\mathbf{k}_{T}-factorization at NLO

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

presented at
MC4EIC: workshop on recent theoretical and practical advances and experimental needs in Monte Carlo Event Generators for the Electron-lon Collider 07-06-2024, IPPP Durham, United Kingdom

QCD evolution, dilute vs. dense, forward jets

A dilute system carries a few high- x partons contributing to the hard scattering.

A dense system carries many low-x partons.

At high density, gluons are imagined to undergo recombination, and to saturate.

This is modeled with non-linear evolution equations, involving explicit non-vanishing k_{T}.

DILUTE

 $x \sim 10^{-1}$DENSE $x \sim 10^{-4}$

Saturation implies the turnover of the gluon density, stopping it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which partons from the nucleus have small x.

Color Glass Condensate (CGC)

McLerran, Venugopalan 1994

The CGC is an effective field theory for high energy QCD.

Partons carrying large hadron momentum fraction x are treated as static color sources ρ.
Their color charge distribution is non-perturbative and is dictated by a gauge invariant weight functional $W_{x_{0}}[\rho]$. The sources generate a current $J^{\mu, a}$.

The partons carrying small χ are treated as a dynamical classical field $A^{\mu, a}$.
Sources and fields are related by the Yang-Mills equations $\left[D_{\mu}, F_{\mu \nu}\right]=J_{\nu}$.
The expectation value $\langle\mathcal{O}\rangle_{x_{0}}$ of an observable \mathcal{O} is calculated as the path integral $\mathcal{O}[\rho]$ in the presence of sources from $W_{x_{0}}[\rho]$, averaged over all possible configurations ρ.

The interaction of a highly energetic color charged particle with the classical field A in the eikonal approximation is encoded in the light-like Wilson lines

$$
\mathrm{u}\left(\mathrm{x}_{\mathrm{T}}\right)=\operatorname{Pexp}\left\{\mathrm{ig} \int_{-\infty}^{\infty} \mathrm{d} x^{+} A^{-, a}\left(x^{+}, x_{T}\right) \mathrm{t}^{\mathrm{a}}\right\}
$$

Balitsky, Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner Evolution in x of $W_{x}[\rho]$ implies an infinite hierarchy (known as the B-JIMWLK hierarchy) of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Color Glass Condensate (CGC)

McLerran, Venugopalan 1994

The CGC is an effective field theory for high energy QCD.
Partons carrying large hadron momentum fraction χ are treated as static color sources ρ.
Their color charge distribution is non-perturbative and is dictated by a gauge invariant weight functional $W_{x_{0}}[\rho]$. The sources generate a current $J^{\mu, a}$.

Cross section calculations involve particle wave functions and Wilson line correlators.

Balitsky, Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner Evolution in x of $W_{x}[\rho]$ implies an infinite hierarchy (known as the B-JIMWLK hierarchy) of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

$$
d \sigma_{A B \rightarrow X}=\int d k_{T}^{2} \int d x_{A} \sum_{i} \int d x_{B} \sum_{b} \phi_{g b}^{(i)}\left(x_{A}, k_{T}, \mu\right) f_{b / B}\left(x_{B}, \mu\right) d \hat{\sigma}_{g b \rightarrow X}^{(i)}\left(x_{A}, x_{B}, \mu\right)
$$

For $x_{A} \ll 1$ and $P_{T} \gg k_{T} \sim Q_{s}$ (jets almost back-to-back).
TMD gluon distributions $\phi_{g b}^{(i)}\left(x_{A}, k_{T}, \mu\right)$ satisfy non-linear evolution equations.
Partonic cross section $d \hat{\sigma}_{g b}^{(i)}$ is on-shell, but depends on color-structure i.
Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

$$
d \sigma_{A B \rightarrow x}=\int d k_{T}^{2} \int d x_{A} \sum_{i} \int d x_{B} \sum_{b} \phi_{g b}^{(i)}\left(x_{A}, k_{T}, \mu\right) f_{b / B}\left(x_{B}, \mu\right) d \hat{\sigma}_{g b \rightarrow x}^{(i)}\left(x_{A}, x_{B}, k_{T}, \mu\right)
$$

Originally a model interpolating between High Energy Factorization and Generalized TMD factorization: $P_{T} \gtrsim k_{T} \gtrsim Q_{s}$.
Partonic cross section $\mathrm{d} \hat{\sigma}_{g b}^{(i)}$ is off-shell and depends on color-structure i.
ITMD formalism is obtained from the CGC formalism, by including so-called kinematic twist corrections (Antinoluk, Boussarie, Kotko 2019).

Definition of gluon TMDs

+ similar diagrams with $2,3, \ldots$ gluon exchanges
Resummation of gluon exchanges leads to Wilson line $\mathrm{U}_{\gamma}=\mathcal{P} \exp \left\{-\mathrm{ig} \int_{\gamma} \mathrm{d} z \cdot \mathcal{A}(z)\right\}$ acting as a gauge link for the gauge invariant definition of a TMD

$$
\mathcal{F}_{g / A}\left(x, k_{T}\right)=2 \int \frac{d^{4} \xi \delta\left(\xi^{+}\right)}{(2 \pi)^{3} p_{A}^{+}} \exp \left\{i x p_{A}^{+} \xi^{-}-i \vec{k}_{T} \cdot \vec{\xi}_{T}\right\}\langle A| \operatorname{Tr}\left\{\hat{\mathrm{F}}^{i+}(\xi) \mathrm{U}_{\gamma(\xi, 0)} \hat{\mathrm{F}}^{i+}(0)\right\}|A\rangle
$$

ITMD* factorization for more than 2 jets

Bury, Kotko, Kutak 2018

Schematic hybrid (non-ITMD) factorization formula

$$
d \sigma=\sum_{y=g, u, d, \ldots} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} y \rightarrow n} \frac{1}{\text { flux }_{g y}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{y}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{g^{*} y \rightarrow n}^{(\text {color })}\right|^{2}
$$

ITMD* formula: replace

$$
\mathcal{F}_{g} \sum_{\text {color }}\left|\mathcal{M}^{(\text {color })}\right|^{2}=\mathcal{F}_{g} \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^{*} \mathcal{C}_{\sigma \tau} \mathcal{A}_{\tau} \quad, \quad \mathcal{C}_{\sigma \tau}=N_{c}^{\lambda(\sigma, \tau)}
$$

with "TMD-valued color matrix"

$$
\left(N_{c}^{2}-1\right) \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^{*} \tilde{\mathcal{C}}_{\sigma \tau}\left(x,\left|k_{T}\right|\right) \mathcal{A}_{\tau} \quad, \quad \tilde{\mathcal{C}}_{\sigma \tau}\left(x,\left|k_{T}\right|\right)=N_{c}^{\bar{\lambda}(\sigma, \tau)} \tilde{\mathcal{F}}_{\sigma \tau}\left(x,\left|k_{T}\right|\right)
$$

where each function $\tilde{\mathcal{F}}_{\text {} \tau \tau}$ is one of 10 functions

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{qg}}^{(1)}, \quad \mathcal{F}_{\mathrm{qg}}^{(2)}, \quad \mathcal{F}_{\mathrm{qg}}^{(3)} \\
& \mathcal{F}_{g g}^{(1)}, \mathcal{F}_{g g}^{(2)}, \mathcal{F}_{g g}^{(3)}, \mathcal{F}_{g g}^{(4)}, \mathcal{F}_{g g}^{(5)}, \mathcal{F}_{g g}^{(6)}, \mathcal{F}_{g g}^{(7)}
\end{aligned}
$$

ITMD* factorization for more than 2 jets

$$
\begin{aligned}
& \mathcal{F}_{\mathbf{q} \boldsymbol{g}}^{(1)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) \mathcal{U}^{[-] \dagger} \hat{\mathrm{F}}^{\mathrm{i}+}(0) U^{[+]}\right]\right\rangle \quad, \quad\langle\cdots\rangle=2 \int \frac{\mathrm{~d}^{4} \xi \delta\left(\xi_{+}\right)}{(2 \pi)^{3} \mathrm{P}^{+}} e^{i k \cdot \xi}\langle\mathrm{P}| \cdots|\mathrm{P}\rangle \\
& \mathcal{F}_{\mathrm{qg}}^{(2)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\frac{\operatorname{Tr}\left[\mathcal{U}^{[\square]}\right]}{\mathrm{N}_{\mathrm{c}}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) \mathcal{U}^{[+]+\hat{F}^{i+}}(0) \mathcal{U}^{[+]}\right]\right\rangle \\
& \mathcal{F}_{\mathfrak{q g}}^{(3)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{\mathrm{i}+}(\xi) \mathcal{U}^{[+]+} \hat{\mathrm{F}}^{\mathrm{i}+}(0) \mathcal{U}^{[\square]} \mathcal{U}^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(1)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\frac{\operatorname{Tr}\left[U^{[\square] \dagger}\right]}{\mathrm{N}_{\mathrm{c}}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) U^{[-] \dagger} \hat{\mathrm{F}}^{i+}(0) U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g 9}^{(2)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\frac{1}{\mathrm{~N}_{\mathrm{c}}}\left\langle\operatorname{Tr}\left[\hat{\mathrm{~F}}^{\mathrm{i}+}(\xi) \mathcal{U}^{[\square] \dagger}\right] \operatorname{Tr}\left[\hat{\mathrm{F}}^{\mathrm{i}+}(0) \mathcal{U}^{[\square]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(3)}\left(x, k_{T}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) U^{[+]+} \hat{\mathrm{F}}^{i+}(0) U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(4)}\left(x, k_{T}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) U^{[-]+} \hat{\mathrm{F}}^{i+}(0) U^{[-]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(5)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{\mathrm{i}+}(\xi) \mathcal{U}^{[\square] \dagger} \mathcal{U}^{[+] \dagger \hat{\mathrm{F}}^{i+}}(0) \mathcal{U}^{[\square]} \mathcal{U}^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g 9}^{(6)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\frac{\operatorname{Tr}\left[\mathcal{U}^{[\square]}\right]}{\mathrm{N}_{\mathrm{c}}} \frac{\operatorname{Tr}\left[\mathcal{U}^{[\square] \dagger}\right]}{\mathrm{N}_{\mathrm{c}}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) U^{[+] \dagger \hat{F}^{i+}}(0) U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(7)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\frac{\operatorname{Tr}\left[\mathcal{U}^{[\square]}\right]}{\mathrm{N}_{\mathrm{c}}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) \mathcal{U}^{[\square] \dagger} \mathcal{U}^{[+\rceil \dagger \hat{\mathrm{F}}^{i+}}(0) \mathcal{U}^{[+]]}\right]\right\rangle
\end{aligned}
$$

Start with dipole distribution $\mathcal{F}_{\mathrm{q} g}^{(1)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) \mathcal{U}^{[-] \dagger} \hat{\mathrm{F}}^{i+}(0) \mathcal{U}^{[+]]}\right]\right\rangle$evolved via the BK equation formulated in momentum space supplemented with subleading corrections and fitted to F_{2} data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, $\mathcal{F}_{\mathrm{qg}}^{(2)}, \mathcal{F}_{\mathrm{gg}}^{(1)}, \mathcal{F}_{\mathrm{gg}}^{(2)}, \mathcal{F}_{\mathrm{gg}}^{(6)}$, in the mean-field approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in $1 / N_{c}$. In this approximation, the same distributions suffice for trijets.

For DIS one only needs $\mathcal{F}_{g 9}^{(3)}$

$$
\mathcal{F}_{g 9}^{(3)}\left(x, k_{T}\right)=\frac{\pi \alpha_{s}}{N_{c} k_{T}^{2} S_{\perp}} \int_{k_{T}^{2}} d r_{T}^{2} \ln \frac{r_{T}^{2}}{k_{T}^{2}} \int \frac{d^{2} q_{T}}{q_{T}^{2}} \mathcal{F}_{q 9}^{(1)}\left(x, q_{T}\right) \mathcal{F}_{q 9}^{(1)}\left(x, r_{T}-q_{T}\right)
$$

where S_{\perp} is the target's transverse area.

KS gluon TMDs in proton

KS gluon TMDs in lead

Dependence of $\mathcal{F}_{\mathrm{qg}}^{(1)}$ on k_{T} below 1 GeV approximated by power-like fall-off. For higher values of $\left|k_{T}\right|$ it is a solution to the $B K$ equation.
TMDs decrease as $1 /\left|k_{T}\right|$ for increasing $\left|k_{T}\right|$, except $\mathcal{F}_{g 9}^{(2)}$, which decreases faster (even becomes negative, absolute value shown here).

Parton-level cross sections

Hadron-scattering process Y with partonic processes y contributing to multi-jet final state

$$
d \sigma_{Y}\left(p_{1}, p_{2} ; k_{3}, \ldots, k_{2+n}\right)=\sum_{y \in Y} \int d^{4} k_{1} \mathcal{P}_{y_{1}}\left(k_{1}\right) \int d^{4} k_{2} \mathcal{P}_{y_{2}}\left(k_{2}\right) d \hat{\sigma}_{y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{2+n}\right)
$$

Collinear factorization:

$$
\mathcal{P}_{y_{i}}\left(k_{i}\right)=\int \frac{d x_{i}}{x_{i}} f_{y_{i}}\left(x_{i}, \mu\right) \delta^{4}\left(k_{i}-x_{i} p_{i}\right)
$$

k_{T}-dependent factorization factorization:

$$
\mathcal{P}_{y_{i}}\left(k_{i}\right)=\int \frac{d^{2} \mathbf{k}_{i T}}{\pi} \int \frac{d x_{i}}{x_{i}} \mathcal{F}_{y_{i}}\left(x_{i},\left|k_{i T}\right|, \mu\right) \delta^{4}\left(k_{i}-x_{i} p_{i}-k_{i T}\right)
$$

Differential partonic cross section:

$$
\begin{aligned}
d \hat{\sigma}_{y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{2+n}\right) & =\operatorname{d} \Phi_{Y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{2+n}\right) \Theta_{Y}\left(k_{3}, \ldots, k_{2+n}\right) \\
& \times \operatorname{flux}\left(k_{1}, k_{2}\right) \times \mathcal{S}_{y}\left|\mathcal{M}_{y}\left(k_{1}, \ldots, k_{2+n}\right)\right|^{2}
\end{aligned}
$$

Parton-level phase space:

$$
d \Phi_{Y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{2+n}\right)=\left(\prod_{i=3}^{n+2} d^{4} k_{i} \delta_{+}\left(k_{i}^{2}-m_{i}^{2}\right)\right) \delta^{4}\left(k_{1}+k_{2}-k_{3}-\cdots-k_{n+2}\right)
$$

Parton-level cross sections

eh-scattering process Y with partonic processes y contributing to multi-jet final state

$$
d \sigma_{Y}\left(p_{1}, p_{2} ; k_{3}, \ldots, k_{3+n}\right)=\sum_{y \in Y} \int d^{4} k_{1} \mathcal{P}_{y_{1}}\left(k_{1}\right)
$$

Collinear factorization:

$$
\mathcal{P}_{y_{i}}\left(k_{i}\right)=\int \frac{d x_{i}}{x_{i}} f_{y_{i}}\left(x_{i}, \mu\right) \delta^{4}\left(k_{i}-x_{i} p_{i}\right)
$$

k_{T}-dependent factorization factorization:

$$
\mathcal{P}_{y_{i}}\left(k_{i}\right)=\int \frac{d^{2} \mathbf{k}_{i T}}{\pi} \int \frac{d x_{i}}{x_{i}} \mathcal{F}_{y_{i}}\left(x_{i},\left|k_{i T}\right|, \mu\right) \delta^{4}\left(k_{i}-x_{i} p_{i}-k_{i T}\right)
$$

Differential partonic cross section:

$$
\begin{aligned}
d \hat{\sigma}_{y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{3+n}\right) & =\operatorname{d} \Phi_{Y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{3+n}\right) \Theta_{Y}\left(k_{3}, \ldots, k_{3+n}\right) \\
& \times \operatorname{flux}\left(k_{1}, k_{2}\right) \times \mathcal{S}_{y}\left|\mathcal{M}_{y}\left(k_{1}, \ldots, k_{3+n}\right)\right|^{2}
\end{aligned}
$$

Parton-level phase space:

$$
d \Phi_{Y}\left(k_{1}, k_{2} ; k_{3}, \ldots, k_{3+n}\right)=\left(\prod_{i=3}^{n+3} d^{4} k_{i} \delta_{+}\left(k_{i}^{2}-m_{i}^{2}\right)\right) \delta^{4}\left(k_{1}+k_{2}-k_{3}-\cdots-k_{n+3}\right)
$$

https://bitbucket.org/hameren/katie

- parton level tree level event generator, like Alpgen, Helac, MadGraph, etc.
- arbitrary hadron-hadron or hadron-lepton processes within the standard model (including effective Higgs-gluon coupling) with several final-state particles.
- 0,1 , or 2 space-like initial states.
- produces (partially un)weighted event files, for example in the LHEF format.
- requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids, or with TMDlib (Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014).
- a calculation is steered by a single input file.
- employs an optimization stage in which the pre-samplers for all channels are optimized.
- during the generation stage several event files can be created in parallel.
- event files can be processed further by parton-shower program like CASCADE.
- (evaluation of) matrix elements separately available.

Hybrid k_{T}-factorization at NLO

M. A. Nefedov, Computing one-loop corrections to effective vertices with two scales in the EFT for Multi-Regge processes in QCD, Nucl. Phys. B 946 (2019) 114715, [1902.11030].
M. A. Nefedov, Towards stability of NLO corrections in High-Energy Factorization via Modified Multi-Regge Kinematics approximation, JHEP 08 (2020) 055, [2003.02194].
M. Hentschinski, K. Kutak, and A. van Hameren, Forward Higgs production within high energy factorization in the heavy quark limit at next-to-leading order accuracy, Eur. Phys. J. C 81 (2021), no. 2 112, [2011.03193]. [Erratum: Eur.Phys.J.C 81, 262 (2021)].
F. G. Celiberto, M. Fucilla, D. Y. Ivanov, M. M. A. Mohammed, and A. Papa, The next-to-leading order Higgs impact factor in the infinite top-mass limit, JHEP 08 (2022) 092, [2205.02681].
F. Bergabo and J. Jalilian-Marian, Single inclusive hadron production in DIS at small x : next to leading order corrections, JHEP 01 (2023) 095, [2210.03208].
P. Taels, Forward production of a Drell-Yan pair and a jet at small x at next-to-leading order, JHEP 01 (2024) 005. [2308.02449].
T. Altinoluk, N. Armesto, A. Kovner, and M. Lublinsky, Single inclusive particle production at next-to-leading order in proton-nucleus collisions at forward rapidities: Hybrid approach meets TMD factorization, Phys. Rev. D 108 (2023), no. 7 074003, [2307.14922].

Collinear factorization in QCD at NLO

$$
\text { general: } \mathrm{K}^{\mu}=\mathrm{x}_{\mathrm{K}} \mathrm{P}^{\mu}+\overline{\mathrm{x}}_{\mathrm{K}} \overline{\mathrm{P}}^{\mu}+\mathrm{K}_{\perp}^{\mu}
$$

$$
\overline{\mathrm{x}} \overline{\mathrm{P}}^{\mu}
$$

$$
\begin{aligned}
& d \sigma^{L O}=\int d x d \bar{x} f_{x}(x) f_{\bar{x}}(\bar{x}) d B(x, \bar{x}) \\
& \text { one in-state: } \mathrm{k}_{\chi}^{\mu}=x \mathrm{P}^{\mu} \\
& \text { other in-state: } k_{\bar{x}}^{\mu}= \\
& d \sigma^{N L O}=\int d x d \bar{x}\left\{f_{\chi}(x) f_{\bar{x}}(\bar{x})\left[\frac{\alpha_{s}}{2 \pi} d V(x, \bar{x})+\frac{\alpha_{s}}{2 \pi} d R(x, \bar{x})\right]_{\text {cancelling }}\right. \\
& +\left[\mathrm{f}_{\chi}(\mathrm{x}) \frac{-\alpha_{\mathrm{s}}}{2 \pi \epsilon} \int_{\bar{\chi}}^{1} \mathrm{~d} \bar{z} \mathcal{P}_{\bar{\chi}}(\bar{z}) \frac{1}{\bar{z}} \mathrm{f}_{\bar{\chi}}\left(\frac{\bar{x}}{\bar{z}}\right)\right. \\
& \left.+\mathrm{f}_{\bar{\chi}}(\overline{\mathrm{x}}) \frac{-\alpha_{\mathrm{s}}}{2 \pi \epsilon} \int_{\chi}^{1} \mathrm{~d} z \mathcal{P}_{\chi}(z) \frac{1}{z} \mathrm{f}_{\chi}\left(\frac{\chi}{z}\right)\right] \mathrm{dB}(x, \bar{x}) \\
& \left.+\left[\frac{\alpha_{s}}{2 \pi} f_{\chi}^{N L O}(x) f_{\bar{x}}(\bar{x})+f_{\chi}(x) \frac{\alpha_{s}}{2 \pi} f_{\bar{x}}^{N L O}(\bar{x})\right] d B(x, \bar{x})\right\} \\
& f_{\chi}^{N L O}(x)-\frac{1}{\epsilon} \int_{\chi}^{1} d z \mathcal{P}_{\chi}(z) \frac{1}{z} f_{\chi}\left(\frac{\chi}{z}\right)=\text { finite } \\
& f_{\bar{\chi}}^{N L O}(\bar{x})-\frac{1}{\epsilon} \int_{\bar{x}}^{1} d \bar{z} \mathcal{P}_{\chi}(\bar{z}) \frac{1}{\bar{z}} f_{\bar{x}}\left(\frac{\bar{x}}{\bar{z}}\right)=\text { finite }
\end{aligned}
$$

The Born-level formula for the cross section in hybrid k_{T}-factorization:

$$
\sigma_{\mathrm{B}}=\frac{1}{\mathcal{S}_{n}} \int[\mathrm{dQ}] \int \mathrm{d} \Phi\left(\mathrm{Q} ;\{p\}_{n}\right) \mathcal{L}\left(\mathrm{Q} ;\{p\}_{n}\right)|\mathcal{M}|^{2}\left(\mathrm{Q} ;\{p\}_{n}\right) \mathrm{J}_{\mathrm{B}}\left(\{p\}_{n}\right)
$$

Initial-state variables:
$\int[d Q]=\int_{0}^{1} d x \int_{0}^{1} d \bar{x} \int d^{2} k_{\perp}, \quad Q^{\mu}=k_{x}^{\mu}+k_{\bar{x}}^{\mu}, \begin{cases}k_{x}^{\mu}=x P^{\mu}+k_{\perp}^{\mu} & P^{\mu}=(E, 0,0, E) \\ k_{\bar{x}}^{\mu}=\bar{x}^{\mathrm{P}^{\mu}} & \overline{\mathrm{P}}^{\mu}=(\overline{\mathrm{E}}, 0,0,-\overline{\mathrm{E}})\end{cases}$
Differential phase space for the final-state momenta $\{p\}_{n}$

$$
d \Phi\left(Q ;\{p\}_{n}\right)=\left(\prod_{l=1}^{n} \frac{d^{4} p_{l}}{(2 \pi)^{3}} \delta_{+}\left(p_{l}^{2}-m_{l}^{2}\right)\right) \frac{1}{(2 \pi)^{4}} \delta\left(Q-\sum_{l=1}^{n} p_{l}\right)
$$

The PDFs and flux factor:

$$
\mathcal{L}\left(Q ;\{p\}_{n}\right)=\frac{F_{x}\left(x, k_{\perp}, \mu_{\mathrm{F}}\left(\{p\}_{n}\right)\right) f_{\bar{\chi}}\left(\bar{x}, \mu_{\mathrm{F}}\left(\{p\}_{\mathrm{n}}\right)\right)}{8 x \overline{\mathrm{x}} \mathrm{E} \overline{\mathrm{E}}}
$$

$|\mathcal{M}|^{2}\left(Q ;\{p\}_{n}\right)$ tree-level matrix element without symmetry factors and averageing factors, they are captured by \mathcal{S}_{n}. Finally $\mathrm{J}_{\mathrm{B}}\left(\{p\}_{\mathfrak{n}}\right)$ denotes the jet function.

Singular limits at NLO: jets

The symbol J_{B} includes the decision if there are enough jets for Born-level. For the real radiation, the jet function J_{R} does not avoid all singularities of the tree-level squared matrix element anymore, but allows one pair of partons to become collinear,

$$
\begin{aligned}
\text { one pair of partons to become collinear: } & p_{r} \| p_{i} \Leftrightarrow \vec{n}_{r}-\vec{n}_{i} \rightarrow \overrightarrow{0} \\
\text { one parton to become soft: } & p_{r} \rightarrow \text { soft }
\end{aligned} \Leftrightarrow \quad E_{r} \rightarrow 0
$$

The jet function behaves in those limits such that

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{R}}\left(\{p\}_{\mathfrak{n}+1}\right) \xrightarrow{p_{r} \rightarrow \text { soft }} \mathrm{J}_{\mathrm{B}}\left(\{p\}_{n}^{r}\right) \\
& \mathrm{J}_{\mathrm{R}}\left(\{p\}_{\mathfrak{n}+1}\right) \xrightarrow{p_{r} \| p_{i}} \mathrm{~J}_{\mathrm{B}}\left(\{p\}_{n}^{\gamma ; i}\right) \\
& \mathrm{J}_{\mathrm{R}}\left(\{p\}_{\mathfrak{n}+1}\right) \xrightarrow{p_{r} \| P, \bar{p}} \mathrm{~J}_{\mathrm{B}}\left(\{p\}_{n}^{r}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \{p\}_{n}^{\gamma} \text { is obtained from }\{p\}_{n+1} \text { by removing momentum } p_{r}, \\
& \{p\}_{n}^{f ; i} \text { is obtained by additionally replacing } p_{i} \text { with }\left(1+z_{\mathrm{ri}}\right) p_{i} \quad z_{\mathrm{ri}}=\mathrm{E}_{\mathrm{r}} / \mathrm{E}_{\mathrm{i}}
\end{aligned}
$$

(We assume p_{r} and also p_{i} to be light-like.)

Singular limits at NLO: matrix elements

Matrix elements are constructed from external momenta that must satisfy mometum conservation. When $\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathfrak{n}+1}\right)$ satisfies momentum conservation, then $\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathfrak{n}}^{\gamma_{n}^{\prime}}\right)$ and (Q; $\{p\}_{n}^{\gamma ; i}$) do not. We must introduce deformed momenta to even write down the limits:

$$
\begin{aligned}
& |\mathcal{M}|^{2}\left(Q ;\{p\}_{n+1}\right) \xrightarrow{p_{r} \rightarrow \text { soft }} \hat{\mathcal{R}}^{\text {soft }}\left(p_{r}\right) \otimes \hat{\mathcal{A}}^{\text {soft }}\left(\tilde{Q} ;\{\tilde{p}\}_{n}^{f}\right) \\
& |\mathcal{M}|^{2}\left(Q ;\{p\}_{n+1}\right) \xrightarrow{p_{r} \| p_{i}} \hat{\mathcal{R}}_{i r}^{F, c o l}\left(p_{r}\right) \otimes \hat{\mathcal{A}}_{i r}^{F, c o l}\left(\tilde{Q} ;\{\tilde{p}\}_{n}^{\gamma ; i}\right) \\
& |\mathcal{M}|^{2}\left(Q ;\{p\}_{n+1}\right) \xrightarrow{p_{r} \| P} \hat{\mathcal{R}}_{\chi, r}^{l, c o l}\left(p_{r}\right) \otimes \hat{\mathcal{A}}_{\chi, r}^{1, \text { col }}\left(\tilde{Q}-x_{r} P ;\{\tilde{p}\}_{n}^{\gamma}\right)
\end{aligned}
$$

In k_{T}-factorization, we can choose to just deform the initial-state momenta:

$$
\begin{aligned}
& |\mathcal{M}|^{2}\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathrm{n}+1}\right) \xrightarrow{\mathrm{p}_{\mathrm{r}} \rightarrow \text { soft }} \hat{\mathcal{R}}^{\text {soft }}\left(\mathrm{p}_{\mathrm{r}}\right) \otimes \hat{\mathcal{A}}^{\text {soft }}\left(\mathrm{Q}-\mathrm{p}_{\mathrm{r}} ;\{\mathrm{p}\}_{\mathrm{n}}^{\gamma_{r}}\right) \\
& |\mathcal{M}|^{2}\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathfrak{n}+1}\right) \xrightarrow{p_{r} \| p_{i}} \hat{\mathcal{R}}_{\mathrm{ir}}^{\mathrm{F}, \text { col }}\left(\mathrm{p}_{\mathrm{r}}\right) \otimes \hat{\mathcal{A}}_{\mathrm{ir}}^{\mathrm{F}, \text { col }}\left(\mathrm{Q}-\mathrm{p}_{\mathrm{r}}+z_{\mathrm{ri}} p_{i} ;\{\mathrm{p}\}_{n}^{\not ; i}\right) \\
& |\mathcal{M}|^{2}\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathrm{n}+1}\right) \xrightarrow{\mathrm{p}_{\mathrm{r}} \| \mathrm{P} / \overline{\mathrm{P}}} \hat{\mathcal{R}}_{\chi / \overline{\mathrm{x}}, \mathrm{r}}^{1, \text { col }}\left(\mathrm{p}_{\mathrm{r}}\right) \otimes \hat{\mathcal{A}}_{\chi / \overline{\bar{x}}, \mathrm{r}}^{1, \text { col }}\left(\mathrm{Q}-\mathrm{p}_{\mathrm{r}} ;\{\mathrm{p}\}_{\mathrm{n}}^{\gamma^{r}}\right)
\end{aligned}
$$

This opens the possibility to construct subtraction terms with only deformed initial-state moenta.

Subtraction method

Real radiation contribution within dimensional regularization

$$
\left.\sigma_{R}(\epsilon)=\frac{1}{S_{n+1}} \int[d Q] \int d \Phi\left(\epsilon ; Q ;\{p\}_{n+1}\right) \mathcal{L}\left(Q ;\{p\}_{n+1}\right)\right)|\mathcal{M}|^{2}\left(Q ;\{p\}_{n+1}\right) J_{R}\left(\{p\}_{n+1}\right)
$$

We want to split the real-radiation integral into a finite part and a divergent part that can be explicitly expressed as a Laurent expansion in ϵ within dimensional regularization

$$
\sigma_{R}(\epsilon)=\sigma_{R}^{\text {div }}(\epsilon)+\sigma_{R}^{\text {fin }}+\mathcal{O}(\epsilon)
$$

We define the finite "subtracted-real" integral as

$$
\sigma_{R}^{\text {fin }^{n}}=\frac{1}{S_{n+1}} \int[d Q] \int d \Phi\left(Q ;\{p\}_{n+1}\right)\left\{\mathcal{L}\left(Q ;\{p\}_{n+1}\right)\right)|\mathcal{M}|^{2}\left(Q ;\{p\}_{n+1}\right) J_{R}\left(\{p\}_{n+1}\right)
$$

that can be integrated numerically, and

$$
\left.-\sum_{r} \operatorname{Subt}_{r}\left(\mathrm{Q} ;\{p\}_{n+1}\right)\right\}
$$

$$
\sigma_{R}^{\text {div }}(\epsilon)=\frac{1}{\mathcal{S}_{n+1}} \sum_{r} \int[d Q] \int d \Phi\left(\epsilon ; Q ;\{p\}_{n+1}\right) \operatorname{Subt}_{r}\left(Q ;\{p\}_{n+1}\right),
$$

that should be integrable analytically.

Subtraction terms

but with parameters $E_{0}, \zeta_{0}, \xi_{0}$ to restrict the phase space where the terms are active.
Final-state terms, with arguments $\left(Q-p_{r}+z_{\text {ri }} p_{i} ;\{p\}_{n}^{\gamma ; i}\right)$ for amplitudes \mathcal{M} :

$$
\begin{aligned}
\mathcal{R}_{i r}^{F, \text { col }} \otimes \mathcal{A}_{i r}^{F, \text { col }} & =\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(n_{r} \cdot n_{i}<2 \zeta_{0}\right) \frac{\theta\left(E_{r}<E_{i}\right)}{p_{i} \cdot p_{r}} \mathcal{Q}_{i r}\left(z_{r i}\right) \otimes\left|\mathcal{M}_{i r}\right|^{2} \\
\mathcal{R}_{i}^{F, \text { soft }} \otimes \mathcal{A}_{i}^{F, \text { soft }} & =-\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(E_{r}<E_{0}\right) \quad \frac{2}{n_{i} \cdot p_{r}} \sum_{b} \frac{n_{i} \cdot n_{b}}{n_{i} \cdot p_{r}+n_{b} \cdot p_{r}}(\mathcal{M})_{\text {color }(i, b)}^{2} \\
\mathcal{R}_{i}^{F, \text { soco }} \otimes \mathcal{A}_{i}^{F, \text { soco }} & =-\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(E_{r}<E_{0}\right) \theta\left(n_{r} \cdot n_{i}<2 \zeta_{0}\right) \quad \frac{2 C_{i}}{p_{i} \cdot p_{r}} \frac{1}{z_{r i}}|\mathcal{M}|^{2}
\end{aligned}
$$

Initial-state terms, with arguments $\left(Q-p_{r} ;\{p\}_{n}^{r}\right)$ for amplitudes \mathcal{M} :

$$
\begin{aligned}
\mathcal{R}_{\chi r}^{1, \text { col }} \otimes \mathcal{A}_{\chi r}^{l, \text { col }} & =\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(\bar{x}_{r}<\xi_{0} x_{r}\right) \quad \frac{-2}{S \bar{x}_{\mathrm{r}} \chi} Q_{\chi r}\left(-x_{r} / \chi\right) \otimes\left|\mathcal{M}_{\chi r}\right|^{2} \\
\mathcal{R}_{\chi}^{1, \text { soft }} \otimes \mathcal{A}_{\chi}^{1, \text { soft }} & =-\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(E_{r}<E_{0}\right) \quad \frac{2}{n_{\chi} \cdot p_{r}} \sum_{b} \frac{n_{\chi} \cdot n_{b}}{n_{\chi} \cdot p_{r}+n_{b} \cdot p_{r}}(\mathcal{M})_{\text {color }(\chi, b)}^{2} \\
\mathcal{R}_{\chi}^{1, \text { soco }} \otimes \mathcal{A}_{\chi}^{1, \text { soco }} & =-\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(E_{r}<E_{0}\right) \theta\left(\bar{x}_{r}<\xi_{0} x_{r}\right) \quad \frac{4 C_{\chi}}{S x_{r} \bar{x}_{r}}|\mathcal{M}|^{2}
\end{aligned}
$$

Subtraction terms

but with parameters $E_{0}, \zeta_{0}, \xi_{0}$ to restrict the phase space where the terms are active.

While $k_{\chi}^{\mu}=\chi P^{\mu}+k_{\perp}^{\mu}$, there is an initial-state singularity related to the space-like gluon if the radiative momentum becomes collinear to P, with splitting function

$$
Q_{\chi r}(\zeta)=\frac{2 C_{g}}{\zeta(1+\zeta)^{2}} \quad \Leftrightarrow \quad \mathcal{P}_{\chi r}(z) \equiv-z Q_{\chi}(z-1)=\frac{2 C_{g}}{z(1-z)}
$$

Initial-state terms, with arguments $\left(Q-p_{r} ;\{p\}_{n}^{\prime \prime}\right)$ for amplitudes \mathcal{M} :

$$
\begin{aligned}
\mathcal{R}_{\chi r}^{l, \text { col }} \otimes \mathcal{A}_{\chi r}^{l, \text { col }} & =\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(\bar{x}_{r}<\xi_{0} x_{r}\right) \quad \frac{-2}{S \bar{x}_{r} \chi} Q_{\chi r}\left(-x_{r} / \chi\right) \otimes\left|\mathcal{M}_{\chi r}\right|^{2} \\
\mathcal{R}_{x}^{l, \text { soft }} \otimes \mathcal{A}_{\chi}^{l, \text { soft }} & =-\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \theta\left(E_{r}<E_{0}\right) \quad \frac{2}{n_{\chi} \cdot p_{r}} \sum_{\mathrm{b}} \frac{n_{\chi} \cdot n_{b}}{n_{\chi} \cdot p_{r}+n_{b} \cdot p_{r}}(\mathcal{M})_{\text {color }(\chi, b)}^{2} \\
\mathcal{R}_{\chi}^{1, \text { soco }} \otimes \mathcal{A}_{\chi}^{1, \text { soco }} & =-\frac{4 \pi \alpha_{s}}{\mu^{-2 \epsilon}} \quad \theta\left(E_{r}<E_{0}\right) \theta\left(\bar{x}_{r}<\xi_{0} x_{r}\right) \quad \frac{4 C_{\chi}}{S x_{r} \bar{x}_{r}}|\mathcal{M}|^{2}
\end{aligned}
$$

Subtraction method

$$
\sigma_{R}(\epsilon)=\sigma_{R}^{\text {div }}(\epsilon)+\sigma_{R}^{\text {fin }}+\mathcal{O}(\epsilon)
$$

We define the finite "subtracted-real" integral as

$$
\begin{aligned}
& \sigma_{R}^{\text {fin }}=\frac{1}{\mathcal{S}_{n+1}} \int[d Q] \int d \Phi\left(Q ;\{p\}_{n+1}\right)\left\{\mathcal{L}\left(Q ;\{p\}_{n+1}\right)\right)|\mathcal{M}|^{2}\left(Q ;\{p\}_{n+1}\right) J_{R}\left(\{p\}_{n+1}\right) \\
&\left.-\sum_{r} \operatorname{Subt}_{r}\left(Q ;\{p\}_{n+1}\right)\right\},
\end{aligned}
$$

where the r-sum is over all final-state partons, and where $\operatorname{Subt}_{r}\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathrm{n}+1}\right)$ is given by

$$
\begin{aligned}
& \sum_{i} \mathcal{L}\left(Q-p_{r}+z_{r i} p_{i} ;\{p\}_{n}^{\not \gamma_{i} i}\right) \quad \mathcal{R}_{i r}^{F}\left(p_{r}\right) \otimes \mathcal{A}_{i r}^{F}\left(Q-p_{r}+z_{r i} p_{i} ;\{p\}_{n}^{\not \gamma_{i}}\right) J_{B}\left(\{p\}_{n}^{\gamma_{i}^{\prime ;}}\right) \\
& +\sum_{a \in\{x, \bar{x}\}} \mathcal{L}\left(Q-p_{r} \quad ;\{p\}_{n}^{+}\right) \mathcal{R}_{a}^{1, \text { soft }}\left(\mathfrak{p}_{r}\right) \otimes \mathcal{A}_{a}^{1, \text { soft }}\left(Q-p_{r} \quad ;\{p\}_{n}^{\gamma}\right) J_{B}\left(\{p\}_{n}^{+}\right) \\
& +\sum_{a \in\{x, \bar{x}\}} \mathcal{L}\left(Q-p_{r} \quad ;\{p\}_{n}^{\psi}\right) \mathcal{R}_{a}^{1, \text { soco }}\left(p_{r}\right) \otimes \mathcal{A}_{a}^{1, \text { soco }}\left(Q-p_{r} \quad ;\{p\}_{n}^{\psi}\right) J_{B}\left(\{p\}_{n}^{f}\right)
\end{aligned}
$$

where also the i-sum is over all final-state partons with $\mathcal{R}_{r r}^{\mathrm{F}}\left(\mathfrak{p}_{\mathrm{r}}\right) \equiv 0$.

Subtraction method

$$
\sigma_{R}(\epsilon)=\sigma_{R}^{\text {div }}(\epsilon)+\sigma_{R}^{\text {fin }}+\mathcal{O}(\epsilon)
$$

$$
\begin{aligned}
& \left.\sigma_{R}^{\text {div }}(\epsilon)=\frac{1}{\mathcal{S}_{n+1}} \sum_{r} \int[d Q] \int d \Phi\left(Q ;\{p\}_{n}^{\dagger}\right) \mathcal{L}\left(Q ;\{p\}_{n}^{\dagger}\right)\right) J_{B}\left(\{p\}_{n}^{\dagger}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathcal{J}_{i r}^{\mathrm{F}}\left(\epsilon, \mathrm{Q},\{\mathfrak{p}\}_{\mathrm{n}}^{f}\right)=\int \frac{\mathrm{d}^{4-2 \epsilon} \mathfrak{p}_{\mathrm{r}}}{(2 \pi)^{3-2 \epsilon}} \delta_{+}\left(\mathfrak{p}_{\mathrm{r}}^{2}\right)\left(1-z_{\mathrm{ri}}\right) \mathcal{R}_{\mathrm{ir}}^{\mathrm{F}}\left(\mathfrak{p}_{\mathrm{r}}\right) \Theta\left(\mathfrak{p}_{\mathrm{r}}-z_{\mathrm{r}} \mathfrak{p}_{\mathrm{i}}\right) \\
& \mathcal{J}_{a}^{1, \text { soft } / \text { soco }}\left(\epsilon, Q,\{\mathfrak{p}\}_{n}^{r}\right)=\int \frac{d^{4-2 \epsilon} \mathfrak{p}_{r}}{(2 \pi)^{3-2 \epsilon}} \delta_{+}\left(\mathfrak{p}_{r}^{2}\right) \mathcal{R}_{a}^{1, \text { soft } / \text { soco }}\left(\mathfrak{p}_{r}\right) \Theta\left(\mathfrak{p}_{r}\right)
\end{aligned}
$$

and

$$
\Theta(q)=\theta\left(-x<x_{q}<1-x\right) \theta\left(-\bar{x}<\bar{x}_{q}<1-\bar{x}\right)
$$

Only $J_{\bar{\chi} / \bar{x}, \text {, }}^{1, \text { involve }} \mathcal{L}$-function \Longrightarrow " P "-operator, must be integrated numerically.
But the Θ restrictions obstruct confortable analytic integration also for the other terms.

Example integrated subtraction term F,soft

We need to calculate

$$
\bar{\epsilon}=-2 \epsilon, \quad \pi_{\epsilon}=\frac{\pi^{1-\epsilon}}{\Gamma(1-\epsilon)}
$$

$L_{i b}^{F_{i b}^{\text {soft }}}(\epsilon)=\frac{-2}{\pi_{\epsilon} \mu^{\bar{\epsilon}}} \int d^{4+\bar{\epsilon}} \mathfrak{p}_{r} \delta_{+}\left(\mathfrak{p}_{r}^{2}\right) \frac{1}{n_{i} \cdot p_{r}} \frac{n_{i} \cdot n_{b}}{n_{i} \cdot p_{r}+n_{b} \cdot p_{r}} \theta\left(E_{r}<E_{0}\right)\left(1-z_{\mathrm{ri}}\right) \Theta\left(p_{r}-z_{\mathrm{ri}} p_{i}\right)$
but find it too complicated because of $\Theta\left(\mathfrak{p}_{r}-z_{r i} \mathfrak{p}_{i}\right)$.
Because $p_{r \perp}-z_{r i} p_{i \perp}$ vanishes both in the soft and the collinear limit, the integral

$$
L_{i b, c o m p l}^{\text {F.soft,fin }}=\frac{-2}{\pi} \int d^{4} \mathfrak{p}_{r} \delta_{+}\left(p_{r}^{2}\right) \frac{1}{n_{i} \cdot p_{r}} \frac{n_{i} \cdot n_{b}}{n_{i} \cdot p_{r}+n_{b} \cdot p_{r}} \theta\left(E_{r}<E_{0}\right)\left(1-z_{r i}\right)\left[\Theta\left(p_{r}-z_{r i} \mathfrak{p}_{i}\right)-1\right]
$$

is finite and can be calculated numerically, while
can, in principle, be calculated analytically.
Still, the explicit appearance of $n_{i} \cdot p_{r}, n_{b} \cdot p_{r}$ and E_{r} makes it complicated.

Example integrated subtraction term F,soft

Thus, we introduce

$$
\bar{\epsilon}=-2 \epsilon, \quad \pi_{\epsilon}=\frac{\pi^{1-\epsilon}}{\Gamma(1-\epsilon)}
$$

$$
E_{r}^{(i b)}=\frac{n_{b} \cdot p_{r}}{n_{i} \cdot n_{b}}+\frac{n_{i} \cdot p_{r}}{n_{i} \cdot n_{b}}=E_{r} \frac{n_{r} \cdot n_{b}+n_{i} \cdot n_{r}}{n_{i} \cdot n_{b}}
$$

which vanishes in the soft limit, and becomes equal to E_{r} in the collinear limit, so we can define

$$
\begin{aligned}
L_{i b}^{F_{i b} \text { soft,fin }}= & \frac{-2}{\pi} \int d^{4} p_{r} \delta_{+}\left(p_{r}^{2}\right) \frac{1}{n_{i} \cdot p_{r}} \frac{n_{i} \cdot n_{b}}{n_{i} \cdot p_{r}+n_{b} \cdot p_{r}} \\
& \times\left[\Theta\left(p_{r}-z_{r i} p_{i}\right) \theta\left(E_{r}<E_{0}\right)\left(1-\frac{E_{r}}{E_{i}}\right)-\theta\left(E_{r}^{(i b)}<E_{0}\right)\left(1-\frac{E_{r}^{(i b)}}{E_{i}}\right)\right]
\end{aligned}
$$

which can be calculated numerically, and
which is easier to calculate analytically.

Numerical results

for dijets, including: $\mathrm{gg}^{\star} \rightarrow \mathrm{ggg}, \mathrm{gg}^{\star} \rightarrow \mathrm{u} \overline{\mathrm{u}}$, ug $^{\star} \rightarrow$ ugg, ug ${ }^{\star} \rightarrow$ uӣd, ug ${ }^{\star} \rightarrow$ uūu, (u $\left.\leftrightarrow d\right)$

$\mathrm{k}_{\mathrm{T} \text {-dependent PDF: PB-NLO-HERAI+II-2018-set2 Bermudez Martinez et al. } 2019}$

Divergences

All poles in ϵ of the integrated subtraction terms are the same as in the on-shell case, except the initial-state collinear divergence

$$
\begin{aligned}
\sigma_{\chi r}^{1, c o l, d i v}=\frac{1}{\mathcal{S}_{n}} \int[\mathrm{dQ}] & \int \mathrm{d} \Phi\left(\mathrm{Q} ;\{p\}_{\mathrm{n}}\right) \mathcal{L}\left(\mathrm{Q} ;\{p\}_{n}\right)|\mathcal{M}|^{2}\left(\mathrm{Q} ;\{\mathrm{p}\}_{\mathrm{n}}\right) \mathrm{J}_{\mathrm{B}}\left(\{\mathrm{p}\}_{\mathrm{n}}\right) \\
& \times \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{(4 \pi)^{\epsilon}}{\Gamma(1-\epsilon)}\left\{\frac{\mathrm{C}_{\chi r}}{\epsilon^{2}}-\frac{1}{\epsilon} \int_{0}^{1} \mathrm{~d} z \mathcal{P}_{\mathrm{P}_{r}}^{\mathrm{reg}}(z) \frac{\ell_{\chi}(x / z)}{z^{2}} \theta(z>x)\right\}
\end{aligned}
$$

with

$$
\begin{gathered}
\ell_{x}(y)=\frac{\mathcal{L}\left(y P+\bar{x} \overline{\mathrm{P}}+\mathrm{k}_{\perp} ;\{\hat{p}\}_{n}\right)}{\mathcal{L}\left(x P+\bar{x} \overline{\mathrm{P}}+\mathrm{k}_{\perp} ;\{\mathfrak{p}\}_{\mathrm{n}}\right)}=\frac{\mathrm{F}_{x}\left(y, k_{\perp}, \mu_{\mathrm{F}}\left(\{p\}_{\mathrm{n}}\right)\right) / y}{\mathrm{~F}_{\mathrm{x}}\left(x, \mathrm{k}_{\perp}, \mu_{\mathrm{F}}\left(\{p\}_{\mathrm{n}}\right)\right) / \mathrm{x}} . \\
\mathcal{P}_{x g}^{\mathrm{reg}}(z)=2 \mathrm{C}_{\mathrm{A}}\left[\frac{1}{[1-z]_{+}}+\frac{1}{z}\right]
\end{gathered}
$$

compare with the collinear case

$$
\begin{gathered}
\ell_{\bar{x}}(y)=\frac{\mathcal{L}\left(x P+y \overline{\mathrm{P}}+\mathrm{k}_{\perp} ;\{p\}_{\mathrm{n}}\right)}{\mathcal{L}\left(x \mathrm{x}+\overline{\mathrm{x}} \overline{\mathrm{P}}+\mathrm{k}_{\perp} ;\{\mathrm{p}\}_{\mathrm{n}}\right)}=\frac{\mathrm{f}_{\overline{\mathrm{x}}}\left(y, \mu_{\mathrm{F}}\left(\{p\}_{\mathrm{n}}\right)\right) / \mathrm{y}}{\mathrm{f}_{\overline{\mathrm{x}}}\left(x, \mu_{\mathrm{F}}\left(\{p\}_{\mathrm{n}}\right)\right) / \mathrm{x}} \\
\mathcal{P}_{\overline{\mathrm{r}}}^{\mathrm{reg}}(z)=2 \mathrm{C}_{A}\left[\frac{1}{[1-z]_{+}}+\frac{1}{z}+z(1-z)-2\right]
\end{gathered}
$$

Collinear factorization in QCD at NLO

$$
\begin{aligned}
& d \sigma^{L O}=\int d x d \bar{x} f_{x}(x) f_{\bar{x}}(\bar{x}) d B(x, \bar{x}) \\
& \text { general: } \mathrm{K}^{\mu}=\chi_{\mathrm{K}} \mathrm{P}^{\mu}+\overline{\mathrm{x}}_{\mathrm{K}} \overline{\mathrm{P}}^{\mu}+\mathrm{K}_{\perp}^{\mu} \\
& \text { one in-state: } \mathrm{k}_{\chi}^{\mu}=x \mathrm{P}^{\mu} \\
& \text { other in-state: } k_{\bar{x}}^{\mu}= \\
& \bar{\chi} \overline{\mathrm{P}}^{\mu} \\
& d \sigma^{N L O}=\int d x d \bar{x}\left\{f_{\chi}(x) f_{\bar{x}}(\bar{x})\left[\frac{\alpha_{s}}{2 \pi} d V(x, \bar{x})+\frac{\alpha_{s}}{2 \pi} d R(x, \bar{x})\right]_{\text {cancelling }}\right. \\
& +\left[f_{\chi}(x) \frac{-\alpha_{s}}{2 \pi \epsilon} \int_{\bar{\chi}}^{1} \mathrm{~d} \bar{z}\left[\mathcal{P}_{\bar{\chi}}^{\mathrm{reg}}(\bar{z})+\gamma_{\bar{\chi}} \delta(1-\bar{z})\right] \frac{1}{\bar{z}} \mathrm{f}_{\bar{\chi}}\binom{\bar{x}}{\bar{z}}\right. \\
& \left.+f_{\bar{\chi}}(\bar{x}) \frac{-\alpha_{s}}{2 \pi \epsilon} \int_{x}^{1} d z\left[\mathcal{P}_{x}^{r e g}(z)+\gamma_{x} \delta(1-z)\right] \frac{1}{z} f_{x}\left(\frac{\chi}{z}\right)\right] d B(x, \bar{x}) \\
& \left.+\left[\frac{\alpha_{s}}{2 \pi} f_{\chi}^{N L O}(x) f_{\bar{\chi}}(\bar{x})+f_{\chi}(x) \frac{\alpha_{s}}{2 \pi} f_{\bar{\chi}}^{N L O}(\bar{x})\right] d B(x, \bar{x})\right\} \\
& f_{\chi}^{\text {NLO }}(x)-\frac{1}{\epsilon} \int_{x}^{1} d z\left[\mathcal{P}_{\chi}^{\text {reg }}(z)+\gamma_{\chi} \delta(1-z)\right] \frac{1}{z} f_{\chi}\left(\frac{\chi}{z}\right)=\text { finite } \\
& f_{\bar{\chi}}^{N L O}(\bar{x})-\frac{1}{\epsilon} \int_{\bar{x}}^{1} \mathrm{~d} \bar{z}\left[\mathcal{P}_{\bar{\chi}}^{r e g}(z)+\gamma_{\bar{\chi}} \delta(1-\bar{z})\right] \frac{1}{\bar{z}} \mathrm{f}_{\bar{\chi}}\left(\frac{\bar{x}}{\bar{z}}\right)=\text { finite }
\end{aligned}
$$

Auxiliary parton method
 $$
k_{x}^{\mu}=x P^{\mu}+k_{\perp}^{\mu} \quad k_{x}^{\mu}=\bar{x} \overline{\mathrm{P}}^{\mu}
$$

AvH, Kotko, Kutak 2013

We desire to obtain the matrix element with one space-like gluon for the process
$g^{\star}\left(k_{\chi}\right) \omega_{\bar{x}}\left(k_{\bar{x}}\right) \rightarrow \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right) \quad$ e.g. $g^{\star}\left(k_{\chi}\right) g\left(k_{\bar{x}}\right) \rightarrow g\left(p_{1}\right) g\left(p_{2}\right) g\left(p_{3}\right)$
and do so by replacing the space-like gluon with an on-shell auxiliary quark pair
$q\left(k_{1}(\Lambda)\right) \omega_{\bar{\chi}}\left(k_{\bar{x}}\right) \rightarrow q\left(k_{2}(\Lambda)\right) \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right)$
with special momenta
$k_{1}^{\mu}=\Lambda P^{\mu} \quad, \quad k_{2}^{\mu}=p_{\Lambda}^{\mu}=(\Lambda-x) P^{\mu}-k_{\perp}^{\mu}+\frac{\left|k_{\perp}\right|^{2}}{2(\Lambda-x) P \cdot \bar{p}} \overline{\mathrm{P}}^{\mu}$
such that, while individually on-shell, their difference is
$k_{1}^{\mu}-k_{2}^{\mu}=x \mathrm{P}^{\mu}+k_{\perp}^{\mu}+\mathcal{O}\left(\Lambda^{-1}\right)=k_{x}^{\mu}+\mathcal{O}\left(\Lambda^{-1}\right)$
The matrix element with the space-like gluon is obtained by taking $\Lambda \rightarrow \infty$ $\left|\overline{\mathcal{M}}^{\star}\right|^{2}\left(k_{x}, k_{\bar{x}} ;\{p\}_{n}\right)=\lim _{\Lambda \rightarrow \infty} \frac{1}{g_{s}^{2} C_{\text {aux }}} \frac{x^{2}\left|k_{\perp}\right|^{2}}{\Lambda^{2}}\left|\overline{\mathcal{M}}^{\text {aux }}\right|^{2}\left(\Lambda P, k_{\bar{x}} ; p_{\Lambda},\{p\}_{n}\right)$

Auxiliary parton method

$$
k_{x}^{\mu}=x \mathrm{P}^{\mu}+\mathrm{k}_{\perp}^{\mu} \quad k_{\chi}^{\mu}=\bar{x} \overline{\mathrm{P}}^{\mu}
$$

AvH, Kotko, Kutak 2013

We desire to obtain the matrix element with one space-like gluon for the process
$g^{\star}\left(k_{\chi}\right) \omega_{\bar{\chi}}\left(k_{\bar{x}}\right) \rightarrow \omega_{1}\left(p_{1}\right) \omega_{2}\left(p_{2}\right) \cdots \omega_{n}\left(p_{n}\right) \quad$ e.g. $g^{\star}\left(k_{\chi}\right) g\left(k_{\bar{x}}\right) \rightarrow g\left(p_{1}\right) g\left(p_{2}\right) g\left(p_{3}\right)$
and do so by replacing the space-like gluon with an on-shell auxiliary quark pair
$\mathrm{q}\left(\mathrm{k}_{1}(\Lambda)\right) \omega_{\bar{\chi}}\left(k_{\bar{x}}\right) \rightarrow \mathrm{q}\left(\mathrm{k}_{2}(\Lambda)\right) \omega_{1}\left(\mathrm{p}_{1}\right) \omega_{2}\left(\mathrm{p}_{2}\right) \cdots \omega_{n}\left(\mathrm{p}_{\mathrm{n}}\right)$
with special momenta
$k_{1}^{\mu}=\Lambda P^{\mu} \quad, \quad k_{2}^{\mu}=p_{\Lambda}^{\mu}=(\Lambda-x) P^{\mu}-k_{\perp}^{\mu}+\frac{\left|k_{\perp}\right|^{2}}{2(\Lambda-x) P \cdot \bar{p}} \overline{\mathrm{P}}^{\mu}$
such that, while individually on-shell, their difference is
$k_{1}^{\mu}-k_{2}^{\mu}=x \mathrm{P}^{\mu}+k_{\perp}+\mathcal{O}\left(\Lambda^{-1}\right)=k_{\chi}^{\mu}+\mathcal{O}\left(\Lambda^{-1}\right)$
The matrix element with the space-like gluon is obtained by taking $\Lambda \rightarrow \infty$ $\left|\overline{\mathcal{M}}^{\star}\right|^{2}\left(k_{x}, k_{\bar{x}} ;\{p\}_{n}\right)=\lim _{\Lambda \rightarrow \infty} \frac{1}{g_{s}^{2} C_{\text {aux }}} \frac{x^{2}\left|k_{\perp}\right|^{2}}{\Lambda^{2}}\left|\overline{\mathcal{M}}^{\text {aux }}\right|^{2}\left(\Lambda P, k_{\bar{x}} ; p_{\Lambda},\{p\}_{n}\right)$
The factor $x^{2}\left|k_{\perp}\right|^{2}$ ensures the correct on-shell limit, $1 / \Lambda^{2}$ selects the leading power, $1 / g_{s}^{2}$ corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor $C_{a u x-\mathrm{q}}=\frac{\mathrm{N}_{\mathrm{c}}^{2}-1}{\mathrm{~N}_{\mathrm{c}}}, \quad \mathrm{C}_{\text {aux-g }}=2 \mathrm{~N}_{\mathrm{c}}$

Auxiliary parton method $k_{\chi}^{\mu}=x \mathrm{P}^{\mu}+k_{\perp}^{\mu} \quad k_{\bar{\chi}}^{\mu}=\bar{\chi} \overline{\mathrm{P}}^{\mu}$

the auxiliary parton method can be applied to Feynman graphs, from which one can derive eikonal Feynman rules for the auxiliary partons

$$
\begin{aligned}
& \left|\overline{\mathcal{M}}^{\star}\right|^{2}\left(k_{x}, k_{\bar{x}} ;\{p\}_{n}\right)=\quad \frac{1}{g_{s}^{2} C_{\text {aux }}} x^{2}\left|{k_{\perp}}_{\perp}\right|^{2}\left|\overline{\mathcal{M}}^{\text {aux }}\right|^{2}\left(k_{x}, k_{\bar{x}} ; 0,\{p\}_{n}\right) \\
& k_{\chi}^{\mu}=x P^{\mu}+k_{\perp}^{\mu}
\end{aligned}
$$

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\rightleftarrows} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\leftarrow} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

$$
\mathrm{dV}^{\star}=\mathrm{dV}^{\star \star a m}+\mathrm{d}^{\star} \mathrm{V}^{\star u n f}
$$

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\leftarrow} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)
$d V^{\star}=d V^{\star f a m}+d V^{\star u n f}$
$d V *$ fam is independent of the type of auxiliary partons has the correct regular on-shell limit all $1 / \epsilon^{2}, 1 / \epsilon$ poles look as if the space-like gluon were on-shell

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\gtrless} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)
$\mathrm{dV}^{\star}=\mathrm{d} \mathbf{V}^{\star f a m}+\mathrm{d} \mathbf{V}^{\star u n f}$
$d V \star$ fam is independent of the type of auxiliary partons has the correct regular on-shell limit all $1 / \epsilon^{2}, 1 / \epsilon$ poles look as if the space-like gluon were on-shell

For example, apply Λ limit on $A^{\text {loop }}\left(1_{\bar{Q}}, 6_{Q}, 2_{\bar{q}}, 3_{q}, 4_{e^{+}}, 5_{e^{-}}\right)$(Bern, Dixon, Kosower 1998) to get $A^{\operatorname{loop}}\left(1^{\star}, 2_{\bar{q}}, 3_{q}, 4_{e^{+}}, 5_{e^{-}}\right)$. The pole-part is proportional to the tree-level amplitude with factor

$$
\left\{-\frac{1}{\epsilon^{2}}\left[\left(\frac{\mu^{2}}{-s_{p 3}}\right)^{\epsilon}+\left(\frac{\mu^{2}}{-s_{p 2}}\right)^{\epsilon}\right]-\frac{3}{2 \epsilon}\right\} A^{\text {tree }}\left(1^{\star}, 2_{\bar{q}}, 3_{q}, 4_{e^{+}}, 5_{e^{-}}\right),
$$

with $s_{p 2}$ and $s_{p 3}$ involving only the longitudinal part of $k_{1}=p+k_{\perp}$.

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\gtrless} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)
$d \mathbf{V}^{\star}=\mathrm{dV}^{\star \text { tam }}+\mathrm{d} \mathbf{V}^{\star u n f}$
$d V \star$ ${ }^{2 m}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1 / \epsilon^{2}, 1 / \epsilon$ poles look as if the space-like gluon were on-shell

$$
d V^{* \text { unf }}=a_{\epsilon} \mathrm{N}_{\mathrm{c}} \operatorname{Re}\left(\mathcal{V}_{\text {aux }}\right) \mathrm{dB} \mathrm{~B}^{\star} \quad \text { is proportional to Born result } \quad \mathrm{a}_{\epsilon}=\frac{\alpha_{s}(4 \pi)^{e}}{2 \pi \Gamma(1-\epsilon)}
$$

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\longleftarrow} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)
$d V^{\star}=d V^{\star f a m}+d V^{\star u n f}$
$\mathrm{dV} \mathrm{V}^{\star f a m}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1 / \epsilon^{2}, 1 / \epsilon$ poles look as if the space-like gluon were on-shell

$$
d V^{\star u n f}=a_{\epsilon} N_{c} \operatorname{Re}\left(\mathcal{V}_{\mathrm{aux}}\right) d B^{\star} \quad \text { is proportional to Born result } \quad a_{\epsilon}=\frac{\alpha_{s}(4 \pi)^{\varepsilon}}{2 \pi \Gamma(1-\epsilon)}
$$

$$
\nu_{\mathrm{aux}}=\left(\frac{\mu^{2}}{\left|\mathrm{k}_{\perp}\right|^{2}}\right)^{\epsilon}\left[\frac{2}{\epsilon} \ln \frac{\Lambda}{x}-\mathrm{i} \pi+\bar{\nu}_{\mathrm{aux}}\right]+\mathcal{O}(\epsilon)+\mathcal{O}\left(\Lambda^{-1}\right)
$$

Auxiliary partons at one loop

Λ effectively works as a regulator for linear denominators

$$
\frac{1}{\mathrm{P} \cdot \mathrm{~K}} \stackrel{\wedge \rightarrow \infty}{\longleftarrow} \frac{2 \Lambda}{(\Lambda \mathrm{P}+\mathrm{K})^{2}} \Longrightarrow \ln \Lambda \text { in loop integrals }
$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.
Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)
$d V^{*}=d V^{* f a m}+d V^{* u n f}$
$d V *$ fam is independent of the type of auxiliary partons has the correct regular on-shell limit all $1 / \epsilon^{2}, 1 / \epsilon$ poles look as if the space-like gluon were on-shell

$$
d V^{* \text { unf }}=a_{\epsilon} N_{c} \operatorname{Re}\left(V_{\text {aux }}\right) d B^{\star} \quad \text { is proportional to Born result } \quad a_{\varepsilon}=\frac{\alpha_{s}(4 \pi)^{e}}{2 \pi \Gamma(1-\varepsilon)}
$$

$$
\begin{aligned}
\nu_{\text {aux }}= & \left(\frac{\mu^{2}}{\left|\mathrm{k}_{\perp}\right|^{2}}\right)^{\epsilon}\left[\frac{2}{\epsilon} \ln \frac{\Lambda}{x}-i \pi+\bar{\nu}_{\text {aux }}\right]+\mathcal{O}(\epsilon)+\mathcal{O}\left(\Lambda^{-1}\right) \\
\bar{V}_{\text {aux-q }} & =\frac{1}{\epsilon} \frac{13}{6}+\frac{\pi^{2}}{3}+\frac{80}{18}+\frac{1}{\mathrm{~N}_{c}^{2}}\left[\frac{1}{\epsilon^{2}}+\frac{3}{2} \frac{1}{\epsilon}+4\right]-\frac{n_{f}}{\mathrm{~N}_{\mathrm{c}}}\left[\frac{2}{3} \frac{1}{\epsilon}+\frac{10}{9}\right] \\
\bar{V}_{\text {aux-g }} & =-\frac{1}{\epsilon^{2}}+\frac{\pi^{2}}{3}
\end{aligned}
$$

Auxiliary partons at one loop

More-or-less proven using known universal collinear limits of one-loop amplitudes (Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large- Λ, the small- $\left|k_{\perp}\right|$ corresponds to a collinear limit of auxiliary partons. While the large- Λ and small- $\left|k_{\perp}\right|$ limit commute at tree-level, they do not at one loop.
$d V^{\star}=d V^{\star f a m}+d V^{\star u n f}$
$\mathrm{d} V \star \mathrm{fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1 / \epsilon^{2}, 1 / \epsilon$ poles look as if the space-like gluon were on-shell

$$
d V^{\star u n f}=a_{\epsilon} N_{c} \operatorname{Re}\left(\mathcal{V}_{\text {aux }}\right) d B^{\star} \quad \text { is proportional to Born result } \quad a_{\epsilon}=\frac{\alpha_{s}(4 \pi)^{\epsilon}}{2 \pi \Gamma(1-\epsilon)}
$$

$$
\nu_{\mathrm{aux}}=\left(\frac{\mu^{2}}{\left|\mathrm{k}_{\perp}\right|^{2}}\right)^{\epsilon}\left[\frac{2}{\epsilon} \ln \frac{\Lambda}{x}-i \pi+\overline{\mathcal{V}}_{\mathrm{aux}}\right]+\mathcal{O}(\epsilon)+\mathcal{O}\left(\Lambda^{-1}\right)
$$

$$
\overline{\mathcal{V}}_{\mathrm{aux}-\mathrm{q}}=\frac{1}{\epsilon} \frac{13}{6}+\frac{\pi^{2}}{3}+\frac{80}{18}+\frac{1}{\mathrm{~N}_{\mathrm{c}}^{2}}\left[\frac{1}{\epsilon^{2}}+\frac{3}{2} \frac{1}{\epsilon}+4\right]-\frac{\mathrm{n}_{f}}{\mathrm{~N}_{\mathrm{c}}}\left[\frac{2}{3} \frac{1}{\epsilon}+\frac{10}{9}\right]
$$

$$
\bar{\nu}_{\mathrm{aux}-\mathrm{g}}=-\frac{1}{\epsilon^{2}}+\frac{\pi^{2}}{3}
$$

Real radiation with auxiliary partons

Real radiation with auxiliary partons

Real radiation with auxiliary parton

Real radiation with auxiliary partons

The differential phase space and the matrix element factorize for the unfamiliar case, where the radiative gluon participates in the consumption of \wedge.

Real radiation with auxiliary partons

The differential phase space and the matrix element factorize for the unfamiliar case, where the radiative gluon participates in the consumption of Λ.

$$
\begin{aligned}
& \frac{1}{C_{\text {aux }}}\left|\overline{\mathcal{M}}^{\text {aux }}\right|^{2}\left((\Lambda+x) P,{k_{\bar{x}}} ; x_{r} \Lambda P+r_{\perp}+\bar{x}_{r} \bar{P}, x_{q} \Lambda P+q_{\perp}+\bar{x}_{q} \bar{P},\left\{p_{i} j_{i=1}^{n}\right)\right. \\
& \xrightarrow{\Lambda \rightarrow \infty} Q_{\text {aux }}\left(x_{q}, q_{\perp}, x_{r}, r_{\perp}\right) \frac{\Lambda^{2}\left|\overline{\mathcal{M}}^{\star}\right|^{2}\left(x P-q_{\perp}-r_{\perp}, k_{\bar{\chi}} ;\left\{p_{i}\right\}_{i=1}^{n}\right)}{x^{2}\left|q_{\perp}+r_{\perp}\right|^{2}} \\
& \mathcal{Q}_{\text {aux }}\left(x_{q}, q_{\perp}, x_{r}, r_{\perp}\right)=x_{q} x_{r} \mathcal{P}_{\text {aux }}\left(x_{q}, x_{r}\right)\left|q_{\perp}+r_{\perp}\right|^{2} \\
& \times\left[\frac{c_{\bar{q}}}{\left|\boldsymbol{q}_{\perp}\right| 2\left|r_{\perp}\right|^{2}}+\frac{1}{x_{r}\left|q_{\perp}\right|^{2}+x_{q}\left|r_{\perp}\right|^{2}-x_{\mathrm{q}} x_{r}\left|\mathbf{q}_{\perp}+r_{\perp}\right|^{2}}\left(\frac{c_{\mathrm{r}} x_{\mathrm{r}}^{2}}{\left|r_{\perp}\right|^{2}}+\frac{\mathbf{c}_{\mathrm{q}} x_{\mathrm{q}}^{2}}{\left|\mathbf{q}_{\perp}\right|^{2}}\right)\right]
\end{aligned}
$$

Can be integrated analytically and is proportional to the Born result. Like the unfamiliar virtual, it is proportional to $\left(\mu^{2} /\left|k_{\perp}\right|^{2}\right)^{\varepsilon}$, produces $\ln \Lambda$, and depends on the auxiliary parton types.

Real radiation with auxiliary partons

The differential phase space and the matrix element factorize for the unfamiliar case, where the radiative gluon participates in the consumption of Λ.

Precise separation of familiar and unfamiliar phase space via the demand that in the latter case, the radiation must not become collinear to P in the terms with $1 / x_{r}$

$$
\frac{\left|r_{\perp}\right|}{\nu \sqrt{\Lambda}}<x_{\mathrm{r}}<\frac{\left|\mathrm{r}_{\perp}\right|}{\left|\mathrm{r}_{\perp}+\mathrm{k}_{\perp}\right|} \quad \text { for terms with } 1 / \mathrm{x}_{\mathrm{r}}
$$

Ciafaloni, Colferai 1999

Can be integrated analytically and is proportional to the Born result. Like the unfamiliar virtual, it is proportional to $\left(\mu^{2} /\left|k_{\perp}\right|^{2}\right)^{\epsilon}$, produces $\ln \Lambda$, and depends on the auxiliary parton types.

Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$
\mathrm{dR}^{\star u n f}+\mathrm{dV}^{\star u n f}=\Delta_{u n f} \mathrm{~dB}^{\star}
$$

where

$$
\Delta_{\text {unf }}=\frac{a_{\epsilon} N_{c}}{\epsilon}\left(\frac{\mu^{2}}{\left|k_{\perp}\right|^{2}}\right)^{\epsilon}\left[\mathcal{J}_{\text {aux }}+\mathcal{J}_{\text {univ }}+\mathcal{J}_{\text {univ }}-2 \ln \frac{2 P \cdot \bar{P} \chi}{\left|k_{\perp}\right|^{2}}\right]
$$

with

$$
\mathcal{J}_{\text {univ }}=\frac{11}{6}-\frac{\mathrm{n}_{\mathrm{f}}}{3 \mathrm{~N}_{\mathrm{c}}}-\frac{\mathcal{K}}{\mathrm{N}_{\mathrm{c}}}(-\epsilon) \quad \text { writing } \quad \mathcal{K}=\mathrm{N}_{\mathrm{c}}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5 \mathrm{n}_{\mathrm{f}}}{9},
$$

and

$$
\mathcal{J}_{\text {aux }-q}=\frac{3}{2}-\frac{1}{2}(-\epsilon) \quad, \quad J_{\text {aux-g }}=\frac{11}{6}+\frac{n_{f}}{3 N_{c}^{3}}+\frac{n_{f}}{6 N_{c}^{3}}(-\epsilon) .
$$

Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$
\mathrm{dR}^{\star u n f}+\mathrm{dV}^{\star} \mathrm{unf}=\Delta_{\text {unf }} \mathrm{dB}^{\star},
$$

where

$$
\Delta_{\text {unf }}=\frac{a_{\epsilon} N_{c}}{\epsilon}\left(\frac{\mu^{2}}{\left|k_{\perp}\right|^{2}}\right)^{\epsilon}\left[\mathcal{J}_{\text {aux }}+\mathcal{J}_{\text {univ }}+\mathcal{J}_{\text {univ }}-2 \ln \frac{2 P \cdot \bar{P} \chi}{\left|k_{\perp}\right|^{2}}\right],
$$

with

$$
\mathcal{J}_{\text {univ }}=\frac{11}{6}-\frac{n_{f}}{3 \mathrm{~N}_{\mathrm{c}}}-\frac{\mathcal{K}}{\mathrm{N}_{\mathrm{c}}}(-\epsilon) \quad \text { writing } \quad \mathcal{K}=\mathrm{N}_{\mathrm{c}}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5 \mathrm{n}_{\mathrm{f}}}{9},
$$

and

$$
\mathcal{J}_{\text {aux }-q}=\frac{3}{2}-\frac{1}{2}(-\epsilon) \quad, \quad J_{\text {aux-g }}=\frac{11}{6}+\frac{n_{f}}{3 N_{c}^{3}}+\frac{n_{f}}{6 N_{c}^{3}}(-\epsilon) .
$$

- No $\ln \wedge$ present. $\mathcal{O}\left(\alpha_{s}\right)$ contribution to the space-like gluon Regge trajectory.

Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$
\mathrm{dR}^{\star u n f}+\mathrm{dV}^{\star} \mathrm{unf}=\Delta_{\text {unf }} \mathrm{dB}^{\star},
$$

where

$$
\Delta_{\text {unf }}=\frac{a_{\epsilon} N_{c}}{\epsilon}\left(\frac{\mu^{2}}{\left|k_{\perp}\right|^{2}}\right)^{\epsilon}\left[\mathcal{J}_{\text {aux }}+\mathcal{J}_{\text {univ }}+\mathcal{J}_{\text {univ }}-2 \ln \frac{2 \mathrm{P} \cdot \overline{\mathrm{P}} \chi}{\left|\mathrm{k}_{\perp}\right|^{2}}\right],
$$

with

$$
\mathcal{J}_{\text {univ }}=\frac{11}{6}-\frac{n_{f}}{3 \mathrm{~N}_{\mathrm{c}}}-\frac{\mathcal{K}}{\mathrm{N}_{\mathrm{c}}}(-\epsilon) \quad \text { writing } \quad \mathcal{K}=\mathrm{N}_{\mathrm{c}}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5 \mathrm{n}_{\mathrm{f}}}{9},
$$

and

$$
\mathcal{J}_{\text {aux }-q}=\frac{3}{2}-\frac{1}{2}(-\epsilon) \quad, \quad J_{\text {aux-g }}=\frac{11}{6}+\frac{n_{f}}{3 N_{c}^{3}}+\frac{n_{f}}{6 N_{c}^{3}}(-\epsilon) .
$$

- No $\ln \wedge$ present. $\mathcal{O}\left(\alpha_{s}\right)$ contribution to the space-like gluon Regge trajectory.
- Target impact factor corrections as in Ciafaloni, Colferai 1999.

Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$
\mathrm{dR}^{\star u n f}+\mathrm{dV}^{\star} \mathrm{unf}=\Delta_{\text {unf }} \mathrm{dB}^{\star}
$$

where

$$
\Delta_{\text {unf }}=\frac{a_{\epsilon} N_{c}}{\epsilon}\left(\frac{\mu^{2}}{\left|k_{\perp}\right|^{2}}\right)^{\epsilon}\left[\mathcal{J}_{\text {aux }}+\mathcal{J}_{\text {univ }}+\mathcal{J}_{\text {univ }}-2 \ln \frac{2 P \cdot \bar{P} \chi}{\left|k_{\perp}\right|^{2}}\right],
$$

with

$$
\mathcal{J}_{\text {univ }}=\frac{11}{6}-\frac{n_{f}}{3 \mathrm{~N}_{\mathrm{c}}}-\frac{\mathcal{K}}{\mathrm{N}_{\mathrm{c}}}(-\epsilon) \quad \text { writing } \quad \mathcal{K}=\mathrm{N}_{\mathrm{c}}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5 \mathrm{n}_{\mathrm{f}}}{9},
$$

and

$$
\mathcal{J}_{\text {aux }-q}=\frac{3}{2}-\frac{1}{2}(-\epsilon) \quad, \quad J_{\text {aux-g }}=\frac{11}{6}+\frac{n_{f}}{3 N_{c}^{3}}+\frac{n_{f}}{6 N_{c}^{3}}(-\epsilon) .
$$

- No $\ln \wedge$ present. $\mathcal{O}\left(\alpha_{s}\right)$ contribution to the space-like gluon Regge trajectory.
- Target impact factor corrections as in Ciafaloni, Colferai 1999.
- Collinear divergence, cancels against familiar virtual divergence.

$$
\begin{aligned}
& d \sigma^{N L O}=\int d x d^{2} k_{\perp} d \bar{x}\left\{F\left(x, k_{\perp}\right) f(\bar{x})\left[d V^{\star}\left(x, k_{\perp}, \bar{x}\right)+d R^{\star}\left(x, k_{\perp}, \bar{x}\right)\right]_{\text {cancelling }}\right. \\
& +\left[F^{\text {NLO }}\left(x, k_{\perp}\right)+F\left(x, k_{\perp}\right) \Delta_{\text {unf }}\left(x, k_{\perp}\right)+\Delta_{\text {coll }}^{\star}\left(x, k_{\perp}\right)\right] f(\bar{x}) \mathrm{dB}^{\star}\left(x, k_{\perp}, \bar{x}\right) \\
& \left.+\left[\mathrm{f}^{\mathrm{NLO}}(\bar{x})+\Delta_{\text {coII }}(\bar{x})\right] F\left(x, k_{\perp}\right) \mathrm{dB}^{\star}\left(x, \mathrm{k}_{\perp}, \overline{\mathrm{x}}\right)\right\} \\
& \Delta_{\text {coll }}(\bar{x})=-\frac{a_{\epsilon}}{\epsilon} \int_{\bar{x}}^{1} \mathrm{~d} z\left[\mathcal{P}_{\bar{\chi}}^{\text {reg }}(z)+\gamma_{\bar{\chi}} \delta(1-z)\right] \frac{1}{z} f\left(\frac{\bar{x}}{z}\right) \\
& \Delta_{\text {coll }}^{\star}\left(x, k_{\perp}\right)=-\frac{a_{\epsilon}}{\epsilon} \int_{x}^{1} d z\left[\frac{2 N_{c}}{[1-z]_{+}}+\frac{2 N_{c}}{z}+\gamma_{g} \delta(1-z)\right] \frac{1}{z} F\left(\frac{x}{z}, k_{\perp}\right) \\
& \Delta_{\text {unf }}\left(x, k_{\perp}\right)=\frac{a_{\epsilon} N_{c}}{\epsilon}\left(\frac{\mu^{2}}{\left|k_{\perp}\right|^{2}}\right)^{\epsilon}\left[\text { impactFactCorr }+\mathcal{J}_{\text {univ }}-2 \ln \frac{2 P \cdot \bar{P} x}{\left|k_{\perp}\right|^{2}}\right] \\
& \mathrm{f}^{\mathrm{NLO}}(\overline{\mathrm{x}})+\Delta_{\text {coll }}(\overline{\mathrm{x}})=\text { finite } \\
& F^{\mathrm{NLO}}\left(x, k_{\perp}\right)+F\left(x, k_{\perp}\right) \Delta_{\text {unf }}\left(x, k_{\perp}\right)+\Delta_{\text {coll }}^{\star}\left(x, k_{\perp}\right) \stackrel{?}{=} \text { finite }
\end{aligned}
$$

Backup

On-shell limit

Space-like (LO) matrix elements have desired on-shell limit only after azimuthal integration:

$$
\left|\mathcal{N}\left(k_{\perp}\right)\right|^{2} \xrightarrow{\left|k_{\perp}\right| \rightarrow 0} \mathcal{N}_{\mu}^{*}(0) \frac{k_{\perp}^{\mu} k_{\perp}^{v}}{\left|k_{\perp}\right|^{2}} \mathcal{M}_{\nu}(0) \xrightarrow{\int \mathrm{d} \varphi_{\perp}}|\mathcal{M}(0)|^{2}
$$

As a consequence, point-wise cancellation of singularities fails at $\left|k_{\perp}\right|=0$:

$$
\left|\mathcal{M}\left(k_{\perp}, r_{\perp}\right)\right|^{2} \xrightarrow{\left|k_{\perp}\right| \rightarrow 0} \mathcal{M}_{\mu}^{*}\left(0, r_{\perp}\right) \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{\left|k_{\perp}\right|^{2}} \mathcal{M}_{\nu}\left(0, r_{\perp}\right) \xrightarrow{\left|r_{\perp}\right| \rightarrow 0} \text { Singular } \times \mathcal{M}_{\mu}^{*}(0) \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{\left|k_{\perp}\right|^{2}} \mathcal{M}_{\nu}(0)
$$

Singular $\times\left|\mathcal{M}\left(k_{\perp}-r_{\perp}\right)\right|^{2} \xrightarrow{\left|k_{\perp}\right| \rightarrow 0} S_{\text {ingular }} \times\left|\mathcal{M}\left(-r_{\perp}\right)\right|^{2} \xrightarrow{\left|r_{\perp}\right| \rightarrow 0}$ Singular $\times \mathcal{M}_{\mu}^{*}(0) \frac{r_{\perp}^{\mu} r_{\perp}^{v}}{\left|r_{\perp}\right|^{2}} \mathcal{M}_{\nu}(0)$
Fortunately, the measure of the problematic phase space vanishes

ITMD* factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.
However, the ITMD formalism does not account for linearly polarized gluons in unpolarized target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded to be present from 3-jet formulae in CGC (Iancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant offshell hard scattering amplitudes

$$
\sum_{i, j} \mathcal{M}_{i}^{*}\left(\frac{k_{T}^{(i)} k_{T}^{(j)}}{2\left|\vec{k}_{T}\right|^{2}}(\mathcal{F}+\mathcal{H})+\frac{q_{T}^{(i)} q_{T}^{(j)}}{2\left|\vec{q}_{T}\right|^{2}}(\mathcal{F}-\mathcal{H})\right) \mathcal{M}_{j} \quad, \quad \vec{q}_{T} \cdot \vec{k}_{T}=0
$$

$\sum_{i} \mathcal{N}_{i} k_{T}^{(i)}$ is gauge invariant while $\sum_{i} \mathcal{M}_{i} \mathfrak{q}_{T}^{(i)}$ is not. For dijets, it happens that $\mathcal{F}=\mathcal{H}$.
In the following only the manifestly gauge-invariant contribution is included, hence the designation ITMD*.

ITMD* factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.
How
וpolarized
Using the axial gauge with gluon propagator
Such appea for 3to be

This ${ }^{\prime}$ shell I

$$
\mathcal{M}=k_{T}^{\mu} \mathcal{M}_{\mu}=-\sum_{i=1}^{2} k_{T}^{(i)} \mathcal{M}_{i}
$$

where \mathcal{M}_{μ} is obtained from the usual Feynman graphs indeed with one gluon simply left "off-shell". The role of "polarization vector" is played by k_{T}^{μ}.
$\sum_{i} \mathcal{M}$
the amplitude \mathcal{M} for a process involving an off-shell gluon with momentum $x P^{\mu}+k_{T}^{\mu}$ can be written as

$$
\frac{-i}{K^{2}}\left(g^{\mu \nu}-\frac{P^{\mu} K^{\nu}+K^{\mu} P^{\nu}}{P \cdot K}\right) \quad P^{\mu} \text { hadron momentum }
$$

but does tion limit zoncluded
五

