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QCD evolution, dilute vs. dense, forward jets

A dilute system carries a few
high-x partons contributing to the
hard scattering.

A dense system carries many
low-x partons.

F ORLWARD

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

4ETS

This is modeled with non-linear
evolution equations, involving
explicit non-vanishing kr.

DILWTE

A~ |0_| Saturation implies the turnover of the gluon density, stopping
it from growing indefinitely for small x.

DENSE Forward jets have large rapidities, and trigger events in which
partons from the nucleus have small x.
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Color Glass Condensate (CGC)

introduction from

The CGC is an effective field theory for high energy QCD. Morreale, Salazar 2021
Partons carrying large hadron momentum fraction x are treated as static color sources p.

Their color charge distribution is non-perturbative and is dictated by a gauge invariant
weight functional W, [p]. The sources generate a current J*¢.

The partons carrying small x are treated as a dynamical classical field A*“.
Sources and fields are related by the Yang-Mills equations [D,,, F,| = J+.

The expectation value (O),, of an observable O is calculated as the path integral O[p] in
the presence of sources from W, [pl], averaged over all possible configurations p.

The interaction of a highly energetic color charged particle with the classical field A in the
eikonal approximation is encoded in the light-like Wilson lines
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Balitsky, Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner

Evolution in x of W, [p] implies an infinite hierarchy (known as the B-JIMWLK hierarchy)
of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.
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Cross section calculations involve particle wave functions and Wilson line correlators.
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ITM D FaCtor|Zat|On For forward dijet production
in dilute-dense hadronic collisions

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

dopagox = J dk3 J dxa Z J dxg Z d)ﬁfé (xa, kry 1) fo/B(xB, 1) d(};),ﬂx(x/\a XB, 1)
i b

For xa < 1 and Py > ky ~ Qs (jets almost back-to-back).
TMD gluon distributions d)élg (xa, kT, 1) satisfy non-linear evolution equations.

Partonic cross section dfr(glg is on-shell, but depends on color-structure 1.

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

doap—x = J dk7 J dxa ) J dxs ) Py (xa, ki, 1) Fom (xp, 1) dOy_x (xa, X5, kr, 1)
i b

Originally a model interpolating between High Energy Factorization and Generalized TMD
factorization: Pt = kr = Q..
Partonic cross section d(}(g% is off-shell and depends on color-structure 1.

ITMD formalism is obtained from the CGC formalism, by including so-called kinematic

twist corrections (Antinoluk, Boussarie, Kotko 2019).




Definition of gluon TMDs

+  similar diagrams with 2,3, ... gluon exchanges

Resummation of gluon exchanges leads to Wilson line U, = Pexpq — igJ dz-A(z)}
Y

acting as a gauge link for the gauge invariant definition of a TMD
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ITMD* factorization for more than 2 jets

* only manifestly gauge invariant

Bury, Kotko, Kutak 2018

contribution included

Schematic hybrid (non-ITMD) factorization formula

1 color) |2
do = Z JdX] dsz JdXz d(Dg*yHn W Hj (thT) H) f XZ) ll Z ‘Mg J—m

y=g,u,d,... 9y color

ITMD* formula: replace

3'9 Z ‘M(COIW) 2 - 3‘9 Z Z ‘Az Cor Ar y Cor= Ni\(gﬂ)

color 0ESH12 TESH2

with “TMD-valued color matrix”

(Ng - 1) Z Z -AZ éc’r(x> |kT|) AT ) éUT(X> |kT|) - NQ(U’T):}’G’((X) |kT|)

O-GSTL+2 Tesn+2
where each function F. is one of 10 functions
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ITMD* factorization for more than 2 jets

Tho (o kr) = (Tr [P € UTR @ut]) <...>_zjd4“(‘5)eik-a<p\...\P>

(27)3P+
(]
Fig (x,kr) = <Tr][ff BN [P (@)U (0) um]>
C
Fao (k) = (Tr [ (@)U () uPu] )
Ot .. ..
Fog (%, k) = <Tr [fj I [P (@)U (0) um]>
C
1 s n
Foo (6, kr) = — (Tr [F* (£) WP v [Fi+ (0) U™
69 (o kr) = 5 (T [P (&) } r[ ©u]
TGy (e kr) = (Tr [P () T () u])
540 (e kr) = (Tr [F* () uTE () u])
T (x, k1) = (Tr [F1+ [Oltq Lt (O)u[Du ]>

O O
95()69) (x,k7) = < ][\1]/[ ] [:\]’( ] Tr [f:w (£) YT (0) u[H} >

ffgg) (x, k7) = <T1“ ][\1]/( ] Tr |:f:‘i.+ (&) u[D]Tu[HTfﬂH (0) u[H} >
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ITMD gluons

Start with dipole distribution F4g (x, kr) = (Tr[F* (£) UTF (0) UM]) evolved via the
BK equation formulated in momentum space supplemented with subleading corrections
and fitted to F, data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, Fid, Ty, Forly, Fi, in the mean-field
approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in 1/N.. In this approximation, the same distributions suffice for
trijets.

For DIS one only needs 9539)

where S is the target's transverse area.




ITMD gluons
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KS gluon TMDs in proton
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KS gluon TMDs in lead
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Dependence of fﬂ(;g) on kr below 1GeV approximated by power-like fall-off. For higher

values of [kr| it is a solution to the BK equation.

TMDs decrease as 1/|kt| for increasing |kt|, except 3"529), which decreases faster (even
becomes negative, absolute value shown here).




Parton-level cross sections

Hadron-scattering process Y with partonic processes y contributing to multi-jet final state

dGY(P1>P2§k3> RS k2+n) - Z J d4k1 j)y1 (k1) J d4k2 ?yz (kl) dé—y(kJ ) kZ;kS) RS k2+n)
yey

. . . P2
Collinear factorization:

C].X;L
Py, (ki) :J ” £y, (xiy 1) 8* (ki — xipi) k2 .
d 4

kr-dependent factorization factorization:
dzkﬂ' J dXi
T

ffyi(xi) kirl, 1) 54(k4 — Xipi — Ki1) ki Kni2
P1

2o = |

Differential partonic cross section:
dé'y (k] y kz; kg, .o ,k2+n) = d@y(k] y kz;kg,, ceey k2+n) @y(kg, ceey k2+n)
X ﬂUX(k1 ) kZ) X Sy |My(k1> RS k2+n)|2

Parton-level phase space:

n+2

dDy(k1, k2 K3,y Kain) = <H d*kid (k] —m%)) 8 (ki +ka— k3 — - — knpa)
i=3




Parton-level cross sections

eh-scattering process Y with partonic processes Yy contributing to multi-jet final state
dov(py Pl oy kan) = 3 [ a2y, (k) 465, (K1, K3 K, - K )
yeYy

} . P2 =k
Collinear factorization:

C].X;L
Py, (ki) :J < £y, (xi, 1) 8% (ki — xipi)

i

kr-dependent factorization factorization:
dzkﬂ' J dXi
T

P, (ki) = j %, (xt, erly 1) 8 (ki — xips — kir)

i

P1
Differential partonic cross section:

dé—y(k1 ) kZ; k3a s >k3+n) - d(DY(k1 ) kZ;k.’n ceey k3+n) ®Y(k3) ceey k3+n)
X ﬂUX(k],kz) X Sy |My(k1> RS k3+n)|2

Parton-level phase space:

n+3

dDy(k1, k2 K3,y Kain) = (H d*kid (k] —m%)) 8 (ki +ka— k3 — -+ — knys)
i=3




KATIE https://bitbucket.org/hameren/katie

parton level tree level event generator, like ALPGEN, HELAC, MADGRAPH, etc.

arbitrary hadron-hadron or hadron-lepton processes within the standard model (includ-
ing effective Higgs-gluon coupling) with several final-state particles.

0, 1, or 2 space-like initial states.
produces (partially un)weighted event files, for example in the LHEF format.

requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDIib (Hautmann, Jung, Kramer, Mulders, Nocera, Rogers, Signori 2014).

a calculation is steered by a single input file.

employs an optimization stage in which the pre-samplers for all channels are optimized.
during the generation stage several event files can be created in parallel.

event files can be processed further by parton-shower program like CASCADE.

(evaluation of) matrix elements separately available.




Hybrid kt-factorization at NLO [Rigeelishsie

the other side on-shell

M. A. Nefedov, Computing one-loop corrections to effective vertices with two scales in the
EFT for Multi-Regge processes in QCD, Nucl. Phys. B 946 (2019) 114715, [1902.11030].

M. A. Nefedov, Towards stability of NLO corrections in High-Energy Factorization via
Modified Multi-Regge Kinematics approximation, JHEP 08 (2020) 055, [2003.02194].

M. Hentschinski, K. Kutak, and A. van Hameren, Forward Higgs production within high
energy factorization in the heavy quark limit at next-to-leading order accuracy, Eur. Phys.
J. €81 (2021), no. 2 112, [2011.03193]. [Erratum: Eur.Phys.J.C 81, 262 (2021)].

F. G. Celiberto, M. Fucilla, D. Y. Ivanov, M. M. A. Mohammed, and A. Papa, The next-
to-leading order Higgs impact factor in the infinite top-mass limit, JHEP 08 (2022) 092,
[2205.02681].

F. Bergabo and J. Jalilian-Marian, Single inclusive hadron production in DIS at small x:
next to leading order corrections, JHEP 01 (2023) 095, [2210.03208].

P. Taels, Forward production of a Drell-Yan pair and a jet at small x at next-to-leading
order, JHEP 01 (2024) 005. [2308.02449].

T. Altinoluk, N. Armesto, A. Kovner, and M. Lublinsky, Single inclusive particle production
at next-to-leading order in proton-nucleus collisions at forward rapidities: Hybrid approach
meets TMD factorization, Phys. Rev. D 108 (2023), no. 7 074003, [2307.14922].




Collinear factorization in QCD at NLO

general: K" = xgP* + xP* + K"

Lo _ 2 (% X
do~ = JdXdX fiy (x) fx(x) dB(x, %) one in-state: kj; = xP"

other in-state: k; = xPH

doNLo — ded)—({fx(x) £ (%) {%s[ dV(x,x) + ;—Ts[ dR(X,i)}
cancelling

+[27Tf>TL°( ) () + fyx );";f“w( )]dB(x x)}




a subtraction method at NLO Giachino, AvH,
for real radiation in kr-factorization Ziarko 2023




. for a subtraction method at NLO Giachino, AvH,
NOtat|On for real radiation in kr-factorization Ziarko 2023
The Born-level formula for the cross section in hybrid kr-factorization:
1 2
00 = 5 |14Q [ 40 (Qifph) £(Qilph) P (Qitph) Ta((ph)

Initial-state variables:

] ] k¥ =xP*+ k% P*=(E0,0,E
J[dQ]ZJ de dedsz, QF =K+ Kt kﬁ_"_j " _u_(_) ,0,E).
0 0 Y_XP P —(E,0,0,—E)

Differential phase space for the final-state momenta {p},

n .I n
D (Q;{ph) = ( m%)> 2 6(Q - Zpl>

1=1 1=1

The PDFs and flux factor:

£(Qi{ph) = Rk “F({‘;i“i%E x (%, ke ({ph))

|M‘2(Q;{p}n) tree-level matrix element without symmetry factors and averageing factors,
they are captured by 8,. Finally ]B({p}n) denotes the jet function.




Singular limits at NLO: jets

The symbol Jg includes the decision if there are enough jets for Born-level. For the real
radiation, the jet function Jr does not avoid all singularities of the tree-level squared matrix
element anymore, but allows one pair of partons to become collinear,

one pair of partons to become collinear: p,lp; & n,—1n;—0

one parton to become soft: p, = soft & E,—0
The jet function behaves in those limits such that

Je(Ph) 25 T (1)

(o)~ T ()
Pr”Pv]S

Jr((Phni1) —— Je((Pl)

where

{p} is obtained from {p}..1 by removing momentum p. ,

{p}5it is obtained by additionally replacing p; with (1 + z,)pi  z. = E./E4

(We assume p, and also p; to be light-like.)




Singular limits at NLO: matrix elements

Matrix elements are constructed from external momenta that must satisfy mometum
conservation. When (Q;{p}n;1) satisfies momentum conservation, then (Q;{p}1) and

(Q;{p)A") do not. We must introduce deformed momenta to even write down the limits:

VP (Qilphact) S R (p, ) 0 A (O (P

e o A -
VP (Qiphner) s REI(p,) @ AR (Q; ()
NI N i
M (Qi phit) —— R (pr) @ AL (Q — P (5))

In kr-factorization, we can choose to just deform the initial-state momenta:

r—soft . N
M (Q; (phas) — R (p,) @ A (Q — pis ()
3 [1-FRN A .
M (Q3 (Phus) —— RE(p,) @ AB=(Q — pr + zepis (D))

+IP/P . N
M (Qifphst) ——— R (p,) @ AL (Q — pri{p})

This opens the possibility to construct subtraction terms with only deformed initial-state
moenta.




Subtraction method Frone, Kursz, Sigter 1950

Real radiation contribution within dimensional regularization

1

SnH

or(e) =

J[dQ] J dD (& Q;{Phns1) £(Q P hns)) M (Q 1pInst) TR (i)

We want to split the real-radiation integral into a finite part and a divergent part that can
be explicitly expressed as a Laurent expansion in € within dimensional regularization

or(€) = o@¥(e) + of" + O(e)

We define the finite “subtracted-real” integral as

oR = ]+1 J[dQ] J 4D (Q; {Phs) {L(Q;{P}n+1)) M (Qifphner) T ((Ps)
_ Z Subtr(Q§{P}n+1)} ;

2]

that can be integrated numerically, and

O—;j\:iv(él) _ 81 Z J'[dQ] J dq) (€, Q;{‘p}n+])subtr(Q;{p}n+1) )

n+1 -

that should be integrable analytically.




Subtraction ISl largely following Somogyi, Trécsanyi 2006

but with parameters Ey, (o, &y to restrict the phase space where the terms are active.

Final-state terms, with arguments (Q — p, + ZriPi;{P}f{’i) for amplitudes M:

47t O(E, < K4
:RiFr’COI ® Af#co' - 7£oc B(n, i < 20) g Qir(ze) ® |Mir|2

T PiPr
4 2 i

R @ AP = —ZT2 O(E, < Eo) S (V)
u € ni-p; - n-p; +nb'p color(i,b)
4

REsoco @ ghsoco — um;f O(E, < Eo)O(n,-my < 200) s Z M \

Initial-state terms, with arguments (Q — pr;{p}ﬁ) for amplitudes M:

drios |, —2 2
l,col lycol __ S
Rt @A = T B <Ex) o Qalx/X) @ My |
47t 2 :
:R;%soft ® .A)Iés‘)ft — _(ZX: G(ET < EO) Ty Ny (M)Z .

PL nxpr - nx.pr+nb.pr color(x,
4 4C

Rhsoco ) fhsece — 205 g(E < EQ)0(x, < Egx,) X Iv)?

p2e SXi Xy




SUbtraCtion ISl largely following Somogyi, Trécsanyi 2006

but with parameters Ey, (o, &y to restrict the phase space where the terms are active.

While ki = xP¥* + k', there is an initial-state singularity related to
the space-like gluon if the radiative momentum becomes collinear
to P, with splitting function

2¢C,
C(1+ )2

0,(0) = & Pulz) =20z —1) = 70

Initial-state terms, with arguments (Q — p,;{ptn) for amplitudes M:

col co 47{065 - —2 2
Ry @ Ay = ES 0(Xr < Eoxr) 5oz Qol=x/x) @ [ M|
470 2 LAVER g BN 2
:Rl,soft lsoft _ 0 E‘r E M
X ® 'AX LL_ZG ( < 0) Ny -pr - nyPr + 1y Pr ( )color(x,b)
Artoe, _ 4C 2
l,;soco l,soco __ X
R @ A = —58 B(E: < BB (s < &oxr) Sex. M




Subtraction method EENOER T UOERS RS

We define the finite “subtracted-real” integral as
1
o = 5— J[dQ]JdCD(Q;{P}nH){ﬁ(Q;{p}nH)) VP (QiPher) Tr (s
- Z SUbtr(Q;{p}nH) } )

where the T-sum is over all final-state partons, and where Subt, (Q;{p}n:1) is given by

> L(Q—pr+zaps ') RE(pr) @ AL(Q — pr + zups PIY) T (1Y)

+) L(Q—p: ) REMp) @ AN (Q—pr X)) Te(tPX)
ae{x,x}

+ Z L(Q—pr Pl ) RuP°(py) @ A (Q — ps {pX ) Je({(pX)
ae{x,x}

+  LQ-%P—pip}h) R AT (Q—p. ;) Is(lph)

+ L(Q=xP—p;{pl ) R (py) ® Ay o 2(Q—pr 1) Js (1p}2)

where also the i-sum is over all final-state partons with R (p,) = 0.




Subtraction method EENOER T UOERS RS

o(e) = )3 [1aQ [ a0 (@itp)) 2 (Qitp1) Taltp)

‘Sn—H

{ZJ (e,Q,{p}) ®A5(Q;{p}::)+Zﬂzr(e,Q,{p}:i)®ALT(Q;{p}¢i)},

aglxx}
with
. r d4726pr 5 .
jir<€> Q>{P}D :J W 04 (pr) (1 —2zi) Riy(pr) O(pr — z1iPi)
jl,soft/soco<€ Q {P}f) — [ d472€pf 5 (p2):Rl,soft/soc0(p )@)(p )
a )y XY n ] (27-[)372(-: +\Fr a T T
r d4—2€p L(Q ‘I‘XrP{P}ﬁ)
jl,(rzol €, { }'?i _ —Té 3 :Rl,;:ol . ® . ’
X ( Q) P ) ] (27-()3*26 +(p ) X (p ) (p ) L(Q,{p}_ﬁ)

and
O(q) =0(—x<xqg <1T—%x)0(—Xx <Xqg <1—%)

Only J' C°' . involve L-function = “P"-operator, must be integrated numerically.

But the @ restrictions obstruct confortable analytic integration also for the other terms.




Example integrated subtraction term B

- 7.[176
€=—2¢, M. =
We need to calculate r—e)
-2 _ 1 ng:mn
L!:ysoft - _ = J d4+€ . 5 2 ittt 0 ET E 1— . @) - — ZiDi
i (€) —_— P +(p’")ni~pr e —— (Er < Eo) (1 — z4) O(pr — zvipi)

but find it too complicated because of O(p, — z.pi).

Because p,, — z,ipi. vanishes both in the soft and the collinear limit, the integral

1 ni-MNy
i Pr Ni-Pr + Ny Pr

=2
Libcompl = — J d'p, 5. (p7) 8(E, < Eo) (1—21) |©(py — z:pi) — |

is finite and can be calculated numerically, while

: ) _
Ll (e) = —= | 4*%p. 5.(p}

1 ni-Ny
ni-pr Ni-Pr + Np-Pr

O(E, < Eo) (1 —2z)
can, in principle, be calculated analytically.

Still, the explicit appearance of n;-p,, ny-p; and E, makes it complicated.




Example integrated subtraction term B

€=—2¢, M. =

7.[176
N1 —e)

Thus, we introduce

E(ib) _ Ny Pr + Ny Pr —E Ny + Ny Ny
T - - T
ni-Npy NNy ni-MNyp

which vanishes in the soft limit, and becomes equal to E, in the collinear limit, so we can
define

1 n;-Np
ni-pr Ni-pr + Ny Pr
E, o) Egb)
X |:@(pr —Zﬁpi) B(Er < Eo) (] — E—) — B(ET‘ < Eo) (1 — E ):|

i i

: -2
LE;SOft’fm — 7 J d4pr 6+(p12,)

which can be calculated numerically, and

. _2 B ‘I n-n . E(ib)
1 Fisoftdiv _ _ Jd4+€ 5 2 i'Tlp O(EW « E 1=
ib (e) Tl e pr8:(pr) NiPr NiPr+ Ny Pr ( ' 0) Ei

which is easier to calculate analytically.




N u merlcal resu |tS for dijets, including: gg* — ggg, gg* — uug,

ug® — ugg, ug* — uud, ug* — uuuy, (u d)

T T T T T T T 2.2 T T T T T T T T T
integrated subtraction Ey=10,{p=1e-4 —— ol combined Eg=10,{p=1e-4 — |
subtracted real Eg=10,{p=1e-4 ———1 | _>T<_ . combined Eg=90,{)=1e-2 ——
integrated subtraction Ep=90,{p=1e-2 ——— | 1.8 R b
subtracted real Eq=90,{p=1e-2 ——— | 1.6 |- i B
114+ :):(: B
1F ,_7:::777 112 -52 b
=== - = R
0 — 1 %
AF {08F Lk |
5 do/dkt in mb/GeV 0.6 ;;_ + + do/dkr in mb/GeV A
’ 0.4 F1 xjr T .
8 102t :’_ -I:* X B
- X
_4 1 1 1 1 1 1 1 1 1 0 1 | | | :r j_ —rx
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integrated subtraction Ey=90,{p=1e-2 ——— | 0.8 - :
- subtracted real Ey=90,{g=1e-2 — | R i
! /= 071 7 |ksg Eem = 14TeV
05 b L loef [T ’ anti-kT with R = 0.4 1
 — 05 Pr > 50GeV, |yl < 4 i
0 = 04t = 1
0.5 do/dmax(pr) in mb/GeV - 03[ do/dmax(pr) in mb/GeV
B 02t |
L ﬁ -
15 1 1 1 1 1 1 1 0 -Fxﬁ_x_l—x—l—x——)(—‘_y X
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kr-dependent PDF: PB-NLO-HERAI+II-2018-set2 Bermudez Martinez et al. 2019




Divergences

All poles in € of the integrated subtraction terms are the same as in the on-shell case,
except the initial-state collinear divergence

()

o — - [10Q [ a0 (Q3(p1) £(QitpI) [ (Q5(9) Ta(Eoh)

with

L) = SPHEXP AP Py wellpl)/y
C(xP+xP+k;{ph)  Fel(x ko, mrllph)) /x
PiE(z) = 2Ca [ﬁ + ﬂ
compare with the collinear case
L(xP+yP+ki;{ph)  fx(y, rellpn)) /y

&ly) =7 (P+xP ki {ph) (% mr(fpha))/x

1 1
PE(2) = 2Ca {“ R ) —z}




Collinear factorization in QCD at NLO

do™© = | dxdx fy(x) fx(X) dB(x, X general: K" = xcP¥ + Xy PH + K
0 _J XA R i) dB 0o X) one in-state: ki, = xP"
other in-state: ki = XPH
NLO _ _ | % L% B
do™0 = | dxdxq f, (x) fx(%) | 5= dV(x, X) + 3= dR(x, %)
2 2n cancelling

Xl

+[ i (x) ;:es £ dz [?%eg(i)wié(l—;z)] lfx(r)

z
)] dB(x, x)

+ {%T O (x) f(%) + fi(x) ;—ﬂ fQLO(x)] dB(x, XJ}

X) — finite
> = finite

N

— X

+ g (x) e E dz [?;eg(z)‘i‘Vxé(]_Z)] %ﬂc(

N xR

1
f;"'o(x) — ]E J dz [T;(eg(z)+}/x6(1 —z)}

o
Y

N xR

1
N0 (%) — ]E J dz [?f;g(z)wyéﬂ —2)}

X

N = N =

X—h
N




Auxiliary parton method

AvH, Kotko, Kutak 2013

P L

We desire to obtain the matrix element with one space-like gluon for the process
g (ky) wxlkg) — wilpr) wa(p2) -+ walpn)  es g7(ke) glkg) — g(p1) g(p2) glp3)
and do so by replacing the space-like gluon with an on-shell auxiliary quark pair

q(ki(A) wylky) — q(ka(A)) wilpr) wap2) -+ wn(pn)

with special momenta Ik, 2
K= APF | K =pat = (A —x)PH -k
1 » la=pat=(A=x) ST AP P

such that, while individually on-shell, their difference is
K — kS =xP*+ k! + O(AT!) =kt +O(AT)

P*

The matrix element with the space-like gluon is obtained by taking A — oo

~r* . 1 X2|kL|z ~—=aux
3 (o s tphn) = Jim e = [N (AP, ke pas o)

K= (A—x)Pr -k} oA
ki = APH Pl

o - e

Kb = xPH + k'




Auxiliary parton method

AvH, Kotko, Kutak 2013

K= xPH kY kS = kP

We desire to obtain the matrix element with one space-like gluon for the process
g (ky) wxlky) — wilpr) walpa) -+ walpn)  eg g7k glkg) — g(p1) 9(p2) glp3)

and do so by replacing the space-like gluon with an on-shell auxiliary quark pair
q(k1(A)) wglky) = q(ka(A)) wilpr) walp2) -+ wnlpw)

with special momenta Ik, |2
Kkt = APH kK =p\HP=(A—x)PP—kt 4+ —— _P*

‘ e =pat=(Ax) LA PP
such that, while individually on-shell, their difference is

K=k =xP*+k, + O(AT) =kt +0O(AT)

The matrix element with the space-like gluon is obtained by taking A — oo

3 (ko Y5 (Pha) = lim. gzé £ |k e P AP, ko (1)

The factor x*|k, |> ensures the correct on-shell limit, 1/A” selects the leading power,
1/g? corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor

NZ —1
Caux—q = — Caux—g — ZNC

)
Ne




Auxiliary parton method

AvH, Kotko, Kutak 2013

L

the auxiliary parton method can be applied to Feynman graphs, from which one can derive
eikonal Feynman rules for the auxiliary partons

)i, 1 _
=—iTa K _s.
% i T PH ——_— 04, 5
H,a
~rx 1 ———aux
N oo keitphn) = e ¥ P (o s 0 )
IIO

Kb = xPH + k'

B SRR S
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Auxiliary partons at one loop

A\ effectively works as a regulator for linear denominators
1 Ao 2A
P-K (AP +K)?

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

=—> In/A in loop integrals

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV* _ dv*fam + dV*unf

dV*fm is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€2,1/€ poles look as if the space-like gluon were on-shell

For example, apply A limit on A|°°p(1Q,6Q,2q,3q,4e+,5r) (Bern, Dixon, Kosower 1998)
to get A'°°P(1*,24,3,4¢+, 5. ). The pole-part is proportional to the tree-level amplitude
with factor

1 2\ € 2\ €
{ e {< ; ) N ( ; ) } - S}Atree(1*’2q’3q>4e+»5e) y
€ —Sp3 —Sp2 2¢e

with s, and sp3 involving only the longitudinal part of kj =p + k.
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Auxiliary partons at one loop

A\ effectively works as a regulator for linear denominators
1 Ao 2A
P-K (AP +K)?

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

=—> In/A in loop integrals

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV* _ dv*fam + dV*unf

dV*fm is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€2,1/€ poles look as if the space-like gluon were on-shell

dvarf = a N, Re(Vaux) dB* is proportional to Born result a. = %ir((@;

2 €
K 2 AN v —1
Vaux: <|kL|2) |:€ ln;_”t—’_vaux +O(€)+O(/\ )




Auxiliary partons at one loop

A\ effectively works as a regulator for linear denominators
1 Ao 2A
P-K (AP +K)?

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

=—> In/A in loop integrals

Performing explicit calculations for some simple processes we find for the virtual contribu-
tion (Blanco, Giachino, AvH, Kotko 2023)

dV* _ dv*fam + dV*unf

dV*fm is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€2,1/€ poles look as if the space-like gluon were on-shell

AV = a.N.Re(V,u) dB* s proportional to Born result Qe = Eraog

2 €
Vaux=< = ) [i In/\—in+\73ux] +0(e) + O(AT)

|kL|2 X

v _1E+i+@+il §1+4 _E %1+E
AT e 6 3 18 NZ|e? 2e N.|3e 9
_ 1
vaux—g:_?+§




Auxiliary partons at one loop

More-or-less proven using known universal collinear limits of one-loop amplitudes
(Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large-/A, the small-|k | corresponds to a collinear limit of auxiliary partons.
While the large-A and small-[k, | limit commute at tree-level, they do not at one loop.

dV* _ dv*fam + dV*unf

dV*m is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€2,1/€ poles look as if the space-like gluon were on-shell

dV*"" = a.Nc Re(V,u) dB* s proportional to Born result Qe = Eraog

2 €
Vauxz< H ) E InA—inJr\?aux] +0(e) + O(AT)

|kL|2 X

v _1E+i+@+il §1+4 _E %1+E
AT e 6 3 18 NZ|e? 2e N.|3e 9
_ 1
vaux—g:_?+§
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Born (A-60P-b  Familiar  (-9)p-2,  Unfamiligy

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of A.




Real radiation with auxiliary partons

Born (A-0P-br  Familior (a-9)p-t,  Unfamiligy ; )
A-EIP -
AP AP AP r}( dis.
.
k’ kl ‘(‘
ks ks; ky
Pt \\ —
P ky xP & P ey

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of A.

’Maux’ (/\—l—X)PkX Xr/\P‘*‘TL‘i‘XTP Xq/\P—f‘qL‘f‘XqP {p1}1 1)

e A2 M7 (xP —q — 10, ke {pi
/\H Qaux(xqu)XY)rl) ‘ ‘ ( XZ’q L_,_r |L2’k,X ])
1 1

aux

Qaux(xq) qL)XT)TL) - qur iPaux(xqaxr) |qL + ri|2

. g 1 (crx L Ca q)}
g P xelg P+ xqlr 2 —xgxelg +r P\ 2 gL f?

Can be integrated analytically and is proportional to the Born result.
Like the unfamiliar virtual, it is proportional to (uz/IkJZ)e, produces InA,
and depends on the auxiliary parton types.




Real radiation with auxiliary partons

Born (A-8P-b;  Familiar (a-6)p-2,  Unfamiligy

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of A.

Precise separation of familiar and unfamiliar phase space via the demand that in the latter
case, the radiation must not become collinear to P in the terms with 1/x,

T T _
I | <X < L for terms with 1/x,

vwA Ttk
Ciafaloni, Colferai 1999

Can be integrated analytically and is proportional to the Born result.
Like the unfamiliar virtual, it is proportional to (uz/IkJZ)e, produces InA,
and depends on the auxiliary parton types.




Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ,

where ) b
aeNc W ‘ P-Px
Aun . jaux juniv juniv —2In——5-
T (w) [ e " } !
with " )
n¢ N L. 67 7T 5Tlf
univ. — ~ T 337 w7 U :Nc o0~ T~ )T T4q
J R Nc( €) writing X (18 c ) g >
and 301 1
n¢ n¢
Jauxq = 5 — 5(— Jauxg = — 32 - .
I L BT e S N SNEL




Complete unfamiliar contribution

Combining the unfamil

where
Aunf
with "
juniv —
6
and
Jaux—q -

iar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ’
aeNc n? o\ ¢ 2P-Px
jaux juniv jumv —2In———

¢ <“<Jz> [ et TP ] ’

Ty X . 67 Tt 5n¢
- | — — Nc = e
IN. N (¢ witing X (18 6 5
3 1 T ng n
z_z(_e) ) Jaux—g—z+3—]\]g+6—Né( €) .

e No InA present. O(ws) contribution to the space-like gluon Regge trajectory.
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Combining the unfamiliar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ,

where N e p.p
Ae N W P-Px
Aun - jaux juniv juniv —2In—5-
T e (kﬁ> [ et TP } !
with 11 X 67 2 5
L% . Tt Nyt
I L N A S S N (A I
Juniv R Nc( e) writing X c(18 c ) g >
and 301 1
n¢ n¢
Jaux—q - 2 - 2(_6) ) Jaux—g - Z + TN% + 67]\](3:(_6) .

e No InA present. O() contribution to the space-like gluon Regge trajectory.

e Target impact factor corrections as in Ciafaloni, Colferai 1999.




Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ,

where N ) b
acNe /2 \°© P-Px
Aun - jaux juniv juniv —2In—5-
T e (kﬁ> [ B TP } !
with 11 X 67 2 5
L% . Tt Nyt
I L N A S S N (A I
Juniv R Nc( e) writing X c(18 c ) g >
and 301 1
n¢ n¢
Jaux—q - 2 - 2(_6) ) Jaux—g - Z + TN% + 6Ng (—6) .

e No InA present. O() contribution to the space-like gluon Regge trajectory.
e Target impact factor corrections as in Ciafaloni, Colferai 1999.

e Collinear divergence, cancels against familiar virtual divergence.




Summary

do"tO = J dx d’k, di{F(x, k) (%) [dV*(X’ k@) + AR, k“’_‘)] 1
cancelling

n [FNLO(X’ ko) 4 F(x, k) Auns(x, ko) + A% (%, kl)]f(v‘c) dB*(x,k,,x)

+ [fNLO( ) + A (X )}F(x)kL)dB*(X)kui)}

] —
Acs(X) = _%J dz [PE(z) + vx8(1 —2)] 1Zf(z)

< z
e [ 2N, 2N, 1
Aiax k) = _a_J dz + +v,0(1 —z)|-F §,1<L
€ X [] _Z]+ z ,\ z y
eNe [ 2\ 2P-P
Awf(x, k) = a ( H 2) {lmpactFactCorH—Jun;\,—Zln—zx}
€ k.| k.|

fNLO( ) + Acoll( ) = finite

FNLO (% K, ) + Fx, ko ) Aunr (%, ko ) + A% (x, k., ) = finite

coll







On-shell limit

Space-like (LO) matrix elements have desired on-shell limit only after azimuthal integration:

[k ]—0 k”k" [deL
M) —— ME(0) =2 e M) = )]

As a consequence, point-wise cancellation of singularities fails at |k, | = O:

2 kim0 KTkY fro|—=0 . ony KUKY
Mk, )] — MEO0,1) —— P =My (0,7.) —— Singular x M(0) =5 P LM, (0)
2 |kJ_‘4)O 2 ‘TJ_lHO T‘LT‘
Singular X |M(kL — T’l)’ E— Slngular X |M TL)’ E— Singular X M:(O) | |2 M, (0)
Fortunately, the measure of the problematic phase space vanishes
16 T T T T T T T 003 T T T T T T T
e PB-NLO-HERAI+11-2018-set2 —— PB-NLO-HERAI+I1-2018-set2 ——
14 1 KS-2013-linear “--27 0.025 I TTe-, KS-2013-linear =~-%%
D : P o 1
12F el . J . S
. - tree level L [ o o
1k ' i . 99 —ag feelovel | 0.02 R gg —ggg treelevel
. i N do/dkt in mb/GeV ot R
08L [ I BT 0.015 - N do/dkr in mb/GeV i
o I '
Do :
I ' 0.01 .
04F 1 | :
02k 0.005 - 1
0 L 0 L 1 L 1 o
0 05 1 ]




ITMD* factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized
target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does
appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit
for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded
to be present from 3-jet formulae in CGC (lancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant off-
shell hard scattering amplitudes

[k qr'q?’ -
Z)M (aTTrz(ﬂ%”zraﬂz(?_m Mo drkr =0

ZiMik(Ti) is gauge invariant while ZiMiq(Ti) is not. For dijets, it happens that 7 = J(.

In the following only the manifestly gauge-invariant contribution is included, hence the
designation I TMD*.




ITMD* factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.
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shell |

2 M

In the

t——n A~ A ' . ~

Using the axial gauge with gluon propagator

—i ( & PEKY 4+ KHPY

@ P ) P* hadron momentum

the amplitude M for a process involving an off-shell gluon with
momentum xP* + Kk can be written as

2
M=KM, ==Y kM
i=1

where M, is obtained from the usual Feynman graphs indeed
with one gluon simply left “off-shell”. The role of “polarization
vector” is played by k.
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