MC4EIC

07/06/24

Extensions of MadGraph5_aMC@NLO for QCD studies

Chris A. Flett

Université Paris-Saclay, CNRS, IJCLab, Orsay, France

Work done in collaboration with A. Colpani-Serri, C. Flore, D. Kikola, J.P. Lansberg, L. Manna, O. Mattelaer, H.S. Shao, L. Simon, A. Safronov

This project is supported by the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 824093

Outline

Extensions fall under the umbrella of automation programs in MadGraph5_aMC@NLO (MG5) and include the two broad categories:

- Quarkonium production
- Asymmetric collisions
 - A. Photoproduction induced reactions in electron-hadron
 - B. Hadron A + Hadron B induced reactions

Quarkonium production

Introduction - why quarkonia?

Quarkonia: bound states of heavy c, b, quarks¹

50 years since J/ψ discovery

In high-energy facilities, they

- offer complementary information on quarkonium production mechanisms and fundamentals of QCD
- are expected to underpin the search for gluon saturation at the EIC + provide constraints on QGP dynamics.

¹bound states analogous to those of e⁺e⁻ (positronium)

2s+1_c

n=

Factorisation:

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2)$$
$$\times \hat{\sigma}(ij \to Q\bar{Q}[n] + X) \langle \mathcal{O}_n^Q \rangle_{i}$$

short-distance matrix element (pert.)

short-distance matrix element (pert.)

long distance matrix element (LDME, non-pert.)

expansion in relative velocity v of constituent heavy quarks allows one to systematically build up the quarkonium spectrum

expansion in relative velocity v of constituent heavy quarks allows one to systematically build up the quarkonium spectrum

Other mechanisms:

- Colour Singlet Model (CSM)¹
- Colour Evaporation Model (CEM)

Automation of quarkonium cross sections

Facilitates:

Global data/theory comparisons

-natural injection of new measurements into global framework rather than incrementally

Physics cases for future experimental facilities

Global NRQCD fits

Automation of quarkonium cross sections

Facilitates:

Global data/theory comparisons

-natural injection of new measurements into global framework rather than incrementally

Physics cases for future experimental facilities

Global NRQCD fits

-wide variety of data for single, double quarkonium production with different sensitivity to LDMEs

Automation of quarkonium cross sections cont.

Motivated:

Tool	Features
 MadOnia Artoisenet, Maltoni, Stelzer JHEP 02 (2008) 102 	(Deprecated) module within MadGraph4 - was not ported to current version (v5) Single quarkonium production phenomenology
 Helac-Onia Shao Comput.Phys.Commun. 184 (2013) Comput.Phys.Commun. 198 (2016) 	One or more S-wave and/or P-wave heavy quarkonia production based on tree-level helicity amplitudes
	Limited to LO, not immediately extendable to NLO (no NLO matrix element or no phase space integrator for NLO)

MadGraph5_aMC@NLO

- Only automated matrix element generator at LO and NLO + parton showering JHEP 07 (2014) 079
- Flexibility to support SM, BSM and large number of particle physics models

• But no quarkonia final states -- Why? -- extra complexities arise

MadGraph5_aMC@NLO

- Only automated matrix element generator at LO and NLO + parton showering JHEP 07 (2014) 079
- Flexibility to support SM, BSM and large number of particle physics models

- But no quarkonia final states -- Why? -- extra complexities arise
- **Technical:** e.g. multi-channeling phase space adaptation needed for quarkonia *Final state IR divergence cancellation issues (different NRQCD Fock states contribute) **Feynman integral reduction to master integral basis using standard tools fails

*famous resolution of non-cancelling IR divergences through mixing of P

wave states with relevant S wave states at $O(v^2)$

MadGraph5_aMC@NLO + quarkonia

Immediate goal:

Produce automation of quarkonium in MG5 at LO

...with NLO in sight

To date:

Finalising a version of MG5 enabling cross section computations with quarkonium @LO allowing:

LO cross section computations with an arbitrary number of Swave quarkonia and associated particles

- Colour projectors $C_1 = \delta_{ij}/\sqrt{N_c}$ $C_8 = \sqrt{2}T_{ij}^c$
- Spin projectors
- $ar{v}(p_2,\lambda_2)\Gamma_S \,\, u(p_1,\lambda_1)$

 $S = 0, \gamma_5; 1, \not\in (P)$ $P = p_1 + p_2$ $M^2 = P^2$

Internal and external helicity summations

Metacode: implement new quarkonium formalism via extension of existing .py that produces .f code to perform numerical manipulations

MadGraph5_aMC@NLO + quarkonia cont.

New interface:

E.g.
$$pp \rightarrow J/\psi + \eta_c + c\bar{c}g$$

MG_aMC>generate p p > J/psi etac c c \sim g and

MG_aMC>generate p p > c.c \sim (1|3S11) c.c \sim (1|1S01) c c \sim g

Benchmarked our implementation for **matrix element squared** for various processes against Helac-Onia

MadGraph5_aMC@NLO + quarkonia cont.

New interface:

E.g.
$$pp \rightarrow J/\psi + \eta_c + c\bar{c}g$$

MG_aMC>generate p p > J/psi etac c c \sim g and

MG_aMC>generate p p > c.c~(1|3S11) c.c~(1|1S01) c c~ g
Benchmarked our implementation for matrix element
squared for various processes against Helac-Onia

E.g. MG_aMC>generate

•
$$g g > b.b^{(1|1S01)}$$

• $g g > b.b^{(1|1S08)}$ single

g g > b.b~(1|1S01) g } single + elementary particle

• g g > b.b~(1|1S01) b.b~(1|1S01) } multiple

.. similarly for spin triplet

MadGraph5_aMC@NLO + quarkonia cont.

New interface:

E.g.
$$pp \rightarrow J/\psi + \eta_c + c\bar{c}g$$

MG_aMC>generate p p > J/psi etac c c \sim g and

MG_aMC>generate p p > c.c \sim (1|3S11) c.c \sim (1|1S01) c c \sim g

Benchmarked our implementation for **matrix element squared** for various processes against Helac-Onia

To do (short term):

Phase space adaptation & implementation into **NLOAccess** (see later)

Plan to release 'onia' branch of MG5 v3.x

Asymmetric collisions

Photoproduction in eA

II) Deep-Inelastic-scattering (DIS):

Hadron-Hadron induced reactions

Motivation:

- Need for reliable simulation tool for upcoming eA studies at the EIC to facilitate strategy and accomplishment of future measurements
- Single-usage codes such as FMNR not automated and possible adaptations of Helac-Onia would limit analyses to LO in short term
- NLO invaluable at the EIC --> make extensions within MG5

Currrently in MG5 (symmetric AA collisions):

$$\sigma_{AA \to X} = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; \text{LHAID}) f_j^A(x_j, \mu_F; \text{LHAID}) \hat{\sigma}_{ab \to X}(x_i, x_j, \mu_F, \mu_R)$$

Two classes of extension:

- Photoproduction in eA
- Hadron-Hadron induced reactions

a) Direct photoproduction

b) Resolved photoproduction

Photoproduction in MG5

²²

Photoproduction in MG5

²³

Photoproduction in MG5

Considered direct + resolved photoproduction [work by L. Manna]

$$\sigma_{eh\to X} = \sum_{j} \int dx_{\gamma} dx_{j} f_{\gamma}^{e}(x_{\gamma}, Q_{\max}^{2}) f_{j}^{h}(x_{j}, \mu_{F}; \text{LHAID}) \hat{\sigma}_{\gamma j \to X}(x_{\gamma}, x_{j}, \mu_{F}, \mu_{R})$$

Nuclear modification factor at the EIC for two energy configurations

Hadron A + Hadron B in MG5

[work by A. Safronov]

$$\sigma_{AB\to X} = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; \text{LHAID1}) f_j^B(x_j, \mu_F; \text{LHAID2}) \hat{\sigma}_{ab\to X}(x_i, x_j, \mu_F, \mu_R)$$

MCFM: 10.1007/JHEP12(2019)034

Validation vs MCFM for CT10 + nCTEQ15 for W production at NLO

A. Safronov et al., PoS ICHEP2022 (2022) 494 (https://doi.org/10.22323/1.414.0494)

Hadron A + Hadron B in MG5

[work by A. Safronov]

$$\sigma_{AB\to X} = \sum_{i,j} \int dx_i dx_j f_i^A(x_i, \mu_F; \texttt{LHAID1}) f_j^B(x_j, \mu_F; \texttt{LHAID2}) \hat{\sigma}_{ab\to X}(x_i, x_j, \mu_F, \mu_R)$$

Example: bottom quark production in pPb collision at LHC

-to generate plot need only the two LHAPDF IDs

Phys. Rev. D99 no. 5, (2019) 052011, arXiv:1902.05599 [hep-ex].

... scale uncertainty automatic

A. Safronov et al., PoS ICHEP2022 (2022) 494 (https://doi.org/10.22323/1.414.0494)

NLOAccess

(https://nloaccess.in2p3.fr/MG5/)

[work by C. Flore]

Please login to use MG5_aMC@NLO.

- a virtual access for automated perturbative calculations for heavy ions and quarkonia
- any code that could be compiled and launched via bash could be added
- MadGraph5 online version was only limited to LO calculation
- NLOAccess offers access for the first time to full NLO SM online calculation with MG5_aMC@NLO!

Summary & Outlook

Summary

- Towards S-wave quarkonium cross sections @LO in MG5
- Photoproduction in eA collisions in MG5: https://github.com/mg5amcnlo/mg5amcnlo/ mg5amcnlo/tree/ep_collision
- Asymmetric hadron-hadron collisions in MG5: <u>https://github.com/</u> <u>mg5amcnlo/mg5amcnlo/tree/RPA</u>

Outlook

- Extension to states with leading P wave Fock states --> global NRQCD picture, and/or BSM. Ultimately NLO in mind with few caveats. H-S. Shao, A. Hamed, L. Simon
- Incorporation into EU virtual access project NLOAccess

arXiv:2402.19221

Amplitude generation & spin projectors

MG5 organises amplitude into colour basis 'JAMPs'

Efficiency: For given process, may have large # of diagrams but colour basis will be much smaller

E.g. generate LO g g > c c~ colour singlet (CS) and colour octet (CO)

 $\mathrm{CS}: c_1 = \mathrm{Tr}(t^a t^b)$

Amplitude generation & spin projectors

MG5 organises amplitude into colour basis 'JAMPs'

Efficiency: For given process, may have large # of diagrams but colour basis will be much smaller

E.g. generate LO g g > c c~ colour singlet (CS) and colour octet (CO)

CO : $c_1 = \text{Tr}(t^a t^b t^c)$ $A_b = c_2 A_{22}$ $c_2 = \text{Tr}(t^b t^a t^c)$ $A_c = c_1 A_{31} + c_2 A_{32}$ $|\mathcal{A}|^2 = \sum_{i,j=1,2} \text{JAMP}_i^* \langle c_i | c_j \rangle \text{JAMP}_j$

Automation of quarkonium cross sections

Facilitates:

- Global data/theory comparisons
- Physics cases for future experimental facilities
- Global NRQCD fits

In public matrix element generators/event generators:

- Interfacing of e.g. HERWIG or PYTHIA with e.g. $MG5_aMC^1$

Facilitates complete computation _____

Versatility and enhanced physics simulation capabilities...

...but integration complexity, computational overhead, code compatibility and increased learning requirements.