k_T-factorization at NLO

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

presented at MC4EIC: workshop on recent theoretical and practical advances and experimental needs in Monte Carlo Event Generators for the Electron-Ion Collider 07-06-2024, IPPP Durham, United Kingdom

This research was supported by grant No. 2019/35/B/ST2/03531 of the Polish National Science Centre.

QCD evolution, dilute vs. dense, forward jets

A dilute system carries a few high-x partons contributing to the hard scattering.

A dense system carries many low-x partons.

At high density, gluons are imagined to undergo recombination, and to saturate.

This is modeled with non-linear evolution equations, involving explicit non-vanishing $k_{\rm T}$.

Saturation implies the turnover of the gluon density, stopping it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which partons from the nucleus have small x.

Color Glass Condensate (CGC)

The CGC is an effective field theory for high energy QCD.

McLerran, Venugopalan 1994

introduction from Morreale, Salazar 2021

Partons carrying large hadron momentum fraction x are treated as static color sources ρ .

Their color charge distribution is non-perturbative and is dictated by a gauge invariant weight functional $W_{x_0}[\rho]$. The sources generate a current $J^{\mu,a}$.

The partons carrying small x are treated as a dynamical classical field $A^{\mu,a}$.

Sources and fields are related by the Yang-Mills equations $[D_{\mu}, F_{\mu\nu}] = J_{\nu}$.

The expectation value $\langle \mathfrak{O} \rangle_{\chi_0}$ of an observable \mathfrak{O} is calculated as the path integral $\mathfrak{O}[\rho]$ in the presence of sources from $W_{\chi_0}[\rho]$, averaged over all possible configurations ρ .

The interaction of a highly energetic color charged particle with the classical field A in the eikonal approximation is encoded in the light-like Wilson lines

$$U(x_{T}) = \mathsf{Pexp}\left\{ \mathsf{ig} \int_{-\infty}^{\infty} dx^{+} A^{-,\mathfrak{a}}(x^{+}, x_{T}) t^{\mathfrak{a}} \right\} \qquad \underbrace{j \longrightarrow i}_{n=0} = \sum_{n=0}^{\infty} \underbrace{j \longrightarrow i}_{(gA_{cl}^{+})^{n}} \underbrace{j \longrightarrow i}_{(gA_{cl$$

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner Evolution in x of $W_x[\rho]$ implies an infinite hierarchy (known as the B-JIMWLK hierarchy) of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Color Glass Condensate (CGC)

The CGC is an effective field theory for high energy QCD.

introduction from Morreale, Salazar 2021

Partons carrying large hadron momentum fraction \boldsymbol{x} are treated as static color sources $\boldsymbol{\rho}.$

Their color charge distribution is non-perturbative and is dictated by a gauge invariant weight functional $W_{x_0}[\rho]$. The sources generate a current $J^{\mu,a}$.

Cross section calculations involve particle wave functions and Wilson line correlators.

erkonal approximation is encoded in the light-like virison lines

$$U(\mathbf{x}_{\mathsf{T}}) = \mathsf{Pexp}\left\{\mathsf{ig}\int_{-\infty}^{\infty} d\mathbf{x}^{+}A^{-,\mathfrak{a}}(\mathbf{x}^{+},\mathbf{x}_{\mathsf{T}})\mathbf{t}^{\mathfrak{a}}\right\} \qquad \underbrace{\overset{j}{=}}_{n=0}^{\infty} \underbrace{\overset{j}{=}}_{n=0}^{i} \underbrace{\overset{j}{=}}_{n$$

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner Evolution in x of $W_x[\rho]$ implies an infinite hierarchy (known as the B-JIMWLK hierarchy) of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

ITMD Factorization

For forward dijet production in dilute-dense hadronic collisions

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

$$d\sigma_{AB\to X} = \int dk_T^2 \int dx_A \sum_i \int dx_B \sum_b \varphi_{gb}^{(i)}(x_A, k_T, \mu) f_{b/B}(x_B, \mu) d\hat{\sigma}_{gb\to X}^{(i)}(x_A, x_B, \mu)$$

For $x_A \ll 1$ and $P_T \gg k_T \sim Q_s$ (jets almost back-to-back). TMD gluon distributions $\Phi_{gb}^{(i)}(x_A, k_T, \mu)$ satisfy non-linear evolution equations. Partonic cross section $d\hat{\sigma}_{gb}^{(i)}$ is on-shell, but depends on color-structure *i*.

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

$$d\sigma_{AB\to X} = \int dk_T^2 \int dx_A \sum_i \int dx_B \sum_b \varphi_{gb}^{(i)}(x_A, k_T, \mu) f_{b/B}(x_B, \mu) d\hat{\sigma}_{gb\to X}^{(i)}(x_A, x_B, \mathbf{k}_T, \mu)$$

Originally a model interpolating between High Energy Factorization and Generalized TMD factorization: $P_T \gtrsim k_T \gtrsim Q_s$. Partonic cross section $d\hat{\sigma}_{ab}^{(i)}$ is off-shell and depends on color-structure i.

ITMD formalism is obtained from the CGC formalism, by including so-called kinematic twist corrections (Antinoluk, Boussarie, Kotko 2019).

Definition of gluon TMDs

similar diagrams with 2, 3, . . . gluon exchanges

Resummation of gluon exchanges leads to Wilson line $U_{\gamma} = \operatorname{Pexp}\left\{-\operatorname{ig}\int_{\gamma} dz \cdot A(z)\right\}$ acting as a gauge link for the gauge invariant definition of a TMD

ITMD* factorization for more than 2 jets

Bury, Kotko, Kutak 2018

* only manifestly gauge invariant contribution included

Schematic hybrid (non-ITMD) factorization formula

$$d\sigma = \sum_{y=g,u,d,\dots} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^*y \to n} \ \frac{1}{\mathsf{flux}_{gy}} \ \mathcal{F}_g(x_1,k_T,\mu) \ f_y(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^*y \to n}^{(\mathsf{color})} \right|^2 dx_1 dx_2 \ d\Phi_{g^*y \to n} \ \frac{1}{\mathsf{flux}_{gy}} \ \mathcal{F}_g(x_1,k_T,\mu) \ f_y(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^*y \to n}^{(\mathsf{color})} \right|^2 dx_1 dx_2 \ \frac{1}{\mathsf{flux}_{gy}} \ \mathcal{F}_g(x_1,k_T,\mu) \ f_y(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^*y \to n}^{(\mathsf{color})} \right|^2 dx_1 dx_2 \ \frac{1}{\mathsf{flux}_{gy}} \ \mathcal{F}_g(x_1,k_T,\mu) \ f_y(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^*y \to n}^{(\mathsf{color})} \right|^2 dx_2 \ \frac{1}{\mathsf{flux}_{gy}} \ \mathcal{H}_g(x_1,\mu) \ \mathcal{H}_g(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^*y \to n}^{(\mathsf{color})} \right|^2 dx_2 \ \mathcal{H}_g(x_1,\mu) \ \mathcal{H}_g(x_2,\mu) \ \mathcal{H}_g(x$$

ITMD* formula: replace

$$\mathcal{F}_g \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^2 = \mathcal{F}_g \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^* \, \mathcal{C}_{\sigma\tau} \, \mathcal{A}_{\tau} \hspace{1cm}, \hspace{1cm} \mathcal{C}_{\sigma\tau} = N_c^{\lambda(\sigma,\tau)}$$

with "TMD-valued color matrix"

$$(N_{c}^{2}-1)\sum_{\sigma\in S_{n+2}}\sum_{\tau\in S_{n+2}}\mathcal{A}_{\sigma}^{*}\,\tilde{\mathbb{C}}_{\sigma\tau}(x,|k_{T}|)\,\mathcal{A}_{\tau} \quad,\quad \tilde{\mathbb{C}}_{\sigma\tau}(x,|k_{T}|)=N_{c}^{\bar{\lambda}(\sigma,\tau)}\tilde{\mathcal{F}}_{\sigma\tau}(x,|k_{T}|)$$

where each function $\tilde{\mathfrak{F}}_{\sigma\tau}$ is one of 10 functions

ITMD^{*} factorization for more than 2 jets

$$\begin{split} \mathcal{F}_{qg}^{(1)}\left(x,k_{T}\right) &= \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \quad,\quad \left\langle \cdots \right\rangle = 2\int \frac{d^{4}\xi\,\delta(\xi_{+})}{(2\pi)^{3}P^{+}}\,e^{ik\cdot\xi}\left\langle P\right|\cdots\left|P\right\rangle \\ &\qquad \mathcal{F}_{qg}^{(2)}\left(x,k_{T}\right) = \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\Box]}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ &\qquad \mathcal{F}_{qg}^{(3)}\left(x,k_{T}\right) = \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(1)}\left(x,k_{T}\right) = \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\Box]\dagger}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(2)}\left(x,k_{T}\right) = \frac{1}{N_{c}}\left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(3)}\left(x,k_{T}\right) = \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(4)}\left(x,k_{T}\right) = \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(5)}\left(x,k_{T}\right) = \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\Box]\dagger}\hat{T}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(6)}\left(x,k_{T}\right) = \left\langle \mathrm{Tr}\left[\hat{F}^{i-}\left(\xi\right)\mathcal{U}^{[\Box]\dagger}\hat{T}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(6)}\left(x,k_{T}\right) = \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\Box]}\right]}{N_{c}}\frac{\mathrm{Tr}\left[\hat{U}^{[\Box]\dagger}\hat{T}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ &\qquad \mathcal{F}_{gg}^{(7)}\left(x,k_{T}\right) = \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\Box]}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\Box]\dagger}\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \end{split}$$

Start with dipole distribution $\mathcal{F}_{qg}^{(1)}(x,k_T) = \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle$ evolved via the BK equation formulated in momentum space supplemented with subleading corrections and fitted to F₂ data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, $\mathcal{F}_{qg}^{(2)}, \mathcal{F}_{gg}^{(1)}, \mathcal{F}_{gg}^{(2)}, \mathcal{F}_{gg}^{(6)}$, in the mean-field approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in $1/N_{\rm c}.$ In this approximation, the same distributions suffice for trijets.

For DIS one only needs $\mathcal{F}_{gg}^{(3)}$

$$\mathcal{F}^{(3)}_{gg}(x,k_T) = \frac{\pi\alpha_s}{N_c k_T^2 S_{\perp}} \int_{k_T^2} dr_T^2 \ln \frac{r_T^2}{k_T^2} \int \frac{d^2 q_T}{q_T^2} \, \mathcal{F}^{(1)}_{qg}(x,q_T) \, \mathcal{F}^{(1)}_{qg}(x,r_T-q_T)$$

where S_{\perp} is the target's transverse area.

KS gluon TMDs in proton

ITMD <u>gluons</u>

Dependence of $\mathcal{F}_{qg}^{(1)}$ on k_T below 1GeV approximated by power-like fall-off. For higher values of $|k_T|$ it is a solution to the BK equation.

TMDs decrease as $1/|k_T|$ for increasing $|k_T|$, except $\mathcal{F}_{gg}^{(2)}$, which decreases faster (even becomes negative, absolute value shown here).

Parton-level cross sections

Hadron-scattering process Y with partonic processes y contributing to multi-jet final state

 $d\sigma_{Y}(p_{1}, p_{2}; k_{3}, \dots, k_{2+n}) = \sum_{y \in Y} \int d^{4}k_{1} \mathcal{P}_{y_{1}}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{y_{2}}(k_{2}) d\hat{\sigma}_{y}(k_{1}, k_{2}; k_{3}, \dots, k_{2+n})$

Collinear factorization:

$$\mathcal{P}_{y_i}(k_i) = \int \frac{dx_i}{x_i} f_{y_i}(x_i, \mu) \,\delta^4(k_i - x_i p_i)$$

 $k_{T}\mbox{-dependent}$ factorization factorization:

$$\mathcal{P}_{y_i}(k_i) = \int \frac{d^2 \mathbf{k}_{iT}}{\pi} \int \frac{dx_i}{x_i} \, \mathcal{F}_{y_i}(x_i, |\mathbf{k}_{iT}|, \mu) \, \delta^4(k_i - x_i p_i - k_{iT})$$

Differential partonic cross section:

$$\begin{split} d\hat{\sigma}_{y}(k_{1},k_{2};k_{3},\ldots,k_{2+n}) &= d\Phi_{Y}(k_{1},k_{2};k_{3},\ldots,k_{2+n})\,\Theta_{Y}(k_{3},\ldots,k_{2+n}) \\ &\times \mathsf{flux}(k_{1},k_{2})\times \mathbb{S}_{y}\,|\mathcal{M}_{y}(k_{1},\ldots,k_{2+n})|^{2} \end{split}$$

Parton-level phase space:

$$d\Phi_{Y}(k_{1},k_{2};k_{3},\ldots,k_{2+n}) = \left(\prod_{i=3}^{n+2} d^{4}k_{i}\delta_{+}(k_{i}^{2}-m_{i}^{2})\right)\delta^{4}(k_{1}+k_{2}-k_{3}-\cdots-k_{n+2})$$

Parton-level cross sections

eh-scattering process Y with partonic processes y contributing to multi-jet final state $d\sigma_{Y}(p_{1}, p_{2}; k_{3}, ..., k_{3+n}) = \sum_{y_{1}} \int d^{4}k_{1} \mathcal{P}_{y_{1}}(k_{1})$ $d\hat{\sigma}_{u}(k_{1},k_{2};k_{3},\ldots,k_{3+n})$ $p_2 = k_2 -$ Collinear factorization: $\mathcal{P}_{y_i}(k_i) = \int \frac{dx_i}{x_i} f_{y_i}(x_i, \mu) \, \delta^4(k_i - x_i p_i)$ k_{T} -dependent factorization factorization: $\mathcal{P}_{y_i}(k_i) = \int \frac{d^2 \mathbf{k}_{iT}}{\pi} \int \frac{dx_i}{\mathbf{x}_i} \mathcal{F}_{y_i}(x_i, |\mathbf{k}_{iT}|, \mu) \, \delta^4(k_i - x_i p_i - k_{iT})$ k_1 Differential partonic cross section: $d\hat{\sigma}_{u}(k_{1},k_{2};k_{3},\ldots,k_{3+n}) = d\Phi_{Y}(k_{1},k_{2};k_{3},\ldots,k_{3+n})\Theta_{Y}(k_{3},\ldots,k_{3+n})$ $\times \operatorname{flux}(k_1, k_2) \times S_{\mathfrak{u}} |\mathcal{M}_{\mathfrak{u}}(k_1, \ldots, k_{3+\mathfrak{n}})|^2$

Parton-level phase space:

$$d\Phi_{Y}(k_{1},k_{2};k_{3},\ldots,k_{3+n}) = \left(\prod_{i=3}^{n+3} d^{4}k_{i}\delta_{+}(k_{i}^{2}-m_{i}^{2})\right)\delta^{4}(k_{1}+k_{2}-k_{3}-\cdots-k_{n+3})$$

https://bitbucket.org/hameren/katie

- parton level tree level event generator, like ALPGEN, HELAC, MADGRAPH, etc.
- arbitrary hadron-hadron or hadron-lepton processes within the standard model (including effective Higgs-gluon coupling) with several final-state particles.
- 0, 1, or 2 space-like initial states.
- produces (partially un)weighted event files, for example in the LHEF format.
- requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids, or with TMDlib (Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014).
- a calculation is steered by a single input file.
- employs an optimization stage in which the pre-samplers for all channels are optimized.
- during the generation stage several event files can be created in parallel.
- event files can be processed further by parton-shower program like CASCADE.
- (evaluation of) matrix elements separately available.

Hybrid k_T-factorization at NLO

one side space-like the other side on-shell

M. A. Nefedov, *Computing one-loop corrections to effective vertices with two scales in the EFT for Multi-Regge processes in QCD*, Nucl. Phys. B 946 (2019) 114715, [1902.11030].

M. A. Nefedov, *Towards stability of NLO corrections in High-Energy Factorization via Modified Multi-Regge Kinematics approximation*, JHEP 08 (2020) 055, [2003.02194].

M. Hentschinski, K. Kutak, and A. van Hameren, *Forward Higgs production within high energy factorization in the heavy quark limit at next-to-leading order accuracy*, Eur. Phys. J. C 81 (2021), no. 2 112, [2011.03193]. [Erratum: Eur.Phys.J.C 81, 262 (2021)].

F. G. Celiberto, M. Fucilla, D. Y. Ivanov, M. M. A. Mohammed, and A. Papa, *The next-to-leading order Higgs impact factor in the infinite top-mass limit*, JHEP 08 (2022) 092, [2205.02681].

F. Bergabo and J. Jalilian-Marian, *Single inclusive hadron production in DIS at small x: next to leading order corrections*, JHEP 01 (2023) 095, [2210.03208].

P. Taels, Forward production of a Drell-Yan pair and a jet at small x at next-to-leading order, JHEP 01 (2024) 005. [2308.02449].

T. Altinoluk, N. Armesto, A. Kovner, and M. Lublinsky, *Single inclusive particle production at next-to-leading order in proton-nucleus collisions at forward rapidities: Hybrid approach meets TMD factorization*, Phys. Rev. D 108 (2023), no. 7 074003, [2307.14922].

Collinear factorization in QCD at NLO

$$d\sigma^{LO} = \int dx d\bar{x} f_{\chi}(x) f_{\bar{\chi}}(\bar{x}) dB(x, \bar{x})$$
general: $K^{\mu} = x_{K}P^{\mu} + \bar{x}_{K}P^{\mu} + K^{\mu}$
one in-state: $k^{\mu}_{\chi} = xP^{\mu}$
other in-state: $k^{\mu}_{\bar{\chi}} = \bar{x}\bar{P}^{\mu}$

$$\begin{split} d\sigma^{\text{NLO}} &= \int dx d\bar{x} \Biggl\{ f_{\chi}(x) \, f_{\overline{\chi}}(\bar{x}) \Biggl[\frac{\alpha_{\text{s}}}{2\pi} \, dV(x,\bar{x}) + \frac{\alpha_{\text{s}}}{2\pi} \, dR(x,\bar{x}) \Biggr]_{\text{cancelling}} \\ &+ \Biggl[f_{\chi}(x) \, \frac{-\alpha_{\text{s}}}{2\pi\varepsilon} \int_{\bar{x}}^{1} d\bar{z} \, \mathcal{P}_{\overline{\chi}}(\bar{z}) \, \frac{1}{\bar{z}} f_{\overline{\chi}}\left(\frac{\bar{x}}{\bar{z}}\right) \\ &+ f_{\overline{\chi}}(\bar{x}) \, \frac{-\alpha_{\text{s}}}{2\pi\varepsilon} \int_{x}^{1} dz \, \mathcal{P}_{\chi}(z) \, \frac{1}{z} f_{\chi}\left(\frac{x}{z}\right) \Biggr] dB(x,\bar{x}) \\ &+ \Biggl[\frac{\alpha_{\text{s}}}{2\pi} \, f_{\chi}^{\text{NLO}}(x) \, f_{\overline{\chi}}(\bar{x}) + f_{\chi}(x) \, \frac{\alpha_{\text{s}}}{2\pi} \, f_{\overline{\chi}}^{\text{NLO}}(\bar{x}) \Biggr] dB(x,\bar{x}) \Biggr\} \end{split}$$

$$\begin{split} & f_{\chi}^{\mathsf{NLO}}(\mathbf{x}) - \frac{1}{\varepsilon} \int_{\mathbf{x}}^{1} \mathrm{d}z \, \mathcal{P}_{\chi}(z) \; \frac{1}{z} f_{\chi}\left(\frac{\mathbf{x}}{z}\right) = \mathsf{finite} \\ & f_{\overline{\chi}}^{\mathsf{NLO}}(\bar{\mathbf{x}}) - \frac{1}{\varepsilon} \int_{\bar{\mathbf{x}}}^{1} \mathrm{d}\bar{z} \, \mathcal{P}_{\chi}(\bar{z}) \; \frac{1}{\bar{z}} f_{\overline{\chi}}\left(\frac{\bar{\mathbf{x}}}{\bar{z}}\right) = \mathsf{finite} \end{split}$$

a subtraction method at NLO for real radiation in $k_{\text{T}}\mbox{-}\text{factorization}$

for a subtraction method at NLO for real radiation in k_T -factorization

The Born-level formula for the cross section in hybrid k_T -factorization:

$$\sigma_{\mathsf{B}} = \frac{1}{\mathcal{S}_{\mathsf{n}}} \int [dQ] \int d\Phi \left(Q; \{p\}_{\mathsf{n}} \right) \mathcal{L} \left(Q; \{p\}_{\mathsf{n}} \right) \left| \mathcal{M} \right|^{2} \left(Q; \{p\}_{\mathsf{n}} \right) J_{\mathsf{B}} \left(\{p\}_{\mathsf{n}} \right)$$

Initial-state variables:

Notation

$$\int [dQ] = \int_0^1 dx \int_0^1 d\bar{x} \int d^2 k_{\perp} , \quad Q^{\mu} = k_{\chi}^{\mu} + k_{\overline{\chi}}^{\mu} , \quad \begin{cases} k_{\chi}^{\mu} = x P^{\mu} + k_{\perp}^{\mu} & P^{\mu} = (E, 0, 0, E) \\ k_{\overline{\chi}}^{\mu} = \bar{x} \bar{P}^{\mu} & \bar{P}^{\mu} = (\bar{E}, 0, 0, -\bar{E}) \end{cases}$$

Differential phase space for the final-state momenta $\{p\}_n$

$$d\Phi(Q; \{p\}_n) = \left(\prod_{l=1}^n \frac{d^4 p_l}{(2\pi)^3} \delta_+(p_l^2 - m_l^2)\right) \frac{1}{(2\pi)^4} \,\delta\left(Q - \sum_{l=1}^n p_l\right)$$

The PDFs and flux factor:

$$\mathcal{L}(Q; \{p\}_n) = \frac{F_{\chi}(x, k_{\perp}, \mu_F(\{p\}_n)) f_{\overline{\chi}}(\overline{x}, \mu_F(\{p\}_n))}{8x\overline{x}E\overline{E}}$$

 $|\mathcal{M}|^2(Q; \{p\}_n)$ tree-level matrix element without symmetry factors and averageing factors, they are captured by S_n . Finally $J_B(\{p\}_n)$ denotes the jet function.

Singular limits at NLO: jets

The symbol J_B includes the decision if there are *enough* jets for Born-level. For the real radiation, the jet function J_R does not avoid all singularities of the tree-level squared matrix element anymore, but allows one pair of partons to become collinear,

one pair of partons to become collinear: $p_r || p_i \iff \vec{n}_r - \vec{n}_i \rightarrow \vec{0}$ one parton to become soft: $p_r \rightarrow \text{soft} \iff E_r \rightarrow 0$

The jet function behaves in those limits such that

$$\begin{split} &J_{\mathsf{R}}\big(\{p\}_{n+1}\big) \xrightarrow{p_{r} \to \mathsf{soft}} J_{\mathsf{B}}\big(\{p\}_{n}^{\not f}\big) \quad, \\ &J_{\mathsf{R}}\big(\{p\}_{n+1}\big) \xrightarrow{p_{r} \parallel p_{i}} J_{\mathsf{B}}\big(\{p\}_{n}^{\not f;i}\big) \quad, \\ &J_{\mathsf{R}}\big(\{p\}_{n+1}\big) \xrightarrow{p_{r} \parallel P, \bar{P}} J_{\mathsf{B}}\big(\{p\}_{n}^{\not f}\big) \quad, \end{split}$$

where

 $\{p\}_{n}^{f} \text{ is obtained from } \{p\}_{n+1} \text{ by removing momentum } p_{r}, \\ \{p\}_{n}^{f;i} \text{ is obtained by additionally replacing } p_{i} \text{ with } (1 + z_{ri})p_{i} \quad z_{ri} = E_{r}/E_{i}$ (We assume p_{r} and also p_{i} to be light-like.)

Singular limits at NLO: matrix elements

Matrix elements are constructed from external momenta that must satisfy mometum conservation. When $(Q; \{p\}_{n+1}^{f})$ satisfies momentum conservation, then $(Q; \{p\}_{n}^{f})$ and $(Q; \{p\}_{n}^{f;i})$ do not. We must introduce deformed momenta to even write down the limits:

$$\begin{split} & \left| \mathcal{M} \right|^2 \big(Q; \{p\}_{n+1} \big) \xrightarrow{p_r \to \mathsf{soft}} \hat{\mathcal{R}}^{\mathsf{soft}}(p_r) \otimes \hat{\mathcal{A}}^{\mathsf{soft}} \big(\tilde{Q}; \{\tilde{p}\}_n^f \big) \\ & \left| \mathcal{M} \right|^2 \big(Q; \{p\}_{n+1} \big) \xrightarrow{p_r || p_i} \hat{\mathcal{R}}^{\mathsf{F}, \mathsf{col}}_{ir}(p_r) \otimes \hat{\mathcal{A}}^{\mathsf{F}, \mathsf{col}}_{ir} \big(\tilde{Q}; \{\tilde{p}\}_n^{f; i} \big) \\ & \left| \mathcal{M} \right|^2 \big(Q; \{p\}_{n+1} \big) \xrightarrow{p_r || P} \hat{\mathcal{R}}^{\mathsf{I}, \mathsf{col}}_{\chi, r}(p_r) \otimes \hat{\mathcal{A}}^{\mathsf{I}, \mathsf{col}}_{\chi, r} \big(\tilde{Q} - x_r P; \{\tilde{p}\}_n^f \big) \end{split}$$

In k_T -factorization, we can choose to just deform the initial-state momenta:

$$\begin{split} & \left| \mathcal{M} \right|^2 \big(Q; \{p\}_{n+1} \big) \xrightarrow{p_r \to \mathsf{soft}} \hat{\mathcal{R}}^{\mathsf{soft}}(p_r) \otimes \hat{\mathcal{A}}^{\mathsf{soft}} \big(Q - p_r; \{p\}_n^{\not f} \big) \\ & \left| \mathcal{M} \right|^2 \big(Q; \{p\}_{n+1} \big) \xrightarrow{p_r \| p_i} \hat{\mathcal{R}}^{\mathsf{F}, \mathsf{col}}_{ir}(p_r) \otimes \hat{\mathcal{A}}^{\mathsf{F}, \mathsf{col}}_{ir} \big(Q - p_r + z_{ri} p_i; \{p\}_n^{\not f; i} \big) \\ & \left| \mathcal{M} \right|^2 \big(Q; \{p\}_{n+1} \big) \xrightarrow{p_r \| P/\bar{P}} \hat{\mathcal{R}}^{\mathsf{I}, \mathsf{col}}_{\chi/\bar{\chi}, r}(p_r) \otimes \hat{\mathcal{A}}^{\mathsf{I}, \mathsf{col}}_{\chi/\bar{\chi}, r} \big(Q - p_r; \{p\}_n^{\not f} \big) \end{split}$$

This opens the possibility to construct subtraction terms with only deformed initial-state moenta.

Subtraction method

Frixione, Kunszt, Signer 1996 Catani, Seymour 1997

Real radiation contribution within dimensional regularization

$$\sigma_{\mathsf{R}}(\varepsilon) = \frac{1}{\mathcal{S}_{n+1}} \int [dQ] \int d\Phi \left(\varepsilon; Q; \{p\}_{n+1}\right) \mathcal{L} \left(Q; \{p\}_{n+1}\right) \left|\mathcal{M}\right|^2 \left(Q; \{p\}_{n+1}\right) J_{\mathsf{R}} \left(\{p\}_{n+1}\right)$$

We want to split the real-radiation integral into a finite part and a divergent part that can be explicitly expressed as a Laurent expansion in ϵ within dimensional regularization

$$\sigma_{\mathsf{R}}(\varepsilon) = \sigma_{\mathsf{R}}^{\mathsf{div}}(\varepsilon) + \sigma_{\mathsf{R}}^{\mathsf{fin}} + \mathcal{O}(\varepsilon)$$

We define the finite "subtracted-real" integral as

$$\begin{split} \sigma_{\mathsf{R}}^{\mathsf{fin}} &= \frac{1}{\mathfrak{S}_{n+1}} \int [dQ] \int d\Phi \left(Q; \{p\}_{n+1} \right) \left\{ \mathcal{L} \left(Q; \{p\}_{n+1} \right) \right) \left| \mathcal{M} \right|^2 \left(Q; \{p\}_{n+1} \right) J_{\mathsf{R}} \left(\{p\}_{n+1} \right) \\ &- \sum_r \mathsf{Subt}_r \big(Q; \{p\}_{n+1} \big) \right\} \,, \end{split}$$

that can be integrated numerically, and

$$\sigma^{\mathsf{div}}_{\mathsf{R}}(\varepsilon) = \frac{1}{\mathfrak{S}_{n+1}} \sum_{r} \int [dQ] \int d\Phi \big(\varepsilon; Q; \{p\}_{n+1}\big) \mathsf{Subt}_r \big(Q; \{p\}_{n+1}\big) \ ,$$

that should be integrable analytically.

Subtraction terms largely following Somogyi, Trócsányi 2006

but with parameters E_0 , ζ_0 , ξ_0 to restrict the phase space where the terms are active.

Final-state terms, with arguments $\left(Q - p_r + z_{ri}p_i; \{p\}_n^{r';i}\right)$ for amplitudes \mathcal{M} :

$$\begin{split} \mathcal{R}_{ir}^{\text{F,col}} \otimes \mathcal{A}_{ir}^{\text{F,col}} &= \quad \frac{4\pi\alpha_{\text{s}}}{\mu^{-2\varepsilon}} \quad \theta(n_{r} \cdot n_{i} < 2\zeta_{0}) \quad \frac{\theta(\text{E}_{r} < \text{E}_{i})}{p_{i} \cdot p_{r}} \, \mathcal{Q}_{ir}(z_{ri}) \otimes \left|\mathcal{M}_{ir}\right|^{2} \\ \mathcal{R}_{i}^{\text{F,soft}} \otimes \mathcal{A}_{i}^{\text{F,soft}} &= -\frac{4\pi\alpha_{\text{s}}}{\mu^{-2\varepsilon}} \quad \theta(\text{E}_{r} < \text{E}_{0}) \quad \frac{2}{n_{i} \cdot p_{r}} \sum_{b} \frac{n_{i} \cdot n_{b}}{n_{i} \cdot p_{r} + n_{b} \cdot p_{r}} \left(\mathcal{M}\right)_{\text{color(i,b)}}^{2} \\ \mathcal{R}_{i}^{\text{F,soco}} \otimes \mathcal{A}_{i}^{\text{F,soco}} &= -\frac{4\pi\alpha_{\text{s}}}{\mu^{-2\varepsilon}} \quad \theta(\text{E}_{r} < \text{E}_{0})\theta(n_{r} \cdot n_{i} < 2\zeta_{0}) \quad \frac{2C_{i}}{p_{i} \cdot p_{r}} \frac{1}{z_{ri}} \left|\mathcal{M}\right|^{2} \end{split}$$

Initial-state terms, with arguments $\left(Q-p_r;\{p\}_n^{\acute{r}}\right)$ for amplitudes $\mathcal{M}:$

$$\begin{split} & \mathcal{R}_{\chi r}^{l,col} \otimes \mathcal{A}_{\chi r}^{l,col} = -\frac{4\pi\alpha_{s}}{\mu^{-2\varepsilon}} \; \theta \big(\bar{x}_{r} < \xi_{0} x_{r} \big) \qquad \frac{-2}{S\bar{x}_{r} x} \, \Omega_{\chi r} (-x_{r}/x) \otimes \big| \mathcal{M}_{\chi r} \big|^{2} \\ & \mathcal{R}_{\chi}^{l,soft} \otimes \mathcal{A}_{\chi}^{l,soft} = -\frac{4\pi\alpha_{s}}{\mu^{-2\varepsilon}} \; \theta (E_{r} < E_{0}) \; \frac{2}{n_{\chi} \cdot p_{r}} \sum_{b} \frac{n_{\chi} \cdot n_{b}}{n_{\chi} \cdot p_{r} + n_{b} \cdot p_{r}} \left(\mathcal{M} \right)_{color(\chi,b)}^{2} \\ & \mathcal{R}_{\chi}^{l,soco} \otimes \mathcal{A}_{\chi}^{l,soco} = -\frac{4\pi\alpha_{s}}{\mu^{-2\varepsilon}} \; \theta (E_{r} < E_{0}) \theta \big(\bar{x}_{r} < \xi_{0} x_{r} \big) \qquad \frac{4C_{\chi}}{Sx_{r} \bar{x}_{r}} \left| \mathcal{M} \right|^{2} \end{split}$$

Subtraction terms largely following Somogyi, Trócsányi 2006

but with parameters E_0 , ζ_0 , ξ_0 to restrict the phase space where the terms are active.

While $k_{\chi}^{\mu} = xP^{\mu} + k_{\perp}^{\mu}$, there is an initial-state singularity related to the space-like gluon if the radiative momentum becomes collinear to P, with splitting function

$$Q_{\chi r}(\zeta) = \frac{2C_g}{\zeta(1+\zeta)^2} \quad \Leftrightarrow \quad \mathcal{P}_{\chi r}(z) \equiv -zQ_{\chi}(z-1) = \frac{2C_g}{z(1-z)}$$

Initial-state terms, with arguments $(Q - p_r; \{p\}'_n)$ for amplitudes \mathcal{M} :

$$\begin{split} & \mathcal{R}_{\chi r}^{l,col} \otimes \mathcal{A}_{\chi r}^{l,col} = -\frac{4\pi\alpha_{s}}{\mu^{-2\varepsilon}} \; \theta\big(\bar{x}_{r} < \xi_{0}x_{r}\big) \qquad \frac{-2}{S\bar{x}_{r}x} \, \Omega_{\chi r}(-x_{r}/x) \otimes \big|\mathcal{M}_{\chi r}\big|^{2} \\ & \mathcal{R}_{\chi}^{l,soft} \otimes \mathcal{A}_{\chi}^{l,soft} = -\frac{4\pi\alpha_{s}}{\mu^{-2\varepsilon}} \; \theta(\mathsf{E}_{r} < \mathsf{E}_{0}) \; \frac{2}{n_{\chi} \cdot p_{r}} \sum_{b} \frac{n_{\chi} \cdot n_{b}}{n_{\chi} \cdot p_{r} + n_{b} \cdot p_{r}} \left(\mathcal{M}\right)_{color(\chi,b)}^{2} \\ & \mathcal{R}_{\chi}^{l,soco} \otimes \mathcal{A}_{\chi}^{l,soco} = -\frac{4\pi\alpha_{s}}{\mu^{-2\varepsilon}} \; \theta(\mathsf{E}_{r} < \mathsf{E}_{0})\theta\big(\bar{x}_{r} < \xi_{0}x_{r}\big) \qquad \frac{4C_{\chi}}{Sx_{r}\bar{x}_{r}} \left|\mathcal{M}\right|^{2} \end{split}$$

Subtraction method

$$\sigma_{\mathsf{R}}(\varepsilon) = \sigma_{\mathsf{R}}^{\mathsf{div}}(\varepsilon) + \sigma_{\mathsf{R}}^{\mathsf{fin}} + \mathfrak{O}(\varepsilon)$$

We define the finite "subtracted-real" integral as

$$\begin{split} \sigma_{\mathsf{R}}^{\mathsf{fin}} &= \frac{1}{\mathfrak{S}_{n+1}} \int [dQ] \int d\Phi \left(Q; \{p\}_{n+1} \right) \left\{ \mathcal{L} \left(Q; \{p\}_{n+1} \right) \right) \left| \mathfrak{M} \right|^2 \left(Q; \{p\}_{n+1} \right) J_{\mathsf{R}} \big(\{p\}_{n+1} \big) \\ &- \sum_r \mathsf{Subt}_r \big(Q; \{p\}_{n+1} \big) \right\} \,, \end{split}$$

where the r-sum is over all final-state partons, and where $Subt_r(Q; \{p\}_{n+1})$ is given by

$$\begin{split} &\sum_{i} \mathcal{L} \left(Q - p_{r} + z_{ri} p_{i}; \{p\}_{n}^{f;i} \right) \quad \mathcal{R}_{ir}^{\mathsf{F}}(p_{r}) \otimes \mathcal{A}_{ir}^{\mathsf{F}} \left(Q - p_{r} + z_{ri} p_{i}; \{p\}_{n}^{f;i} \right) J_{\mathsf{B}} \left(\{p\}_{n}^{f;i} \right) \\ &+ \sum_{a \in \{\chi, \overline{\chi}\}} \mathcal{L} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) \ \mathcal{R}_{a}^{\mathsf{l,soft}}(p_{r}) \otimes \mathcal{A}_{a}^{\mathsf{l,soft}} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) J_{\mathsf{B}} \left(\{p\}_{n}^{f} \right) \\ &+ \sum_{a \in \{\chi, \overline{\chi}\}} \mathcal{L} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) \ \mathcal{R}_{a}^{\mathsf{l,soco}}(p_{r}) \otimes \mathcal{A}_{a}^{\mathsf{l,soco}} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) J_{\mathsf{B}} \left(\{p\}_{n}^{f} \right) \\ &+ \quad \mathcal{L} \left(Q - \bar{x}_{r} \bar{\mathsf{P}} - p_{\perp r}; \{p\}_{n}^{f} \right) \ \mathcal{R}_{\chi, r}^{\mathsf{l,col}}(p_{r}) \otimes \mathcal{A}_{\chi, r}^{\mathsf{l,col}} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) J_{\mathsf{B}} \left(\{p\}_{n}^{f} \right) \\ &+ \quad \mathcal{L} \left(Q - x_{r} \mathsf{P} - p_{\perp r}; \{p\}_{n}^{f} \right) \ \mathcal{R}_{\overline{\chi}, r}^{\mathsf{l,col}}(p_{r}) \otimes \mathcal{A}_{\overline{\chi}, r}^{\mathsf{l,col}} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) J_{\mathsf{B}} \left(\{p\}_{n}^{f} \right) \\ &+ \quad \mathcal{L} \left(Q - x_{r} \mathsf{P} - p_{\perp r}; \{p\}_{n}^{f} \right) \ \mathcal{R}_{\overline{\chi}, r}^{\mathsf{l,col}}(p_{r}) \otimes \mathcal{A}_{\overline{\chi}, r}^{\mathsf{l,col}} \left(Q - p_{r} \qquad ; \{p\}_{n}^{f} \right) J_{\mathsf{B}} \left(\{p\}_{n}^{f} \right) \end{split}$$

where also the i-sum is over all final-state partons with $\Re^{F}_{rr}(p_{r}) \equiv 0$.

Subtraction method

$$\sigma_{\mathsf{R}}(\varepsilon) = \sigma_{\mathsf{R}}^{\mathsf{div}}(\varepsilon) + \sigma_{\mathsf{R}}^{\mathsf{fin}} + \mathbb{O}(\varepsilon)$$

$$\begin{split} \sigma^{\text{div}}_{\text{R}}(\varepsilon) &= \frac{1}{\mathcal{S}_{n+1}} \sum_{r} \int [dQ] \int d\Phi \big(Q; \{p\}_{n}^{\dagger} \big) \, \mathcal{L} \big(Q; \{p\}_{n}^{\dagger} \big) \big) \, J_{\text{B}} \big(\{p\}_{n}^{\dagger} \big) \\ & \times \left\{ \sum_{i} \mathcal{I}^{\text{F}}_{ir} \big(\varepsilon, Q, \{p\}_{n}^{\dagger} \big) \otimes \mathcal{A}^{\text{F}}_{ir} \big(Q; \{p\}_{n}^{\dagger} \big) + \sum_{a \in [\chi, \overline{\chi}]} \mathcal{I}^{\text{I}}_{ar} \big(\varepsilon, Q, \{p\}_{n}^{\dagger} \big) \otimes \mathcal{A}^{\text{I}}_{ar} \big(Q; \{p\}_{n}^{\dagger} \big) \right\} \,, \end{split}$$

with

$$\begin{split} \mathcal{I}_{ir}^{\mathsf{F}}\big(\varepsilon,Q,\{p\}_{n}^{\not{t}}\big) &= \int \frac{d^{4-2\varepsilon}p_{r}}{(2\pi)^{3-2\varepsilon}} \,\delta_{+}(p_{r}^{2}) \left(1-z_{ri}\right) \mathcal{R}_{ir}^{\mathsf{F}}(p_{r}) \,\Theta(p_{r}-z_{ri}p_{i}) \\ \mathcal{I}_{a}^{\mathsf{I},\mathsf{soft/soco}}\big(\varepsilon,Q,\{p\}_{n}^{\not{t}}\big) &= \int \frac{d^{4-2\varepsilon}p_{r}}{(2\pi)^{3-2\varepsilon}} \,\delta_{+}(p_{r}^{2}) \,\mathcal{R}_{a}^{\mathsf{I},\mathsf{soft/soco}}(p_{r}) \,\Theta(p_{r}) \\ \mathcal{I}_{\chi r}^{\mathsf{I},\mathsf{col}}\big(\varepsilon,Q,\{p\}_{n}^{\not{t}}\big) &= \int \frac{d^{4-2\varepsilon}p_{r}}{(2\pi)^{3-2\varepsilon}} \,\delta_{+}(p_{r}^{2}) \,\mathcal{R}_{\chi r}^{\mathsf{I},\mathsf{col}}(p_{r}) \,\Theta(p_{r}) \frac{\mathcal{L}\left(Q+x_{r}P;\{p\}_{n}^{\not{t}}\right)}{\mathcal{L}\left(Q;\{p\}_{n}^{\not{t}}\right)} \end{split}$$

and

$$\Theta(q) = \theta(-x < x_{\mathfrak{q}} < 1-x)\,\theta(-\bar{x} < \bar{x}_{\mathfrak{q}} < 1-\bar{x})$$

Only $\mathcal{I}_{\chi/\overline{\chi},r}^{l,col}$ involve \mathcal{L} -function \implies "P"-operator, must be integrated numerically. But the Θ restrictions obstruct confortable analytic integration also for the other terms.

Example integrated subtraction term F,soft

 $egin{array}{c} ar{arepsilon} = -2 \, \epsilon \ , \ \ \pi_{\epsilon} = rac{\pi^{1-\epsilon}}{\Gamma(1-\epsilon)} \end{array}$

We need to calculate

$$L_{ib}^{\mathsf{F},\mathsf{soft}}(\varepsilon) = \frac{-2}{\pi_{\varepsilon}\mu^{\overline{\varepsilon}}} \int d^{4+\overline{\varepsilon}} p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta(\mathsf{E}_r < \mathsf{E}_0) \, (1-z_{ri}) \, \Theta(p_r - z_{ri}p_i)$$

but find it too complicated because of $\Theta(p_r-z_{ri}p_i).$

Because $p_{r\perp} - z_{ri}p_{i\perp}$ vanishes both in the soft and the collinear limit, the integral

$$L_{ib,compl}^{F,soft,fin} = \frac{-2}{\pi} \int d^4 p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta(E_r < E_0) \, (1 - z_{ri}) \left[\Theta(p_r - z_{ri}p_i) - 1\right]$$

is finite and can be calculated numerically, while

$$L_{ib,\text{compl}}^{\text{F},\text{soft},\text{div}}(\varepsilon) = \frac{-2}{\pi_{\varepsilon}\mu^{\overline{\varepsilon}}} \int d^{4+\overline{\varepsilon}} p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta(\mathsf{E}_r < \mathsf{E}_0) \, (1-z_{ri})$$

can, in principle, be calculated analytically.

Still, the explicit appearance of $n_i \cdot p_r$, $n_b \cdot p_r$ and E_r makes it complicated.

Example integrated subtraction term F,soft

$$ar{arepsilon} = -2 \epsilon \;, \; \; \pi_{arepsilon} = rac{\pi^{1-\epsilon}}{\Gamma(1-\epsilon)}$$

Thus, we introduce

$$\mathsf{E}_{\mathsf{r}}^{(\mathsf{i}\mathsf{b})} = \frac{\mathsf{n}_{\mathsf{b}} \cdot \mathsf{p}_{\mathsf{r}}}{\mathsf{n}_{\mathsf{i}} \cdot \mathsf{n}_{\mathsf{b}}} + \frac{\mathsf{n}_{\mathsf{i}} \cdot \mathsf{p}_{\mathsf{r}}}{\mathsf{n}_{\mathsf{i}} \cdot \mathsf{n}_{\mathsf{b}}} = \mathsf{E}_{\mathsf{r}} \, \frac{\mathsf{n}_{\mathsf{r}} \cdot \mathsf{n}_{\mathsf{b}} + \mathsf{n}_{\mathsf{i}} \cdot \mathsf{n}_{\mathsf{r}}}{\mathsf{n}_{\mathsf{i}} \cdot \mathsf{n}_{\mathsf{b}}}$$

which vanishes in the soft limit, and becomes equal to $E_{\rm r}$ in the collinear limit, so we can define

$$\begin{split} L_{ib}^{\text{F,soft,fin}} &= \frac{-2}{\pi} \int d^4 p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \\ & \times \left[\Theta(p_r - z_{ri} p_i) \, \theta \left(\mathsf{E}_r < \mathsf{E}_0 \right) \left(1 - \frac{\mathsf{E}_r}{\mathsf{E}_i} \right) - \theta \left(\mathsf{E}_r^{(ib)} < \mathsf{E}_0 \right) \left(1 - \frac{\mathsf{E}_r^{(ib)}}{\mathsf{E}_i} \right) \right] \end{split}$$

which can be calculated numerically, and

$$L_{ib}^{\text{F,soft,div}}(\varepsilon) = \frac{-2}{\pi_{\varepsilon}\mu^{\bar{\varepsilon}}} \int d^{4+\bar{\varepsilon}} p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta \big(E_r^{(ib)} < E_0 \big) \, \bigg(1 - \frac{E_r^{(ib)}}{E_i} \bigg) \, d^{4+\bar{\varepsilon}} p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta \big(E_r^{(ib)} < E_0 \big) \, \bigg(1 - \frac{E_r^{(ib)}}{E_i} \bigg) \, d^{4+\bar{\varepsilon}} p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta \big(E_r^{(ib)} < E_0 \big) \, \bigg(1 - \frac{E_r^{(ib)}}{E_i} \bigg) \, d^{4+\bar{\varepsilon}} p_r \, \delta_+(p_r^2) \, \frac{1}{n_i \cdot p_r} \, \frac{n_i \cdot n_b}{n_i \cdot p_r + n_b \cdot p_r} \, \theta \big(E_r^{(ib)} < E_0 \big) \, \frac{1}{E_r} \, \frac{1}{E_i} \, \frac{1}{E_i$$

which is easier to calculate analytically.

for dijets, including: $gg^* \rightarrow ggg$, $gg^* \rightarrow u\overline{u}g$, $ug^* \rightarrow ugg$, $ug^* \rightarrow u\overline{u}d$, $ug^* \rightarrow u\overline{u}u$, $(u \leftrightarrow d)$

Numerical results

k_T-dependent PDF: PB-NLO-HERAI+II-2018-set2 Bermudez Martinez et al. 2019

All poles in ϵ of the integrated subtraction terms are *the same as in the on-shell case*, except the initial-state collinear divergence

$$\begin{split} \sigma_{\chi r}^{l, \text{col}, \text{div}} &= \frac{1}{\mathcal{S}_n} \int [dQ] \int d\Phi \left(Q; \{p\}_n \right) \mathcal{L} \left(Q; \{p\}_n \right) \left| \mathcal{M} \right|^2 \left(Q; \{p\}_n \right) J_{\mathsf{B}} \left(\{p\}_n \right) \\ & \times \frac{\alpha_{\mathsf{s}}}{2\pi} \frac{(4\pi)^{\varepsilon}}{\Gamma(1-\varepsilon)} \left\{ \frac{C_{\chi r}}{\varepsilon^2} - \frac{1}{\varepsilon} \int_0^1 dz \, \mathcal{P}_{\chi r}^{\mathsf{reg}}(z) \, \frac{\ell_{\chi}(x/z)}{z^2} \, \theta(z > x) \right\} \end{split}$$

with

$$\begin{split} \ell_{\chi}(\mathbf{y}) &= \frac{\mathcal{L}\left(\mathbf{y}\mathbf{P} + \bar{\mathbf{x}}\bar{\mathbf{P}} + \mathbf{k}_{\perp};\{\mathbf{p}\}_{n}\right)}{\mathcal{L}\left(\mathbf{x}\mathbf{P} + \bar{\mathbf{x}}\bar{\mathbf{P}} + \mathbf{k}_{\perp};\{\mathbf{p}\}_{n}\right)} = \frac{F_{\chi}\left(\mathbf{y},\mathbf{k}_{\perp},\boldsymbol{\mu}_{\text{F}}(\{\mathbf{p}\}_{n})\right)/\mathbf{y}}{F_{\chi}\left(\mathbf{x},\mathbf{k}_{\perp},\boldsymbol{\mu}_{\text{F}}(\{\mathbf{p}\}_{n})\right)/\mathbf{x}}\\ \mathcal{P}_{\chi g}^{\text{reg}}(z) &= 2C_{\text{A}}\left[\frac{1}{[1-z]_{+}} + \frac{1}{z}\right] \end{split}$$

compare with the collinear case

$$\ell_{\overline{\chi}}(\mathbf{y}) = \frac{\mathcal{L}\left(\mathbf{x}\mathbf{P} + \mathbf{y}\overline{\mathbf{P}} + \mathbf{k}_{\perp};\{\mathbf{p}\}_{n}\right)}{\mathcal{L}\left(\mathbf{x}\mathbf{P} + \bar{\mathbf{x}}\overline{\mathbf{P}} + \mathbf{k}_{\perp};\{\mathbf{p}\}_{n}\right)} = \frac{f_{\overline{\chi}}\left(\mathbf{y}, \mu_{\mathrm{F}}(\{\mathbf{p}\}_{n})\right)/\mathbf{y}}{f_{\overline{\chi}}\left(\mathbf{x}, \mu_{\mathrm{F}}(\{\mathbf{p}\}_{n})\right)/\mathbf{x}}$$
$$\mathcal{P}_{\overline{\chi}g}^{\mathrm{reg}}(z) = 2C_{\mathrm{A}}\left[\frac{1}{[1-z]_{+}} + \frac{1}{z} + z(1-z) - 2\right]$$

Collinear factorization in QCD at NLO

$$d\sigma^{LO} = \int dx d\bar{x} f_{\chi}(x) f_{\overline{\chi}}(\bar{x}) dB(x, \bar{x})$$
general: $K^{\mu} = x_{K}P^{\mu} + \bar{x}_{K}P^{\mu} + K^{\mu}$
one in-state: $k^{\mu}_{\chi} = xP^{\mu}$
other in-state: $k^{\mu}_{\overline{\chi}} = \bar{x}\bar{P}^{\mu}$

$$\begin{split} d\sigma^{\text{NLO}} &= \int dx d\bar{x} \Biggl\{ f_{\chi}(x) \, f_{\overline{\chi}}(\bar{x}) \Biggl[\frac{\alpha_{\text{s}}}{2\pi} \, dV(x,\bar{x}) + \frac{\alpha_{\text{s}}}{2\pi} \, dR(x,\bar{x}) \Biggr]_{\text{cancelling}} \\ &+ \Biggl[f_{\chi}(x) \, \frac{-\alpha_{\text{s}}}{2\pi\varepsilon} \int_{\bar{x}}^{1} d\bar{z} \left[\mathcal{P}^{\text{reg}}_{\overline{\chi}}(\bar{z}) + \gamma_{\overline{\chi}} \delta(1-\bar{z}) \right] \frac{1}{\bar{z}} f_{\overline{\chi}}\left(\frac{\bar{x}}{\bar{z}} \right) \\ &+ f_{\overline{\chi}}(\bar{x}) \, \frac{-\alpha_{\text{s}}}{2\pi\varepsilon} \int_{x}^{1} dz \left[\mathcal{P}^{\text{reg}}_{\chi}(z) + \gamma_{\chi} \delta(1-z) \right] \frac{1}{z} f_{\chi}\left(\frac{x}{z} \right) \Biggr] dB(x,\bar{x}) \\ &+ \Biggl[\frac{\alpha_{\text{s}}}{2\pi} \, f^{\text{NLO}}_{\chi}(x) \, f_{\overline{\chi}}(\bar{x}) + f_{\chi}(x) \, \frac{\alpha_{\text{s}}}{2\pi} \, f^{\text{NLO}}_{\overline{\chi}}(\bar{x}) \Biggr] dB(x,\bar{x}) \Biggr\} \end{split}$$

$$\begin{split} & f_{\chi}^{\rm NLO}(\mathbf{x}) - \frac{1}{\varepsilon} \int_{\mathbf{x}}^{1} \mathrm{d}z \left[\mathcal{P}_{\chi}^{\rm reg}(z) + \gamma_{\chi} \delta(1 - z) \right] \frac{1}{z} f_{\chi} \left(\frac{\mathbf{x}}{z} \right) = \text{finite} \\ & f_{\overline{\chi}}^{\rm NLO}(\bar{\mathbf{x}}) - \frac{1}{\varepsilon} \int_{\bar{\mathbf{x}}}^{1} \mathrm{d}\bar{z} \left[\mathcal{P}_{\overline{\chi}}^{\rm reg}(z) + \gamma_{\overline{\chi}} \delta(1 - \bar{z}) \right] \frac{1}{\bar{z}} f_{\overline{\chi}} \left(\frac{\bar{\mathbf{x}}}{\bar{z}} \right) = \text{finite} \end{split}$$

Auxiliary parton method

AvH, Kotko, Kutak 2013

$$k^{\mu}_{\chi} = x P^{\mu} + k^{\mu}_{\perp} \quad k^{\mu}_{\overline{\chi}} = \bar{x} \bar{P}^{\mu}$$

We desire to obtain the matrix element with one space-like gluon for the process $g^{\star}(k_{\chi}) \ \omega_{\overline{\chi}}(k_{\overline{\chi}}) \rightarrow \omega_1(p_1) \ \omega_2(p_2) \ \cdots \ \omega_n(p_n)$ e.g. $g^{\star}(k_{\chi}) \ g(k_{\overline{\chi}}) \rightarrow g(p_1) \ g(p_2) \ g(p_3)$

and do so by replacing the space-like gluon with an *on-shell auxiliary* quark pair $q(k_1(\Lambda)) \omega_{\overline{\chi}}(k_{\overline{\chi}}) \rightarrow q(k_2(\Lambda)) \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n)$

with special momenta $k_1^{\mu} = \Lambda P^{\mu} \quad , \quad k_2^{\mu} = p_{\Lambda}{}^{\mu} = (\Lambda - x)P^{\mu} - k_{\perp}^{\mu} + \frac{|k_{\perp}|^2}{2(\Lambda - x)P \cdot \bar{P}} \ \bar{P}^{\mu}$

such that, while individually on-shell, their difference is $k_1^\mu - k_2^\mu = x P^\mu + k_\perp^\mu + \mathcal{O}(\Lambda^{-1}) = k_\chi^\mu + \mathcal{O}(\Lambda^{-1})$

The matrix element with the space-like gluon is obtained by taking $\Lambda
ightarrow \infty$

$$\left|\overline{\mathcal{M}}^{\star}\right|^{2}\left(k_{\chi},k_{\overline{\chi}};\{p\}_{n}\right) = \lim_{\Lambda \to \infty} \frac{1}{g_{s}^{2}C_{aux}} \frac{x^{2}|k_{\perp}|^{2}}{\Lambda^{2}}\left|\overline{\mathcal{M}}^{aux}\right|^{2}\left(\Lambda P,k_{\overline{\chi}};p_{\Lambda},\{p\}_{n}\right)$$

Auxiliary parton method

AvH, Kotko, Kutak 2013

 $k^{\mu}_{\chi} = \chi P^{\mu} + k^{\mu}_{\perp} \quad k^{\mu}_{\overline{\chi}} = \bar{\chi} \bar{P}^{\mu}$

We desire to obtain the matrix element with one space-like gluon for the process $g^*(k_{\chi}) \ \omega_{\overline{\chi}}(k_{\overline{\chi}}) \rightarrow \omega_1(p_1) \ \omega_2(p_2) \ \cdots \ \omega_n(p_n)$ e.g. $g^*(k_{\chi}) \ g(k_{\overline{\chi}}) \rightarrow g(p_1) \ g(p_2) \ g(p_3)$

and do so by replacing the space-like gluon with an *on-shell auxiliary* quark pair $q(k_1(\Lambda)) \omega_{\overline{\chi}}(k_{\overline{\chi}}) \rightarrow q(k_2(\Lambda)) \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n)$

with special momenta $k_1^{\mu} = \Lambda P^{\mu} \quad , \quad k_2^{\mu} = p_{\Lambda}{}^{\mu} = (\Lambda - x)P^{\mu} - k_{\perp}^{\mu} + \frac{|k_{\perp}|^2}{2(\Lambda - x)P \cdot \bar{P}} \ \bar{P}^{\mu}$

such that, while individually on-shell, their difference is $k_1^{\mu} - k_2^{\mu} = xP^{\mu} + k_{\perp} + O(\Lambda^{-1}) = k_{\chi}^{\mu} + O(\Lambda^{-1})$

The matrix element with the space-like gluon is obtained by taking $\Lambda \to \infty$

$$\big|\overline{\mathcal{M}}^{\star}\big|^{2}\big(k_{\chi},k_{\overline{\chi}};\{p\}_{n}\big) \ = \ \lim_{\Lambda\to\infty} \ \frac{1}{g_{s}^{2}C_{aux}} \frac{x^{2}|k_{\perp}|^{2}}{\Lambda^{2}}\big|\overline{\mathcal{M}}^{aux}\big|^{2}\big(\Lambda P,k_{\overline{\chi}};p_{\Lambda},\{p\}_{n}\big)$$

The factor $x^2|k_\perp|^2$ ensures the correct on-shell limit, $1/\Lambda^2$ selects the leading power, $1/g_s^2$ corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor $C_{\text{aux-q}} = \frac{N_c^2 - 1}{N_c} \quad , \quad C_{\text{aux-g}} = 2N_c$

Auxiliary parton method

$$k^{\mu}_{\chi} = x P^{\mu} + k^{\mu}_{\perp} \quad k^{\mu}_{\overline{\chi}} = \bar{x} \bar{P}^{\mu}$$

AvH, Kotko, Kutak 2013

the auxiliary parton method can be applied to Feynman graphs, from which one can derive eikonal Feynman rules for the auxiliary partons

 $\boldsymbol{\Lambda}$ effectively works as a regulator for linear denominators

$$\frac{1}{P \cdot K} \ \stackrel{\Lambda \to \infty}{\longleftarrow} \ \frac{2\Lambda}{(\Lambda P + K)^2} \quad \Longrightarrow \quad \text{In}\Lambda \ \text{in loop integrals}$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \ \stackrel{\Lambda \to \infty}{\longleftarrow} \ \frac{2\Lambda}{(\Lambda P + K)^2} \quad \Longrightarrow \quad \text{In}\Lambda \ \text{in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $dV^{\star} = dV^{\star \mathsf{fam}} + dV^{\star \mathsf{unf}}$

 dV^{*fam} is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

For example, apply Λ limit on $A^{\text{loop}}(1_{\bar{Q}}, 6_Q, 2_{\bar{q}}, 3_q, 4_{e^+}, 5_{e^-})$ (Bern, Dixon, Kosower 1998) to get $A^{\text{loop}}(1^*, 2_{\bar{q}}, 3_q, 4_{e^+}, 5_{e^-})$. The pole-part is proportional to the tree-level amplitude with factor

$$\left\{-\frac{1}{\varepsilon^2}\left[\left(\frac{\mu^2}{-s_{p3}}\right)^{\varepsilon} + \left(\frac{\mu^2}{-s_{p2}}\right)^{\varepsilon}\right] - \frac{3}{2\varepsilon}\right\} A^{\text{tree}}(1^{\star}, 2_{\bar{q}}, 3_q, 4_{e^+}, 5_{e^-}) \ ,$$

with s_{p2} and s_{p3} involving only the longitudinal part of $k_1 = p + k_{\perp}$.

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $dV^{\star} = dV^{\star \mathsf{fam}} + dV^{\star \mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

 $dV^{\star unf} = a_{\epsilon}N_{c}\operatorname{Re}(\mathcal{V}_{aux}) dB^{\star}$ is proportional to Born result $a_{\epsilon} = \frac{\alpha_{\epsilon}}{2\pi}\frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}$

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

$$\begin{split} d\mathsf{V}^{\star\mathsf{unf}} &= \mathfrak{a}_{\varepsilon}\mathsf{N}_{\mathsf{c}}\,\mathsf{Re}\big(\mathcal{V}_{\mathsf{aux}}\big)\,d\mathsf{B}^{\star} \quad \text{is proportional to Born result} \qquad \mathfrak{a}_{\varepsilon} &= \frac{\alpha_{\varepsilon}}{2\pi}\frac{(4\pi)^{\varepsilon}}{\Gamma(1-\varepsilon)}\\ \mathcal{V}_{\mathsf{aux}} &= \left(\frac{\mu^{2}}{|\mathbf{k}_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\frac{2}{\varepsilon}\,\mathsf{In}\frac{\Lambda}{x} - \mathsf{i}\pi + \bar{\mathcal{V}}_{\mathsf{aux}}\bigg] + \mathfrak{O}(\varepsilon) + \mathfrak{O}\big(\Lambda^{-1}\big) \end{split}$$

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \ \stackrel{\Lambda \to \infty}{\longleftarrow} \ \frac{2\Lambda}{(\Lambda P + K)^2} \quad \Longrightarrow \quad \text{In}\Lambda \ \text{in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

$$\begin{split} d\mathsf{V}^{\star \mathsf{unf}} &= \mathfrak{a}_{\varepsilon}\mathsf{N}_{\mathsf{c}}\,\mathsf{Re}\big(\mathcal{V}_{\mathsf{aux}}\big)\,d\mathsf{B}^{\star} \quad \text{is proportional to Born result} \qquad \mathfrak{a}_{\varepsilon} = \frac{\alpha_{\mathsf{s}}}{2\pi}\frac{(4\pi)^{\varepsilon}}{\Gamma(1-\varepsilon)} \\ \mathcal{V}_{\mathsf{aux}} &= \left(\frac{\mu^{2}}{|\mathsf{k}_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\frac{2}{\varepsilon}\,\mathsf{ln}\frac{\Lambda}{x} - \mathsf{i}\pi + \bar{\mathcal{V}}_{\mathsf{aux}}\bigg] + \mathfrak{O}(\varepsilon) + \mathfrak{O}\big(\Lambda^{-1}\big) \\ \bar{\mathcal{V}}_{\mathsf{aux-q}} &= \frac{1}{\varepsilon}\frac{13}{6} + \frac{\pi^{2}}{3} + \frac{80}{18} + \frac{1}{\mathsf{N}_{\mathsf{c}}^{2}}\bigg[\frac{1}{\varepsilon^{2}} + \frac{3}{2}\frac{1}{\varepsilon} + 4\bigg] - \frac{\mathsf{n}_{\mathsf{f}}}{\mathsf{N}_{\mathsf{c}}}\bigg[\frac{2}{3}\frac{1}{\varepsilon} + \frac{10}{9}\bigg] \\ \bar{\mathcal{V}}_{\mathsf{aux-g}} &= -\frac{1}{\varepsilon^{2}} + \frac{\pi^{2}}{3} \end{split}$$

More-or-less proven using known universal collinear limits of one-loop amplitudes (Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large- Λ , the small- $|\mathbf{k}_{\perp}|$ corresponds to a collinear limit of auxiliary partons. While the large- Λ and small- $|\mathbf{k}_{\perp}|$ limit commute at tree-level, they do not at one loop.

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

$$\begin{split} d\mathsf{V}^{\star \mathsf{unf}} &= \mathfrak{a}_{\varepsilon}\mathsf{N}_{\mathsf{c}}\,\mathsf{Re}\big(\mathscr{V}_{\mathsf{aux}}\big)\,d\mathsf{B}^{\star} \quad \text{is proportional to Born result} \qquad \mathfrak{a}_{\varepsilon} = \frac{\alpha_{\mathsf{s}}}{2\pi}\frac{(4\pi)^{\varepsilon}}{\Gamma(1-\varepsilon)} \\ \mathcal{V}_{\mathsf{aux}} &= \left(\frac{\mu^{2}}{|\mathsf{k}_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\frac{2}{\varepsilon}\ln\frac{\Lambda}{x} - i\pi + \bar{\mathscr{V}}_{\mathsf{aux}}\bigg] + \mathfrak{O}(\varepsilon) + \mathfrak{O}\big(\Lambda^{-1}\big) \\ \bar{\mathscr{V}}_{\mathsf{aux-q}} &= \frac{1}{\varepsilon}\frac{13}{6} + \frac{\pi^{2}}{3} + \frac{80}{18} + \frac{1}{\mathsf{N}_{\mathsf{c}}^{2}}\bigg[\frac{1}{\varepsilon^{2}} + \frac{3}{2}\frac{1}{\varepsilon} + 4\bigg] - \frac{\mathsf{n}_{\mathsf{f}}}{\mathsf{N}_{\mathsf{c}}}\bigg[\frac{2}{3}\frac{1}{\varepsilon} + \frac{10}{9}\bigg] \\ \bar{\mathscr{V}}_{\mathsf{aux-g}} &= -\frac{1}{\varepsilon^{2}} + \frac{\pi^{2}}{3} \end{split}$$

The differential phase space and the matrix element factorize for the *unfamiliar* case, where the radiative gluon participates in the consumption of Λ .

The differential phase space and the matrix element factorize for the *unfamiliar* case, where the radiative gluon participates in the consumption of Λ .

$$\begin{split} \frac{1}{C_{\mathsf{aux}}} \left| \overline{\mathcal{M}}^{\mathsf{aux}} \right|^2 & \left((\mathbf{\Lambda} + \mathbf{x}) \mathbf{P}, \mathbf{k}_{\overline{\chi}}; \mathbf{x}_r \mathbf{\Lambda} \mathbf{P} + \mathbf{r}_\perp + \bar{\mathbf{x}}_r \bar{\mathbf{P}} \,, \, \mathbf{x}_q \mathbf{\Lambda} \mathbf{P} + \mathbf{q}_\perp + \bar{\mathbf{x}}_q \bar{\mathbf{P}} \,, \, \{\mathbf{p}_i\}_{i=1}^n \right) \\ & \xrightarrow{\Lambda \to \infty} \, \mathcal{Q}_{\mathsf{aux}}(\mathbf{x}_q, \mathbf{q}_\perp, \mathbf{x}_r, \mathbf{r}_\perp) \, \frac{\Lambda^2 \left| \overline{\mathcal{M}}^* \right|^2 \left(\mathbf{x} \mathbf{P} - \mathbf{q}_\perp - \mathbf{r}_\perp, \mathbf{k}_{\overline{\chi}}; \{\mathbf{p}_i\}_{i=1}^n \right)}{\mathbf{x}^2 |\mathbf{q}_\perp + \mathbf{r}_\perp|^2} \\ & \mathcal{Q}_{\mathsf{aux}}(\mathbf{x}_q, \mathbf{q}_\perp, \mathbf{x}_r, \mathbf{r}_\perp) = \mathbf{x}_q \mathbf{x}_r \, \mathcal{P}_{\mathsf{aux}}(\mathbf{x}_q, \mathbf{x}_r) \, |\mathbf{q}_\perp + \mathbf{r}_\perp|^2 \\ & \times \left[\frac{\mathbf{c}_{\overline{q}}}{|\mathbf{q}_\perp|^2 |\mathbf{r}_\perp|^2} + \frac{1}{\mathbf{x}_r |\mathbf{q}_\perp|^2 + \mathbf{x}_q |\mathbf{r}_\perp|^2 - \mathbf{x}_q \mathbf{x}_r |\mathbf{q}_\perp + \mathbf{r}_\perp|^2} \left(\frac{\mathbf{c}_r \, \mathbf{x}_r^2}{|\mathbf{r}_\perp|^2} + \frac{\mathbf{c}_q \, \mathbf{x}_q^2}{|\mathbf{q}_\perp|^2} \right) \right] \end{split}$$

Can be integrated analytically and is proportional to the Born result. Like the unfamiliar virtual, it is proportional to $(\mu^2/|k_\perp|^2)^{\varepsilon}$, produces ln Λ , and depends on the auxiliary parton types.

The differential phase space and the matrix element factorize for the *unfamiliar* case, where the radiative gluon participates in the consumption of Λ .

Precise separation of *familiar* and *unfamiliar* phase space via the demand that in the latter case, the radiation must not become collinear to P in the terms with $1/x_r$

$$\frac{|r_{\scriptscriptstyle \perp}|}{\nu\sqrt{\Lambda}} < x_r < \frac{|r_{\scriptscriptstyle \perp}|}{|r_{\scriptscriptstyle \perp}+k_{\scriptscriptstyle \perp}|} \quad \text{for terms with } 1/x_r$$

Ciafaloni, Colferai 1999

Can be integrated analytically and is proportional to the Born result. Like the unfamiliar virtual, it is proportional to $(\mu^2/|k_\perp|^2)^{\varepsilon}$, produces In Λ , and depends on the auxiliary parton types.

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\;,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon}N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2}\right)^{\varepsilon} \! \left[\boldsymbol{\mathfrak{I}}_{\text{aux}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} - 2\,\text{ln}\frac{2P\!\cdot\!\bar{P}\boldsymbol{\chi}}{|k_{\perp}|^2} \right]\,, \label{eq:dual_univ}$$

with

$$\mathcal{I}_{\text{univ}} = \frac{11}{6} - \frac{n_{\text{f}}}{3N_{\text{c}}} - \frac{\mathcal{K}}{N_{\text{c}}}(-\epsilon) \quad \text{writing} \quad \mathcal{K} = N_{\text{c}} \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_{\text{f}}}{9} \ ,$$

and

$$\label{eq:Jaux-q} \mathbb{J}_{\text{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad, \quad \mathbb{J}_{\text{aux-g}} = \frac{11}{6} + \frac{n_{\text{f}}}{3N_{\text{c}}^3} + \frac{n_{\text{f}}}{6N_{\text{c}}^3}(-\varepsilon) \ .$$

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\;,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon}N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2}\right)^{\varepsilon} \! \left[\boldsymbol{\mathfrak{I}}_{\text{aux}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} - 2\,\text{ln}\frac{2P\!\cdot\!\bar{P}x}{|k_{\perp}|^2} \right] \,, \label{eq:dual_univ_linear}$$

with

and

$$\mathcal{I}_{\text{univ}} = \frac{11}{6} - \frac{n_{\text{f}}}{3N_{\text{c}}} - \frac{\mathcal{K}}{N_{\text{c}}}(-\epsilon) \quad \text{writing} \quad \mathcal{K} = N_{\text{c}}\left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_{\text{f}}}{9} ,$$

$$\mathbb{J}_{\text{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad , \quad \mathbb{J}_{\text{aux-g}} = \frac{11}{6} + \frac{n_{\text{f}}}{3N_{\text{c}}^3} + \frac{n_{\text{f}}}{6N_{\text{c}}^3}(-\varepsilon) \ .$$

• No In Λ present. $O(\alpha_s)$ contribution to the space-like gluon Regge trajectory.

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\;,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon}N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2}\right)^{\varepsilon} \! \left[\textbf{J}_{\text{aux}} + \textbf{J}_{\text{univ}} + \textbf{J}_{\text{univ}} - 2\,\text{ln}\frac{2P\!\cdot\!\bar{P}x}{|k_{\perp}|^2} \right] \,, \label{eq:dual_univ}$$

with

$$\mathcal{I}_{univ} = \frac{11}{6} - \frac{n_f}{3N_c} - \frac{\mathcal{K}}{N_c}(-\varepsilon) \quad \text{writing} \quad \mathcal{K} = N_c \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_f}{9} ,$$

and

$$\mathbb{J}_{\mathsf{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad , \quad \mathbb{J}_{\mathsf{aux-g}} = \frac{11}{6} + \frac{n_{\mathsf{f}}}{3N_{\mathsf{c}}^3} + \frac{n_{\mathsf{f}}}{6N_{\mathsf{c}}^3}(-\varepsilon) \; .$$

• No In Λ present. $O(\alpha_s)$ contribution to the space-like gluon Regge trajectory.

• Target impact factor corrections as in Ciafaloni, Colferai 1999.

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\;,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon}N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\scriptscriptstyle \perp}|^2}\right)^{\varepsilon} \! \left[\boldsymbol{\mathfrak{I}}_{\text{aux}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} - 2\,\text{ln}\frac{2P\!\cdot\!\bar{P}x}{|k_{\scriptscriptstyle \perp}|^2} \right]\,, \label{eq:dual_univ}$$

with

$$\mathcal{I}_{\text{univ}} = \frac{11}{6} - \frac{n_f}{3N_c} - \frac{\mathcal{K}}{N_c}(-\varepsilon) \quad \text{writing} \quad \mathcal{K} = N_c \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_f}{9} ,$$

and

$$\mathbb{J}_{\mathsf{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad , \quad \mathbb{J}_{\mathsf{aux-g}} = \frac{11}{6} + \frac{n_{\mathsf{f}}}{3N_{\mathsf{c}}^3} + \frac{n_{\mathsf{f}}}{6N_{\mathsf{c}}^3}(-\varepsilon) \ .$$

• No In Λ present. $O(\alpha_s)$ contribution to the space-like gluon Regge trajectory.

- Target impact factor corrections as in Ciafaloni, Colferai 1999.
- Collinear divergence, cancels against familiar virtual divergence.

Summary

$$\begin{split} d\sigma^{\mathsf{NLO}} &= \int dx \, d^2 k_{\scriptscriptstyle \perp} d\bar{x} \bigg\{ \mathsf{F}(x,k_{\scriptscriptstyle \perp}) \, \mathsf{f}(\bar{x}) \Big[d\mathsf{V}^\star(x,k_{\scriptscriptstyle \perp},\bar{x}) + d\mathsf{R}^\star(x,k_{\scriptscriptstyle \perp},\bar{x}) \Big]_{\mathsf{cancelling}} \\ &+ \Big[\mathsf{F}^{\mathsf{NLO}}(x,k_{\scriptscriptstyle \perp}) + \mathsf{F}(x,k_{\scriptscriptstyle \perp}) \Delta_{\mathsf{unf}}(x,k_{\scriptscriptstyle \perp}) + \Delta^\star_{\mathsf{coll}}(x,k_{\scriptscriptstyle \perp}) \Big] \mathsf{f}(\bar{x}) \, d\mathsf{B}^\star(x,k_{\scriptscriptstyle \perp},\bar{x}) \\ &+ \Big[\mathsf{f}^{\mathsf{NLO}}(\bar{x}) + \Delta_{\overline{\mathsf{coll}}}(\bar{x}) \Big] \mathsf{F}(x,k_{\scriptscriptstyle \perp}) d\mathsf{B}^\star(x,k_{\scriptscriptstyle \perp},\bar{x}) \bigg\} \end{split}$$

$$\begin{split} \Delta_{\overline{\mathrm{coll}}}(\bar{\mathbf{x}}) &= -\frac{\mathbf{a}_{\varepsilon}}{\varepsilon} \int_{\bar{\mathbf{x}}}^{1} \mathrm{d}z \left[\mathcal{P}_{\overline{\mathbf{x}}}^{\mathrm{reg}}(z) + \gamma_{\overline{\mathbf{x}}} \delta(1-z) \right] \frac{1}{z} \mathsf{f}\left(\frac{\bar{\mathbf{x}}}{z}\right) \\ \Delta_{\mathrm{coll}}^{\star}(\mathbf{x}, \mathbf{k}_{\perp}) &= -\frac{\mathbf{a}_{\varepsilon}}{\varepsilon} \int_{\mathbf{x}}^{1} \mathrm{d}z \bigg[\frac{2\mathsf{N}_{\mathsf{c}}}{[1-z]_{+}} + \frac{2\mathsf{N}_{\mathsf{c}}}{z} + \gamma_{\mathrm{g}} \delta(1-z) \bigg] \frac{1}{z} \mathsf{F}\left(\frac{\mathbf{x}}{z}, \mathbf{k}_{\perp}\right) \\ \Delta_{\mathrm{unf}}(\mathbf{x}, \mathbf{k}_{\perp}) &= \frac{\mathbf{a}_{\varepsilon}\mathsf{N}_{\mathsf{c}}}{\varepsilon} \left(\frac{\mu^{2}}{|\mathbf{k}_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\mathrm{impactFactCorr} + \mathcal{I}_{\mathrm{univ}} - 2\ln\frac{2\mathsf{P}\cdot\bar{\mathsf{P}}\mathbf{x}}{|\mathbf{k}_{\perp}|^{2}} \bigg] \end{split}$$

 $f^{\mathsf{NLO}}(\bar{x}) + \Delta_{\overline{\mathsf{coll}}}(\bar{x}) = \mathsf{finite}$

 $\mathsf{F}^{\mathsf{NLO}}(x,k_{\scriptscriptstyle \perp}) + \mathsf{F}(x,k_{\scriptscriptstyle \perp}) \Delta_{\mathsf{unf}}(x,k_{\scriptscriptstyle \perp}) + \Delta^{\star}_{\mathsf{coll}}(x,k_{\scriptscriptstyle \perp}) \stackrel{?}{=} \mathsf{finite}$

On-shell limit

2

Space-like (LO) matrix elements have desired on-shell limit only after azimuthal integration:

$$\left| \mathfrak{M}(k_{\scriptscriptstyle \perp}) \right|^2 \xrightarrow{|k_{\scriptscriptstyle \perp}| \to 0} \mathfrak{M}^*_{\mu}(0) \xrightarrow{k_{\scriptscriptstyle \perp}^{\mu} k_{\scriptscriptstyle \perp}^{\nu}} \mathfrak{M}_{\nu}(0) \xrightarrow{\int d\phi_{\scriptscriptstyle \perp}} \left| \mathfrak{M}(0) \right|^2$$

As a consequence, point-wise cancellation of singularities fails at $|k_{\perp}| = 0$:

$$\begin{split} \left| \mathcal{M}(k_{\perp},r_{\perp}) \right|^2 &\xrightarrow{|k_{\perp}| \to 0} & \mathcal{M}^*_{\mu}(0,r_{\perp}) \xrightarrow{k_{\perp}^{\mu}k_{\perp}^{\nu}} \mathcal{M}_{\nu}(0,r_{\perp}) &\xrightarrow{|r_{\perp}| \to 0} & \mathsf{Singular} \times \mathcal{M}^*_{\mu}(0) \xrightarrow{k_{\perp}^{\mu}k_{\perp}^{\nu}} \mathcal{M}_{\nu}(0) \\ \\ \mathsf{Singular} \times \left| \mathcal{M}(k_{\perp}-r_{\perp}) \right|^2 &\xrightarrow{|k_{\perp}| \to 0} & \mathsf{Singular} \times \left| \mathcal{M}(-r_{\perp}) \right|^2 \xrightarrow{|r_{\perp}| \to 0} & \mathsf{Singular} \times \mathcal{M}^*_{\mu}(0) \xrightarrow{r_{\perp}^{\mu}r_{\perp}^{\nu}} \mathcal{M}_{\nu}(0) \\ \end{split}$$

Fortunately, the measure of the problematic phase space vanishes

ITMD^{*} factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded to be present from 3-jet formulae in CGC (lancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant offshell hard scattering amplitudes

$$\sum_{i,j} \mathcal{M}^*_i \left(\frac{k_T^{(i)} k_T^{(j)}}{2|\vec{k}_T|^2} (\mathcal{F} + \mathcal{H}) + \frac{q_T^{(i)} q_T^{(j)}}{2|\vec{q}_T|^2} (\mathcal{F} - \mathcal{H}) \right) \mathcal{M}_j \quad , \quad \vec{q}_T \cdot \vec{k}_T = 0$$

 $\textstyle \sum_{i} \mathcal{M}_{i} k_{T}^{(i)} \text{ is gauge invariant while } \sum_{i} \mathcal{M}_{i} q_{T}^{(i)} \text{ is not. For dijets, it happens that } \mathcal{F} = \mathcal{H}.$

In the following only the manifestly gauge-invariant contribution is included, hence the designation ITMD^* .

ITMD^{*} factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.

