Resolved-Photon PDFs at Particle Level PDF fitting (and future UE tuning) via a chain of event modelling machinery

Andy Buckley (University of Glasgow) and *Vithyaban Anjelo Narendran (University of Oxford)* Frank Krauss and Peter Meinzinger (Durham University) MC4EIC @ Durham University - 5th June 2024

Can you MC-tune a PDF?

Why? Two ways of doing PDFs

- Typically, fit PDFs via minimisation of the (PDF x ME) data difference, step by step. This is already difficult - adding shower/hadronization models on top of this makes it all the more difficult.
- Several potential advantages to including shower & hadronisation in a PDF fit - more datasets, PDFs being directly useful to MC generation.
- We can do this by matching PDFs to particle level MC generators.
- While this would have been historically difficult, it may no longer be the case! We can now use PDF-weight-variation mechanisms in generators to get MC predictions from randomly sampled PDFs. Can look at 1000s of random PDFs in one MC run.
- I am showing off our ongoing attempt!

PDF fitting with ME+PS MC Our Procedure

Sample

A set of N, Iow Q, PDF parameters

Tune

Find the best fit parameters and make final PDFs and errors

Evolve

To the full Q range and export as lhapdf PDF set members

MC Generator

Run MC events with PDF weight vectors to produce N sets of histograms

Parametrise

The response of each bin to the PDF starting parameters

The Resolved Photon

- $\gamma \rightarrow q\bar{q}$ allows for virtual photon to acquire QCD structure (with hadronic features)
- There are no valence quarks, as the initial structure is from the EM charge. i.e. $e \rightarrow \gamma$ via the Weizacker-Williams approximation
- Can access this in ee, ep, eA, AA \rightarrow Relevant to the EIC!

[arXiv:hep-ex/9710018]

Why Resolved Photon? Our testbed

- Major activity at HERA since the last public photon PDFs ~ 2004 <u>CJK fit</u>. No photon PDFs on lhapdf since 1996 Schuler & Sjöstrand.
- Existing Photon PDFs in Ihapdf don't have errors.
- More ep data available.
- Modern Proton PDF sets ⇒ coupled extraction of better Photon PDFs (in theory)
- New photon PDFs (with error sets) with HERA and LEP datasets becomes immediately useful to the EIC.

Parametrization and Evolution of PDFs SAL Parametrisation [hep-ph/0507091, DIS05]

- We begin with a parametrisation from SAL, consisting of point-like and hadronic terms.
- No c,b components. These are turned on later in the evolution at the appropriate scales.
- Using APFEL for DGLAP evolution of PDFs, starting from Q=1GeV.

PDFs before DGLAP evolution

PDFs evolved up to Q^2 = 2GeV 7

$$f_{q}(x) = f_{\bar{q}}(x) = e_{q}^{2} A^{PL} \frac{x^{2} + (1-x)^{2}}{1 - B^{PL} \ln(1-x)} + f_{d}^{HAD}(x)$$

$$f_{d}^{HAD}(x) = f_{d}^{HAD}(x) = A^{HAD} x^{B^{HAD}}(1 - f_{d}^{HAD}(x))$$

$$f_{G}^{HAD}(x) = A_{G}^{HAD} x^{B_{G}^{HAD}}(1 - x)^{C_{G}^{HAD}}(1 - x)$$

10⁰

PDF parameter sampling ranges (approximate)

Sherpa MC and Analysis in Rivet

- Using Sherpa 3.0.0 beta latest master version
- LO ME + PS (CKKW merging of up to 3 extra jets depending on analysis)
- Sherpa e-p one run of 15M events in direct mode (parallelised and rivet-merged)
- Sherpa e-p 300 resolved results (from varied PDFs) in one run using the PDF_VARIATIONS mode in Sherpa
- Sherpa runs ee direct and single resolved modes are currently running fast.
- Double-resolved is difficult at the moment due to slow run times (Investigating) → Implement later in the chain once the first tune has been done, and during a finer sampled rerun.

- H1_2002_I581409 New! Dijet cross sections in photo production
- ZEUS_2012_I1116258 Inclusive Jet photo production
- ZEUS_1997_I450085 Dijet cross sections in photo production
- ZEUS_2007_1756660 New! 3/4 jets FS in photoproduciton
- ZEUS_2003_I613625 New! Dijet angular distribution in photo production of charm
- OPAL_2003_I611415 Dijet
 Photoproduction

Tuning with Professor

- 6 free parameters
- Weights primarily on resolved part of the distributions
- Adding new shape-fitting, where the histograms are normalised to area before fitting - useful where clear > LO contribution is missing - or where cross sections/ direct-process modelling is problematic.
- Last time we floated all the norms using meta-params in the fit. Now, Professor's norm-mode \Rightarrow allow most histos to be fitted regularly, constraining the normalisation.
- Also focusing on weighting the tuning on UE-insensitive bins (high momentum/high jet invariant mass)

Current PDF Results & Errors IPOL and **Tuning**

- Predominantly weighting on resolved areas
- Weights on "high momentum/ high invariant mass" bins - currently judging by eye ~ > 20 GeV - should refine!
- Removing areas with weird ipol-issues & direct mis-modelling
- "Decent" results so far mostly battling high resolved cross sections, rather than low!! potentially a problem with how we are using APFEL.

- Using replica sets for errors resample reference data from error bars -> refit the ipols to each smeared reference data set to obtain multiple tunes - supply as (non 0000) member PDFs.
- Nominal fit now mostly central in the band except for high x.
- Can do better? Using covariance matrix from the initial tunes to inform our next set of PDF variations - and derive error bands from those.
- Clear charge separation of u and d. Mass suppression of c and b also works (these are not parametrised, just switched on in APFEL at the appropriate Q^2.
- Errors are large at the moment. More data needs to be added in?

- Using replica sets for errors resample reference data from error bars -> refit the ipols to each smeared reference data set to obtain multiple tunes - supply as (non 0000) member PDFs.
- Nominal fit now mostly central in the band except for high x.
- Can do better? Using covariance matrix from the initial tunes to inform our next set of PDF variations - and derive error bands from those.
- Clear charge separation of u and d. Mass suppression of c and b also works (these are not parametrised, just switched on in APFEL at the appropriate Q^2.
- Errors are large at the moment. More data needs to be added in?

- Using replica sets for errors resample reference data from error bars -> refit the ipols to each smeared reference data set to obtain multiple tunes - supply as (non 0000) member PDFs.
- Nominal fit now mostly central in the band except for high x.
- Can do better? Using covariance matrix from the initial tunes to inform our next set of PDF variations - and derive error bands from those.
- Clear charge separation of u and d. Mass suppression of c and b also works (these are not parametrised, just switched on in APFEL at the appropriate Q^2.
- Errors are large at the moment. More data needs to be added in?

- Using replica sets for errors resample reference data from error bars -> refit the ipols to each smeared reference data set to obtain multiple tunes - supply as (non 0000) member PDFs.
- Can do better? Using covariance matrix from the initial tunes to inform our next set of PDF variations - and derive error bands from those.
- Clear charge separation of u and d. Mass suppression of c and b also works (these are not parametrised, just switched on in APFEL at the appropriate Q^2.
- Errors are large at the moment. Should be able to fix via iterating the process in smaller ranges of parameters.

- any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

- any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

- any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

- any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

- Last time out, we had issues with wiggles at high x, as well as step artefacts. We oversampled in x to fix any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

- Last time out, we had issues with wiggles at high x, as well as step artefacts. We oversampled in x to fix any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

- Last time out, we had issues with wiggles at high x, as well as step artefacts. We oversampled in x to fix any interpolation issues.
- Step issues still there. And occasionally the wiggles still resurface.
- Not sure how to fix! Suggestions welcome! Perhaps a different DGLAP evolution tool?

MPI tuning A Crucial Next Step

- There are MPIs in doubly resolved e-e and resolved e-p processes.
- We can't simply use p-p MPI tunes for resolved processes in e-p, and similarly for double resolved in e-e. So we need different MPI tunes.
- The data we are using can also constrain this and we can use the LEP data here without issue.
- And more importantly, we don't want our PDFs to absorb MPI effects!
- The machinery is already in place, so it seems ideal to do a combined PDF + MPI tune in Sherpa.
- Tune preliminary PDFs with UE-insensitive datapoints -> Use tuned PDF for tuning MPI parameters -> Retune final photon PDF

Conclusions What we have so far!

- MC tuning with PS + ME generators can give us PDF fits allows us to produce error sets as well - all @ particle level.
- published!
- tuning efforts.

Hopefully useful to EIC phenomenology efforts when finalised, polished and

The new rivet routines are also potentially useful for other EIC related MC

Conclusions What we have to do!

- Fully implement sensitivity to c and b quarks, and incorporate LEP data into an earlier part of the process.
- Deal with errors better reconsider the current PDF evolution strategies, for smoother PDFs
- Full UE + PDF fits with at least 3 extra parameters.
- Make the move to MC@NLO accept the longer run times now that prototyping is near-complete.