Quantum entanglement and particle decay

J.A.Aguilar Saavedra Instituto de Física Téorica, UAM/CSIC, Madrid

Quantum tests in collider physics, Oxford, October 1st 2024

Projects PID2019-110058GB-C21 & PID2022-142545NB-C21funded by

What is a decay?

Deconstructing particle decay

What does decay mean in a particle detector? Example: top quark $t \rightarrow Wb$

* Strictly speaking, this is part of the unitary evolution, S = 1 + i T. ** This also involves the identification of the final state, Wb / ... Detectors measure momenta in the quantum-mechanical sense.

They do not measure spin.

The measurement of momenta influences the spin state but in general it does not collapse it as a Stern-Gerlach experiment would do.

This leads to novel entanglement effects that are yet untested:

Entanglement and post-selection

JAAS 2307.06991 JAAS, Casas 2401.06854 JAAS 2401.10988

JAAS 2308.07412

General states are described by a density operator.

One can fully characterise the effects of a particle decay

 $A \rightarrow A_1 A_2 \dots$

by specifying how the post-decay operator ρ' relates to the initial one ρ

we will focus on spin degrees of freedom

Consider a system of two particles A, B, with spin state described by

$$\rho = \sum_{ijkl} \rho_{ij}^{kl} |\phi_i \chi_k\rangle \langle \phi_j \chi_l | \qquad \qquad |\phi_i\rangle \in \mathcal{H}_A \,, \quad |\chi_k\rangle \in \mathcal{H}_B$$

Let A decay $A \rightarrow A_1 A_2 \dots$ with amplitudes

$$M_{\alpha j} = \langle P \, \xi_{\alpha} | T | \phi_j \rangle \qquad \qquad |\xi_{\alpha}\rangle \in \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2} \otimes \dots$$

Then, the spin state of $A_1 A_2 \dots$ and B is described by

these come from the projector

$$\rho' = \frac{1}{\sum_{\alpha k} (M\rho^{kk} M^{\dagger})_{\alpha \alpha}} \sum_{\alpha \beta kl} (M\rho^{kl} M^{\dagger})_{\alpha \beta} |\xi_{\alpha} \chi_{k}\rangle \langle \xi_{\beta} \chi_{l}|$$

in particular, the entanglement properties between A and B can be inherited by { the decay products of A } vs B

When t t-bar are entangled and t-bar decays into W^- b-bar, t is entangled with the W^- b-bar pair

Potential problem:

The *b* spin is, in principle, not measurable.

When we have several entangled particles and trace over [unobserved] degrees of freedom, entanglement may be `lost'.

but *b*-bar has RH helicity up to small mass effects, trace maintains entanglement between t and W^-

Example: threshold region $m_{tt} \leq 390$ GeV, $\beta \leq 0.9$, beamline basis z = (0,0,1)

 $\theta rightarrow range and <math>\hat{z}$ axis or any fixed axis

phase space region	Ν(ρ)
$\theta = 0$	0.13
$\cos \theta > 0.9$	0.12
$\cos \theta > 0.5$	0.10
$\cos \theta > 0$	0.07
all 0	0

Negativity: entanglement measure

The amount of entanglement is the same in any direction but the quantum state is not, so integration washes out entanglement

The projection is at work here: the spin quantum state depends on *t*-bar decay kinematics

Entanglement indicator:

lowest eigenvalue λ_1 of the ρ^{T_2} matrix for tW

tW threshold, $\cos \theta_W \ge 0.3$ *tW* boosted, $\cos \theta_W \leq -0.3$ 120 50 SM separable separable entangled 100 40 p.d.f. (normalised) 05 05 p.d.f. (normalised) 80 60 40 10 20 0 -0 -0.10 -0.05 -0.10 -0.05 -0.150.00 0.05 -0.20-0.150.00 0.05 λ_1 λ_1 stat uncertainty Bias: even if $\lambda_1 > 0$, in a small sample we may find it negative Significance Run 2 [stat + 10% sys + bias] these numbers can possibly be improved 7.0 σ Threshold by combining several regions... 5.0 σ Boosted

 $\lambda_1 < 0 \Leftrightarrow$ Entanglement

Entanglement autodistillation

Entanglement decreases by measurements [collapse], interaction with environment [decoherence] ...

Methods are known [distillation] to manipulate a sub-system and, if lucky, increase entanglement

Most remarkably, the decay can increase entanglement spontaneously.

Entanglement autodistillation

Since the *b* spins are, in principle, not measurable, we can use the *t*-W entanglement as a proxy to probe the entanglement increase.

And this could be observed in e+ e- colliders [needs that tops are polarised]

To take away

Particle decay and subsequent momenta projection is a very special kind of "measurement" in QM sense

Most-decay entanglement never tested, 5σ sensitivity is possible at LHC with Run 2 data

Spontaneous increase of entanglement [autodistillation] possible and testable at colliders Entanglement and post-selection

Warming up: pre-selection experiment

Assume fermion pairs f_A f_B produced in an entangled state, say

$$\frac{1}{\sqrt{2}} \left[|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right]$$

We perform a Stern-Gerlach experiment on f_A , and after that, f_B decays

We select those f_B for which the result of the SG experiment on f_A gives $|\uparrow
angle$

The decay distribution of those pre-selected fB corresponds to having spin $\ket{\downarrow}$

But... are we really using the fact that $t_B > t_A$? What happens when $t_B < t_A$?

A post-selection experiment

Remarkably, the same happens time-backwards:

 f_B decays and after that, we perform a Stern-Gerlach experiment on f_A

We select the subset of f_B for which the result of the posterior SG experiment on f_A gives $|\!\uparrow\rangle$

Then, the decay distribution of those f_B that had decayed before the outcome of the SG experiment corresponds to having spin $|\downarrow\rangle$

[no experimental evidence yet, verified with Monte Carlo]

A post-selection experiment

This experiment could be performed with low-energy $\mu^+\mu^-$ pairs produced in Drell-Yan or from the decay of a η meson

The muon polarisation can be measured from the daughter electron

Comment #I

From what I have shown, one cannot state that μ^+ in the sub-sample

```
for which the posterior SG on \mu^- gives |\downarrow\rangle
have spin |\uparrow\rangle
```

 $= \ldots$

What one can say is that this sub-sample

is physically equivalent to a sample of μ^+ with spin $|\uparrow\rangle$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Comment #2

I have not yet shown that this effect is genuinely quantum.

Consider for example inclusive t t-bar production, label as t_1 the quark that decays first, t_2 the one that decays last, and ℓ_1 , ℓ_2 their daughter leptons.

 $\theta_{\ell_1}, \theta_{\ell_2}$: angles between leptons and top helicity direction

Comment #2

Definitive test: CHSH inequalities

$$A = \sigma_3, \quad A' = \sigma_2, \quad B = \frac{1}{\sqrt{2}}(\sigma_2 + \sigma_3), \quad B' = \frac{1}{\sqrt{2}}(\sigma_2 - \sigma_3)$$

How are they measured?

- Bob registers μ⁺ decay
- Alice chooses whether to measure spin in \hat{z} or \hat{y} axis for μ^-
- Expected values for Bob are calculated for each choice of Alice, e.g.

$$\langle AB \rangle = \frac{1}{2} \left[\langle B \rangle_{\uparrow} - \langle B \rangle_{\downarrow} \right] \qquad \langle B \rangle \text{ when Alice gets } \uparrow \\ \langle B \rangle \text{ when Alice gets } \downarrow \\ \bullet \text{ It turns out that } \langle AB \rangle = -\langle AB' \rangle = \langle AB' \rangle = \langle A'B' \rangle = -\frac{1}{\sqrt{2}}$$

 $|\cdots| = 2\sqrt{2} > 2$ CHSH inequality violated

From past to future

Experiment agrees with future-to-past interpretation But... as said, the phenomenon is time-unaware... Is it possible a past-to-future interpretation?

yes, it is!

The initial state is $\frac{1}{\sqrt{2}}[|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle]$ and if we do a SG on f_A before f_B decays, we get up or down with equal probability.

The decay of f_B projects f_A into a state that depends on the decay configuration.

$$\sum_{\alpha} \left[M_{\alpha \frac{1}{2}} |\xi_{\alpha} - \frac{1}{2}\rangle - M_{\alpha - \frac{1}{2}} |\xi \frac{1}{2}\rangle \right]$$

The probability to have SG up or down is not the same.

From past to future

Then, when we post-select events where SG gives $|\downarrow\rangle$, we recover μ^+ decay distributions just as if μ^+ had spin $|\uparrow\rangle$ when it decayed. Beautiful and amazing.

To take away

Post-selection is a genuine entanglement effect, yet untested

Past-to-future and future-to-past interpretations are equivalent and lead to the very same predictions

Quantum entanglement in the media

does not exactly look
like a spooky action at a
distance ...

What?

If we want to study quantum information stuff with the spin of elementary particles, we have to measure it. All of it!

As we all know, top quarks, W/Z bosons, ... even τ leptons decay before one can pass them through a Stern-Gerlach experiment to measure spin.

But: the spin leaves its imprint in angular distributions.

What?

Top pair: two spin-1/2 particles, simplest example of quantum correlation

$$\rho = \frac{1}{4} \left(1 \otimes 1 + \sum_{i} B_{i}^{+} \sigma_{i} \otimes 1 + \sum_{i} B_{i}^{-} 1 \otimes \sigma_{i} + \sum_{ij} C_{ik} \sigma_{i} \otimes \sigma_{j} \right)$$
normalisation
$$\hat{n}_{a} = (\sin \theta_{a} \cos \varphi_{a}, \sin \theta_{a} \sin \varphi_{a}, \cos \theta_{a})$$

$$\hat{n}_{b} = (\sin \theta_{b} \cos \varphi_{b}, \sin \theta_{b} \sin \varphi_{b}, \cos \theta_{b})$$

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{a} d\Omega_{b}} = \frac{1}{(4\pi)^{2}} \left[1 + \alpha_{a} \vec{B}^{+} \cdot \hat{n}_{a} + \alpha_{b} \vec{B}^{-} \cdot \hat{n}_{b} + \alpha_{a} \alpha_{b} \hat{n}_{a}^{T} C \hat{n}_{b} \right]$$

$$\frac{3 \text{ coefficients}}{\text{ corresponding to top}}$$

$$\frac{3 \text{ coefficients}}{\text{ polarisation}}$$

$$\frac{9 \text{ spin}}{\text{ correlations}}$$

Measured by ATLAS and CMS since some time

A post-selection experiment

Definitive test: CHSH inequalities

A useful formulation of Bell-like inequalities for spin-1/2 systems is provided by the so-called CHSH inequalities for two systems A (Alice) and B (Bob). Clauser, Horne, Shimony, Holt, '69

Alice measures two spin observables A, A'. Bob measures two spin observables B, B'. [Both normalised to unity]. Then, clasically:

What?

The CHSH inequalities involve spin correlations. Therefore, for a particle of spin 1/2, they involve the C_{ij} spin-correlation coefficients [already measured for top pair production]

It can be shown that the maximum of the l.h.s.

$$|\langle AB \rangle - \langle AB' \rangle + \langle A'B \rangle + \langle A'B' \rangle|$$

is given by

$$2\sqrt{\lambda_1 + \lambda_2}$$

where λ_1 and λ_2 are the two largest eigenvalues of the positive definite matrix C^TC \$Horodecki, Horodecki, Horodecki, '95

What?

Simpler but equally effective: Take judicious choice of [non-commuting] spin observables

$$\begin{array}{ccc} A \to 2S_{i} & & & & B \to \frac{1}{\sqrt{2}}(2S_{i}+2S_{j}) \\ A' \to 2S_{j} & & & B' \to \frac{1}{\sqrt{2}}(-2S_{i}+2S_{j}) \end{array}$$

$$|\langle AB \rangle - \langle AB' \rangle + \langle A'B \rangle + \langle A'B' \rangle| & & & & |C_{ii} + C_{jj}| \\ A \to 2S_{i} & & & B \to \frac{1}{\sqrt{2}}(-2S_{i}-2S_{j}) \\ A' \to 2S_{j} & & & B' \to \frac{1}{\sqrt{2}}(2S_{i}-2S_{j}) \end{array}$$

CHSH violation is probed by testing if $|C_{ii} \pm C_{jj}| > \sqrt{2}$ These estimators are optimal when off-diagonal C_{ij} vanish

A density operator describing a composite system is separable if it can be written as $\sum_{a} A \otimes A^{B}$

$$\rho_{\mathrm{sep}} = \sum_{n} p_n \rho_n^A \otimes \rho_n^B$$

Necessary criterion for separability:

Peres, quant-ph/9604005 Horodecki, quant-ph/9703004

taking the transpose in subspace of B [for example] the resulting density operator ρ^{T2} is valid.

Example: composite system A \otimes B with dim \mathcal{H}_A = n, dim \mathcal{H}_B = m

 P_{ij} are m x m matrices, $(P_{ij})^{kl} = p_{ij}^{kl}$

 $\rho = \begin{pmatrix}
P_{11} & P_{12} & \cdots & P_{1n} \\
P_{21} & P_{22} & & & \\
\vdots & & \ddots & & \\
P_{n1} & & & P_{nn}
\end{pmatrix} \longrightarrow \rho^{T_2} = \begin{pmatrix}
P_{11}^T & P_{12}^T & \cdots & P_{1n}^T \\
P_{21}^T & P_{22}^T & & & \\
\vdots & & \ddots & & \\
P_{n1}^T & & & P_{nn}^T
\end{pmatrix}$

It is quite complicated to prove that a composite system is in a separable state [extensive work on PPT entangled states]

However, we are interested in showing that the system is entangled.

For this, one can use the counter-reciprocal of Peres-Horodecki necessary condition

 ρ^{T_2} non-positive $\Rightarrow \rho^{T_2}$ not valid \Rightarrow system entangled

Associated to it, there is a measure of entanglement that can be used for general systems

now this is the end