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• Top Physics and properties measurements at 
hadron colliders 

• Quantum information in high energy particle 
physics 

• The recent ATLAS result 

• Implications and expected future results

Introduction
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ATLAS

• A Toroidal LHC ApparatuS:  
“the best experiment with the worst acronym.”
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ATLAS
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experiment with the worst acronym.
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(ATLAS) Measurement Problem
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(ATLAS) Measurement Problem
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(ATLAS) Measurement Problem
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• Is any of this relevant 
for QI measurements?
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(ATLAS) Measurement Problem

8

• When do particles 
interact with the 
detector?
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(ATLAS) Measurement Problem
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• When do particles 
interact with the 
detector?
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(ATLAS) Measurement Problem

10

• I don’t know, but there 
is a very strong 
magnetic field 
permeating the whole 
detector…
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• This measurement uses dileptonic tt ̅events, which are 
difficult to reconstruct.

Top Decays
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• Why is it hard to reconstruct top quarks?

Top Decays

Charged leptons 
are the perfect 
spin analyser!
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• Why is it hard to reconstruct top quarks?

Top Decays

Neutrinos not 
detected (directly) 
by ATLAS
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• Why is it hard to reconstruct top quarks?

Top Decays

• ATLAS selects events with two charged leptons in the 
final state (+ 1 or more b-tagged jets).
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• In order to measure D, we need to fully reconstruct both 
tops (we need measure cos(Φ) in parent top rest frames). 
➡ This means somehow dealing with two neutrinos  

• There are a number of methods to achieve this, but this 
measurements relies heavily on the “Ellipse method”.

Reconstructing Tops

 Nucl.Instrum.Meth.A 736 (2014) 169-178

• Employs a geometry 
approach to analytically 
solve the system using 
linear algebra. 

• Some other numerical 
methods used in small 
number of events.
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• We split our measurement based on mtt:̅ 

Signal/Validation Regions
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• We split our measurement based on mtt:̅ 

Signal/Validation Regions

SR: 340 - 380 GeV
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• We split our measurement based on mtt:̅ 

Signal/Validation Regions

VR1: 380 - 500 GeV
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• We split our measurement based on mtt:̅ 

Signal/Validation Regions

VR2: > 500 GeV
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• We split our measurement based on mtt:̅ 

Signal/Validation Regions

SR: 340 - 380 GeV VR1: 380 - 500 GeV VR2: > 500 GeV
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• Events are selected with exactly 1 electron and 1 muon. 

• Require 1 or more b-tagged jets (85% W.P):  
➡ loose working point to ensure high stats in signal region.

Selection
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Leptonic Spin analysers

22

• Top decay products have “spin analysing power”:

•  means a particle carries the full spin information. 
 means a particle carries none of the spin info.

αi = 1
αi = 0

• Almost all published spin measurements in top physics 
use the leptonic decay mode: 
➡ easiest to identify experimentally.

• In Run3 we will start to see results using down-type jets. 

• Interesting question about implications of these not being 
exactly 1.

now!



Jay Howarth

• This selection is a very robust one (similar selection used in 
dozens of analyses).

Selection

• Very good overall agreement between the number of 
signal+background events and the observed number of 
events in data. 
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• We somehow need to correct our observed D for detector 
effects to some ‘truth’ level (particle in this case): 
➡ We achieve this with a calibration curve.

Calibration Curve

• To construct this curve 
we need to change the 
amount of entanglement 
in our MC. 

• We create 5 hypothesis 
points corresponding to 
the SM and 4 different 
reweighing points: 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• How these alternative hypothesis points are constructed 
is one of the key points of the measurement. 

• We cannot dial entanglement up or down in the MC, so 
we reweight the cos(Φ) distribution as a function of m(tt)̅.

Reweighting 

• If this is not done correctly, the 
relation: 
 
 
does not hold. 

• The method we have used 
ensures that this relationship 
remains correct.

D =
tr[C]

3
= − 3 ⋅ < cos(ϕ) >
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• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 

• As with most top measurements, we are limited by signal 
modelling (also note that the relative uncertainty depends on D).

Systematic Uncertainties

26
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• We have a large suite of MC modelling related systematic 
uncertainties: 
 
 
 
 
 
 
 
 
 

• Colour reconnection, string vs cluster fragmentation, spin 
correlation in parton shower, EW shower were all tested but 
found to be negligible effects. 
 
 
 
 

Systematic Uncertainties

27
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• The observed (expected) results are:

Results

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

ATLAS                 
√s = 13 TeV, 140 fb-1

- -

Particle-level Invariant Mass Range [GeV] 

380 < mtt- < 500 mtt > 500340 < mtt < 380

D = − 0.537 ± 0.002 [stat.] ± 0.018 [syst.] (−0.470 ± 0.002 [stat.] ± 0.016 [syst.]) ,
D = − 0.265 ± 0.001 [stat.] ± 0.019 [syst.] (−0.258 ± 0.001 [stat.] ± 0.019 [syst.]) ,
D = − 0.093 ± 0.001 [stat.] ± 0.021 [syst.] (−0.103 ± 0.001 [stat.] ± 0.021 [syst.]) ,

SR
VR1
VR2

• The observed results excludes the entanglement limit at  
(much) more than 5 sigma significance. 

Nature 633 (2024) 542

28
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Parton Shower

AATTLLAASS SSiimmuullaattiioonn Preliminary 
√√

ss == 1133 TTeeVV,, ppaarrttiiccllee lleevveell

Herwig 7 LO Dipole shower

Herwig 7 LO Angular shower
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• Difference seems to come from the ordering of the 
shower.

• Angular ordered showers have a large effect compared to 
dipole showers. 

• Doesn’t effect detector corrections significantly. 
29
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• This difference between parton showers IS included in 
the calibration curve!

Calibration Curve
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• Big differences in prediction don’t necessarily mean large 
detector correction effects.
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• Bound state effects are most prevalent in the region that 
we care about.

What about ‘Topponium’?

Kiyo, Kühn, Moch, Steinhauser, Uwer, 2009

• These are not directly included in our MC simulations (but we 
have attempted to introduce them as a cross-check and other 
uncertainties cover similar effects).

31

https://arxiv.org/abs/0812.0919
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• Effect on data correction is ~0.5% (adding it into the total 
uncertainty doesn’t change the error within the precision we quote).

Topponium

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

ATLAS                 
√s = 13 TeV, 140 fb-1

- -

Particle-level Invariant Mass Range [GeV] 

380 < mtt- < 500 mtt > 500340 < mtt < 380

back of the 
envelope

• If added to predictions, would move them closer to data (but 
not clear by how much as we cannot isolate the spin singlet).
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• ATLAS has observed quantum entanglement for the first 
time in a pair of fundamental quarks, at the highest lab-
made energies. 

• ATLAS has not made any claims about Bell operators or 
locality. 

• This is the first step in a program to use the LHC as a tool 
for exploring quantum information. 

• Important questions about how entanglement (and spin 
correlation) is modelled in this threshold region: 
➡Would be a very profitable area for further study in the 

theory community!

Conclusions
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Backup

34
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Top Quark Decays

35

• W bosons act as their own polarimeters
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Top Quark Decays
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• W bosons act as their own polarimeters
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• Their down-type decay particle momenta always points in 
the direction of their spin!

ℓ
ℓ

ℓ
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Spin Correlation in tt ̅

ℓ

θ
spin analysing basis 

• It matters how you measure these angles!
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Spin Correlation in tt ̅

• You can build spin sensitive observables and measure 
them in data:

JHEP 03 (2017) 113 Phys. Rev. D 100, 072002 (2019)

• Many more observables with interesting symmetry 
structures and BSM potential (ask me if you’re interested).

38

https://link.springer.com/article/10.1007/JHEP03(2017)113
https://doi.org/10.48550/arXiv.1907.03729
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Spin Correlation in tt ̅

• An easy lab-frame observable that you can build is the 
𝚫ɸ between two leptons in dilepton events:

• Was used to discover spin correlation in tops, to exclude 
light stops, and currently has a 3σ tension with the SM.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.212001
https://link.springer.com/article/10.1140/epjc/s10052-020-8181-6
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Introduction

• It’s important to note that: 

Entanglement   ⇒  Bell Inequality Violation 

• Something can be quantum entangled but not 
strongly enough measure but not to violate a Bell 
inequality.
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• The goal of the ATLAS measurement is to measure: 
 
 
 

• Where cos(ɸ) is the dot product of the top spin analysers 
in their parent top rest frames. 

• An observation of D < -1/3 is a sufficient condition to 
claim entanglement in tt ̅pairs (equivalently, that their density 
matrices are not factorable). 

• ATLAS has measured this D in tt ̅events using 140 fb-1 of  
13 TeV data.

Entanglement in tt ̅

D =
tr[C(k, n, r)]

3
= − 3 ⋅ < cos(ϕ) >

41
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• The primary experimental challenges in this result are to 
reconstruct the tops with sufficient sensitivity to isolate 
the threshold region where tops are entangled.

Getting the small D

Upper M(tt)̅ threshold cut [GeV] 
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• The primary experimental challenges in this result are to 
reconstruct the tops with sufficient sensitivity to isolate 
the threshold region where tops are entangled.

Getting the small D

Upper M(tt)̅ threshold cut [GeV] 

• What this is basically 
saying is that if the spin 
correlations across the 
k,n,r axes are stronger 
than 33%, you can’t 
explain this with purely 
classical probabilities 
and need QM.

43
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• You can actually use D to do a Bell test if you wanted to 
(though it isn’t an optimal way).

Getting the small D

Upper M(tt)̅ threshold cut [GeV] 
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• The primary experimental challenges is to reconstruct the 
tops with sufficient sensitivity to isolate the threshold 
region where tops are entangled.

Getting the small D

45
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• The next target will be to test Bell inequalities (CHSH), but 
this will be much more difficult.

What next?

• We have a lot of experience in looking at high-scale 
boosted top events, but not for spin correlation 
measurements.

46



Jay Howarth

What would non QM look like?

• What is allowed without violating relativity (i.e. non-signalling) 

➡ CHSH <= 2: Purely classical correlations. 

➡ CHSH <= 2√2: Maximum allowed by QM correlations. 

➡ CHSH <= 4: Maximum allowed by non-signalling. 

• Particle physics measurements aim to minimise the 
dependence of detector corrections to the POI (e.g. CHSH). 

• Easy to be sensitive to exotic values for QI observables in 
principle (not trivial to test in practice).

47
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• Why stop at top quarks? The SM offers many more ways 
to explore QI, with more exotic spin states:

Other Processes?

• Higgs decays: 
➡ HWW (semileptonic and dileptonic) 
➡ HZZ (4 lepton)  

• Diboson events: 
➡ Vector boson processes (ZZ, WW, WZ etc)  

• Other top decay modes: 
➡ Boosted semi-leptonic 
➡ Single top [brand new idea] 

• Not just stamp collecting, each of these offers unique 
spin structures.

48
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• Why stop at top quarks? The SM offers many more ways 
to explore QI, with more exotic spin states:

Other Processes?

• Higgs decays: 
➡ HWW (semileptonic and dileptonic) 
➡ HZZ (4 lepton)  

• Diboson events: 
➡ Vector boson processes (ZZ, WW, WZ etc)  

• Other top decay modes: 
➡ Boosted semi-leptonic 
➡ Single top [brand new idea] 

• Not just stamp collecting, each of these offers unique 
spin structures.

2307.13783

49
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• Are there things we can do that no one else can? 

• “Autodistillation” is the idea that as particle systems 
decay, their entanglement gets stronger.

Unique Opportunities

2401.06854

50

https://arxiv.org/pdf/2401.06854.pdf
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Top Quark Decays

51

• This leads to the concept of “spin analysing power”:

•  means a particle carries the full spin information. 
 means a particle carries none of the spin info.

αi = 1
αi = 0

• Almost all published spin measurements in top physics 
use the leptonic decay mode: 
➡ easiest to identify experimentally.

• In Run3 we will start to see results using down-type jets.
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• How reliable are the elements of this result?

Common Questions

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

ATLAS                 
√s = 13 TeV, 140 fb-1

- -

Particle-level Invariant Mass Range [GeV] 

380 < mtt- < 500 mtt > 500340 < mtt < 380
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• How reliable are the elements of this result?

Common Questions

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

ATLAS                 
√s = 13 TeV, 140 fb-1

- -

Particle-level Invariant Mass Range [GeV] 

380 < mtt- < 500 mtt > 500340 < mtt < 380

• Corrections to the 
data: very reliable 

• A comprehensive and 
conservative (even by 
ATLAS’s standards) list 
of systematic 
uncertainties has 
been considered on 
all aspects of the 
analysis.
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• How reliable are the elements of this result?

Common Questions

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

ATLAS                 
√s = 13 TeV, 140 fb-1

- -

Particle-level Invariant Mass Range [GeV] 

380 < mtt- < 500 mtt > 500340 < mtt < 380

• Predictions of the SM: 
Reliable but limited. 

• These predictions 
come from general 
purpose MC 
generators: 
➡We understand them 

very well, but they 
are not designed to 
model threshold 
perfectly.
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• How reliable are the elements of this result?

Common Questions

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

ATLAS                 
√s = 13 TeV, 140 fb-1

- -

Particle-level Invariant Mass Range [GeV] 

380 < mtt- < 500 mtt > 500340 < mtt < 380

• Entanglement limits: 
Reliable but limited. 

• Same limitations as 
predictions. 

• Two models give 
different limits, but 
source is understood 
and we’ve taken the 
most conservative of 
the two. 
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• Bound state effects should be increasing entanglement: 
➡ Including them only makes result more significant, not less.

Common Questions

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

ATLAS Preliminary  
√s = 13 TeV, 140 fb-1

*exaggerated, the effect on the error bars would be too small to see.

*

56



Jay Howarth

• The relative size of the systematics is not fixed and changes 
at each hypothesis point:

Systematic Uncertainties

Reco

Truth Nominal
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• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 
 

• Ideally, truth and reco shift in a correlated way, and there is 
no resultant uncertainty.  
 
 
 

Systematic Uncertainties

Reco

Truth

Reco

TruthNominal Systematic Shift
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Systematic Uncertainties

Reco

Truth

Reco

TruthNominal Systematic Shift

• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 
 

• In practice, most uncertainties shift reco but not truth and 
therefore change the slope (all detector uncertainties do this).  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• The relative size of the systematics is not fixed and changes 
at each hypothesis point: 
 
 
 
 
 
 
 
 
 
 
 

• In the worst case, systematics shift slope and offset and have 
a large effect (our dominant uncertainties behave this way).

Systematic Uncertainties

Reco

Truth

Reco

TruthNominal Systematic Shift
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