitude
with factor{

−
1

ϵ2

[(
µ2

−sp3

)ϵ

+

(
µ2

−sp2

)ϵ]
−

3

2ϵ

}
Atree(1⋆, 2q̄, 3q, 4e+ , 5e−) ,

with sp2 and sp3 involving only the longitudinal part of k1 = p+ k⊥.
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV⋆ = dV⋆fam + dV⋆unf

dV⋆fam is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/ϵ2, 1/ϵ poles look as if the space-like gluon were on-shell

dV⋆unf = aϵNc Re
(
Vaux

)
dB⋆ is proportional to Born result aϵ =

αs

2π

(4π)ϵ

Γ(1−ϵ)
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV⋆ = dV⋆fam + dV⋆unf

dV⋆fam is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/ϵ2, 1/ϵ poles look as if the space-like gluon were on-shell

dV⋆unf = aϵNc Re
(
Vaux

)
dB⋆ is proportional to Born result aϵ =

αs

2π

(4π)ϵ

Γ(1−ϵ)

Vaux =

(
µ2

|k⊥|2

)ϵ[
2

ϵ
ln
Λ

x
− iπ+ V̄aux

]
+ O(ϵ) + O

(
Λ−1

)
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|Auxiliary partons at one loop|
Λ effectively works as a regulator for linear denominators

1

P·K
Λ→∞←− 2Λ

(ΛP + K)2
=⇒ lnΛ in loop integrals

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV⋆ = dV⋆fam + dV⋆unf

dV⋆fam is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/ϵ2, 1/ϵ poles look as if the space-like gluon were on-shell

dV⋆unf = aϵNc Re
(
Vaux

)
dB⋆ is proportional to Born result aϵ =

αs

2π

(4π)ϵ

Γ(1−ϵ)

Vaux =

(
µ2

|k⊥|2

)ϵ[
2

ϵ
ln
Λ

x
− iπ+ V̄aux

]
+ O(ϵ) + O

(
Λ−1

)
V̄aux-q =

1

ϵ

13

6
+

π2

3
+

80

18
+

1

N2
c

[
1

ϵ2
+

3

2

1

ϵ
+ 4

]
−

nf

Nc

[
2

3

1

ϵ
+

10

9

]
V̄aux-g = −

1

ϵ2
+

π2

3 99940



|Auxiliary partons at one loop|

More-or-less proven using known universal collinear limits of one-loop amplitudes
(Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large-Λ, the small-|k⊥| corresponds to a collinear limit of auxiliary partons.
While the large-Λ and small-|k⊥| limit commute at tree-level, they do not at one loop.

dV⋆ = dV⋆fam + dV⋆unf

dV⋆fam is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/ϵ2, 1/ϵ poles look as if the space-like gluon were on-shell

dV⋆unf = aϵNc Re
(
Vaux

)
dB⋆ is proportional to Born result aϵ =

αs

2π

(4π)ϵ

Γ(1−ϵ)

Vaux =

(
µ2

|k⊥|2

)ϵ[
2

ϵ
ln
Λ

x
− iπ+ V̄aux

]
+ O(ϵ) + O

(
Λ−1

)
V̄aux-q =

1

ϵ

13

6
+

π2

3
+

80

18
+

1

N2
c

[
1

ϵ2
+

3

2

1

ϵ
+ 4

]
−

nf

Nc

[
2

3

1

ϵ
+

10

9

]
V̄aux-g = −

1

ϵ2
+

π2

3 99941



|Real radiation with auxiliary partons|
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|Real radiation with auxiliary partons|
x

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of Λ.
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|Real radiation with auxiliary partons|
x

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of Λ.

1

Caux

∣∣Maux∣∣2((Λ+ x)P, kχ ; xrΛP + r⊥ + x̄rP̄ , xqΛP + q⊥ + x̄qP̄ , {pi}
n
i=1

)
Λ→∞−→ Qaux(xq, q⊥, xr, r⊥)

Λ2
∣∣M ⋆∣∣2(xP − q⊥ − r⊥, kχ ; {pi}

n
i=1

)
x2|q⊥ + r⊥|2

Qaux(xq, q⊥, xr, r⊥) = xqxr Paux(xq, xr) |q⊥ + r⊥|
2

×
[

cq̄

|q⊥|2|r⊥|2
+

1

xr|q⊥|2 + xq|r⊥|2 − xqxr|q⊥ + r⊥|2

(
cr x

2
r

|r⊥|2
+

cq x
2
q

|q⊥|2

)]
Can be integrated analytically and is proportional to the Born result.
Like the unfamiliar virtual, it is proportional to

(
µ2/|k⊥|

2
)ϵ
, produces lnΛ,

and depends on the auxiliary parton types.
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|Real radiation with auxiliary partons|
x

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of Λ.

Precise separation of familiar and unfamiliar phase space via the demand that in the latter
case, the radiation must not become collinear to P in the terms with 1/xr

|r⊥|

ν
√
Λ

< xr <
|r⊥|

|r⊥ + k⊥|
for terms with 1/xr

Ciafaloni, Colferai 1999

Can be integrated analytically and is proportional to the Born result.
Like the unfamiliar virtual, it is proportional to

(
µ2/|k⊥|

2
)ϵ
, produces lnΛ,

and depends on the auxiliary parton types.
99947



|Complete unfamiliar contribution|
Combining the unfamiliar contributions and organizing them suggestively, we can write

dR⋆ unf + dV⋆ unf = ∆unf dB
⋆ ,

where

∆unf =
aϵNc

ϵ

(
µ2

|k⊥|2

)ϵ[
Iaux + Iuniv + Iuniv − 2 ln

2P·P̄x
|k⊥|2

]
,

with

Iuniv =
11

6
−

nf

3Nc
−

K

Nc
(−ϵ) writing K = Nc

(
67

18
−

π2

6

)
−

5nf

9
,

and

Iaux-q =
3

2
−

1

2
(−ϵ) , Iaux-g =

11

6
+

nf

3N3
c

+
nf

6N3
c

(−ϵ) .
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Combining the unfamiliar contributions and organizing them suggestively, we can write

dR⋆ unf + dV⋆ unf = ∆unf dB
⋆ ,

where

∆unf =
aϵNc

ϵ

(
µ2

|k⊥|2

)ϵ[
Iaux + Iuniv + Iuniv − 2 ln

2P·P̄x
|k⊥|2

]
,

with

Iuniv =
11

6
−

nf

3Nc
−

K

Nc
(−ϵ) writing K = Nc

(
67

18
−

π2

6

)
−

5nf

9
,

and

Iaux-q =
3

2
−

1

2
(−ϵ) , Iaux-g =

11

6
+

nf

3N3
c

+
nf

6N3
c

(−ϵ) .

• No lnΛ present. O(αs) contribution to the space-like gluon Regge trajectory.

99949



|Complete unfamiliar contribution|
Combining the unfamiliar contributions and organizing them suggestively, we can write

dR⋆ unf + dV⋆ unf = ∆unf dB
⋆ ,

where

∆unf =
aϵNc

ϵ

(
µ2

|k⊥|2

)ϵ[
Iaux + Iuniv + Iuniv − 2 ln

2P·P̄x
|k⊥|2

]
,

with

Iuniv =
11

6
−

nf

3Nc
−

K

Nc
(−ϵ) writing K = Nc

(
67

18
−

π2

6

)
−

5nf

9
,

and

Iaux-q =
3

2
−

1

2
(−ϵ) , Iaux-g =

11

6
+
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c

+
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6N3
c

(−ϵ) .

• No lnΛ present. O(αs) contribution to the space-like gluon Regge trajectory.

• Target impact factor corrections as in Ciafaloni, Colferai 1999.
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|Complete unfamiliar contribution|
Combining the unfamiliar contributions and organizing them suggestively, we can write

dR⋆ unf + dV⋆ unf = ∆unf dB
⋆ ,

where

∆unf =
aϵNc

ϵ

(
µ2

|k⊥|2

)ϵ[
Iaux + Iuniv + Iuniv − 2 ln

2P·P̄x
|k⊥|2

]
,

with

Iuniv =
11

6
−

nf

3Nc
−

K

Nc
(−ϵ) writing K = Nc

(
67

18
−

π2

6

)
−

5nf

9
,

and

Iaux-q =
3

2
−

1

2
(−ϵ) , Iaux-g =

11

6
+

nf

3N3
c

+
nf

6N3
c

(−ϵ) .

• No lnΛ present. O(αs) contribution to the space-like gluon Regge trajectory.

• Target impact factor corrections as in Ciafaloni, Colferai 1999.

• Collinear divergence, cancels against familiar virtual divergence.
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|Summary| AvH, Motyka, Ziarko 2022

dσNLO =

∫
dxd2k⊥dx̄

{
F(x, k⊥) f(x̄)

[
dV⋆(x, k⊥, x̄) + dR⋆(x, k⊥, x̄)

]
cancelling

+
[
FNLO(x, k⊥) + F(x, k⊥)∆unf(x, k⊥) + ∆⋆

coll(x, k⊥)
]
f(x̄)dB⋆(x, k⊥, x̄)

+
[
fNLO(x̄) + ∆coll(x̄)

]
F(x, k⊥)dB

⋆(x, k⊥, x̄)

}

∆coll(x̄) = −
aϵ

ϵ

∫ 1
x̄

dz
[
P
reg
χ (z) + γχδ(1− z)

]1
z
f

(
x̄

z

)
∆⋆

coll(x, k⊥) = −
aϵ

ϵ

∫ 1
x

dz

[
2Nc

[1− z]+
+

2Nc

z
+ γgδ(1− z)

]
1

z
F

(
x

z
, k⊥

)
∆unf(x, k⊥) =

aϵNc

ϵ

(
µ2

|k⊥|2

)ϵ[
impactFactCorr + Iuniv − 2 ln

2P·P̄x
|k⊥|2

]↖↘

fNLO(x̄) + ∆coll(x̄) = finite

FNLO(x, k⊥) + F(x, k⊥)∆unf(x, k⊥) + ∆⋆
coll(x, k⊥)

?
= finite
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|Backup|
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|On-shell limit|
Space-like (LO) matrix elements have desired on-shell limit only after azimuthal integration:

∣∣M(k⊥)
∣∣2 |k⊥|→0

−−−→ M∗
µ(0)

kµ
⊥k

ν
⊥

|k⊥|2
Mν(0)

∫
dφ⊥

−−−→ ∣∣M(0)
∣∣2

As a consequence, point-wise cancellation of singularities fails at |k⊥| = 0:

∣∣M(k⊥, r⊥)
∣∣2 |k⊥|→0

−−→ M∗
µ(0, r⊥)

kµ
⊥k

ν
⊥

|k⊥|2
Mν(0, r⊥)

|r⊥|→0

−−→ Singular ×M∗
µ(0)

kµ
⊥k

ν
⊥

|k⊥|2
Mν(0)

Singular ×
∣∣M(k⊥ − r⊥)

∣∣2 |k⊥|→0

−−→ Singular ×
∣∣M(−r⊥)

∣∣2 |r⊥|→0

−−→ Singular ×M∗
µ(0)

rµ⊥r
ν
⊥

|r⊥|2
Mν(0)

Fortunately, the measure of the problematic phase space vanishes
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|ITMD∗ factorization for more than 2 jets|

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized
target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does
appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit
for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded
to be present from 3-jet formulae in CGC (Iancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant off-
shell hard scattering amplitudes

∑
i,j

M∗
i

(
k
(i)
T k

(j)
T

2|⃗kT |2
(F +H) +

q
(i)
T q

(j)
T

2|q⃗T |2
(F −H)

)
Mj , q⃗T · k⃗T = 0

∑
i Mik

(i)
T is gauge invariant while

∑
i Miq

(i)
T is not. For dijets, it happens that F = H.

In the following only the manifestly gauge-invariant contribution is included, hence the
designation ITMD∗.
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shell hard scattering amplitudes
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(
k
(i)
T k

(j)
T

2|⃗kT |2
(F +H) +

q
(i)
T q

(j)
T

2|q⃗T |2
(F −H)

)
Mj , q⃗T · k⃗T = 0

∑
i Mik

(i)
T is gauge invariant while

∑
i Miq

(i)
T is not. For dijets, it happens that F = H.

In the following only the manifestly gauge-invariant contribution is included, hence the
designation ITMD∗.

Using the axial gauge with gluon propagator

−i

K2

(
gµν −

PµKν + KµPν

P·K

)
Pµ hadron momentum

the amplitude M for a process involving an off-shell gluon with
momentum xPµ + kµ

T can be written as

M = kµ
TMµ = −

2∑
i=1

k
(i)
T Mi

where Mµ is obtained from the usual Feynman graphs indeed
with one gluon simply left “off-shell”. The role of “polarization
vector” is played by kµ

T .
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