

[2406.03976] (accepted to ROPP)

Entanglement of top quarks in the production threshold region at CMS

AJ Wildridge on behalf of the CMS Collaboration

Quantum Tests in Collider Physics Merton College, Oxford October 1, 2024

Top Quark Physics

 Top quark is the heaviest fundamental particle discovered thus far: m_t =172.52±0.33 GeV

• LHC is a top quark factory (100m+ thus far)

- Top Quark Spin Correlations
- Spin correlations are dependent on **production mode** $(gg vs. q\bar{q})$ and higher orbital momenta \rightarrow function of e.g. Θ_t , $m(t\bar{t})$
- Top quark spin cannot be measured directly
- Fully preserved in charged leptonic and down-type quark decays of W boson

Measurement of Top Quark Spin Density Matrix in dilepton

• Spin density matrix fully captured by a four-fold angular distribution $1 d^4 \sigma = 1$

$$\frac{1}{\sigma} \frac{1}{d\Omega d\overline{\Omega}} = \frac{1}{4\pi^2} \left(1 + \kappa \mathbf{P} \cdot \Omega + \bar{\kappa} \overline{\mathbf{P}} \cdot \overline{\Omega} - \kappa \bar{\kappa} \Omega \cdot (\mathbb{C} \overline{\Omega}) \right)$$

$$\begin{pmatrix} P_k \end{pmatrix} \qquad \qquad \begin{pmatrix} C_{kk} & C_k \end{pmatrix}$$

- Spin Polarization $\mathbf{P}/\overline{\mathbf{P}} = \begin{pmatrix} r_k \\ P_r \\ P_n \end{pmatrix}$ Spin Correlation $\mathbb{C} = \begin{pmatrix} c_{kk} & c_{kr} & c_{kn} \\ c_{rk} & c_{rr} & c_{rn} \\ c_{nk} & c_{nr} & c_{nn} \end{pmatrix}$
- Can integrate above four-fold angular distribution to get 1D distributions for each spin coefficient

$$\frac{1}{\sigma}\frac{d\sigma}{dx} = \frac{1}{2}(1 + [\text{Coef.}]x)f(x)$$

[PRD 100 (2019) 072002]

Measurement of Top Quark Spin Density Matrix in dilepton

- SM predicts zero polarization for $t\bar{t}$ (< 10^{-2}) QCD is CP even
 - Zero polarization \rightarrow zero slope at parton level 0

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{1/2}^i} = \frac{1}{2} \left(1 + P_i \cos\theta_{1/2}^i \right) \qquad \text{cms}$$

October 1, 2024

0.08

35.9 fb⁻¹ (13 TeV)

Measurement of Top Quark Spin Density Matrix in dilepton

- SM predicts non-zero correlation for $t\overline{t}$
 - Non-zero correlation \rightarrow asymmetry in $cos\theta_1^i cos\theta_2^j$ distribution at parton level

How to probe entanglement

• What does it mean to be **<u>not</u>** entangled? Separable!

$$\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

- For pure states this is easy \rightarrow measure entanglement entropy
- At the LHC top quarks are produced in a mixed state and thus can be represented as a density operator

$$\rho = \frac{1}{4} \left[I_4 + \Sigma_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \Sigma_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

- Need to determine an entanglement witness, Δ
- Hard to show density operator is separable but you can "easily" show it is non-separable → entangled!

Peres, <u>Phys. Rev. Lett. **77**</u>, 1413 Horodecki, <u>Phys. Lett. A **232**, 5</u>

How to probe entanglement: Peres-Horodecki Criterion

- If a state is separable \rightarrow Unit trace, Hermitian, Eigenvalues ≥ 0
- Therefore, a state is entangled if the above conditions <u>don't</u> hold for the partial transpose of the spin density matrix, ρ
- A sufficient condition for **entanglement** using Peres-Horodecki Criterion:

$$\Delta = C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad [Eur. Phys. J. Plus 136, 907]$$

At low
$$m(t\bar{t})$$

 $C_{kk} > 0 \& C_{rr} > 0 \to tr[C] > 1$
 $D = -\frac{tr[C]}{3} = \frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$
 $D < -\frac{1}{3} \to \text{entangled}!$
Measure D to access entanglement information!

[2406.03976] (accepted to ROPP)

How to discover **entangled** top quarks

- CMS probed the production threshold region for entanglement
- Mostly timelike (spacelike) separated decays in production threshold (boosted) region

Measurement of Entanglement in Threshold Region - Method

- Dileptonic channel (*ee*/μμ/eμ) w/ 2016 data
- Used m_{lb} method for reconstructing both neutrinos
- Measured D using a binned profile likelihood fit of $\cos\varphi$
 - Performed fit in: $345 < m(t\bar{t}) < 400 \text{ GeV } \&$ $\beta_z(t\bar{t}) < 0.9$
- Performed the fit both including & excluding the ground state of toponium, η_t

[<u>2406.03976</u>] (accepted to ROPP)

Measurement of Entanglement in Threshold Region - Method

- Need to fit POI D
 - Q: How to create variations of D?
 - A: Generate top quark pairs with zero spin correlation $\rightarrow D = 0$
- Can create new samples with mixtures of SM and no spin corr.
- These mixtures only probe
 [D_{SM}, 0] → Mirror to probe [-1, D_{SM}]

[2406.03976] (accepted to ROPP)

Measurement of Entanglement in Threshold Region

- Large mismodeling seen for $m(t\bar{t}) \approx 345 \text{ GeV}$
- Consistent between dilepton & lepton+jets and CMS & ATLAS

Measurement of Entanglement in Threshold Region

- Large mismodeling seen for $m_{t\bar{t}} \approx 345 \text{ GeV}$
- Excesses seen could be from toponium
- New (hypothetical) exciting SM resonance

 - Spin singlet \rightarrow Maximally entangled tt Exciting implications for entanglement measurements!
- Signal model includes spin and color singlet ${}^{1}S_{0}^{[1]}$

- Theory predictions with NRQCD
 - Color singlet and octet contributions to spin singlet

Pre-fit Distributions

- Better agreement when including $\eta_{\rm t}$
- MadGraph5 aMC@NLO+Pythia8 describes the $\cos \varphi$ distribution better near production threshold

Post-fit Distribution

- Good agreement within uncertainties
- Post-fit value of 2.53% more spin correlated tt contribution

Measurement of Entanglement in Threshold Region - Results

- Significance $> 5\sigma$
- Observation of entangled top quarks!

Conclusion

- Top quarks are entangled
- First inclusion of bound-state effects in the production threshold region via η_t
- Start of quantum information studies in high energy physics at the LHC
- New door into "old" physics

[2406.03976] (accepted to ROPP)

Thanks! awildrid@purdue.edu

H

2024

(ctob

Quantum tests in collider

-m

-

-1-11-

TU M-

19

- D Day

October 1, 2024

20

Helicity Basis: Spin Quantization Axes $\{\hat{\mathbf{k}}, \hat{\mathbf{n}}, \hat{\mathbf{r}}\}$

- Helicity $\hat{\mathbf{k}}$ -axis: top quark direction in $t\overline{t}$ rest frame
- Transverse $\hat{\mathbf{n}}$ -axis: transverse to production plane

$$\widehat{\mathbf{n}} = \frac{\operatorname{sign}(\cos \Theta_{t})}{\sin \Theta_{t}} (\widehat{\mathbf{p}} \times \widehat{\mathbf{k}})$$

- **r**-axis: orthogonal to the other two axes
 - $\hat{\mathbf{r}} = \frac{\operatorname{sign}(\cos \Theta_t)}{\sin \Theta_t} (\hat{\mathbf{p}} \hat{\mathbf{k}} \cos \Theta_t)$
- \hat{p} : direction of the incoming parton, i.e. the direction of the proton beam (z-direction in the laboratory frame)
- Θ_t : top quark scattering angle in $t\bar{t}$ rest frame

