
Entanglement and Nonlocality in 
systems with additive observables  

Merton College, Oxford 2024

Madrid

Alberto Casas
Collab. with  
A. Bernal & J. Falceto

(Work in progress, about to appear)



For pure states the mathematical criteria for 
Entanglement and (Bell) Nonlocality are rather trivial

1



For pure states the mathematical criteria for 
Entanglement and (Bell) Nonlocality are rather trivial

1

|ψ⟩ ∈ ℋ = ℋA ⊗ ℋB

!  entangled    !     !   mixed   !    |ψ⟩ ⇔ ρA = TrB ρ ⇔

Tr ρ2
A ≠ 1

SvN = − Tr ρA ln ρA ≠ 0
…



For pure states the mathematical criteria for 
Entanglement and (Bell) Nonlocality are rather trivial
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1

|ψ⟩ ∈ ℋ = ℋA ⊗ ℋB

!  entangled    !     !   mixed   !    |ψ⟩ ⇔ ρA = TrB ρ ⇔

Tr ρ2
A ≠ 1

SvN = − Tr ρA ln ρA ≠ 0
…

!  entangled    !     !   nonlocal  (always violates a CHSH inequality)   |ψ⟩ ⇔ |ψ⟩

Popescu, Rohrlich 92
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Entanglement  

Peres-Horodecki criterion ( !  contains negative eigenvalues)  ρT2

Very useful condition, but only necessary for   !    ℋ2 ⊗ ℋ2 , ℋ2 ⊗ ℋ3



For general (mixed) states, the question remains 
largely unresolved
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Entanglement  

Horodeckis 95 

Peres-Horodecki criterion ( !  contains negative eigenvalues)  ρT2

Very useful condition, but only necessary for   !    ℋ2 ⊗ ℋ2 , ℋ2 ⊗ ℋ3

Nonlocality  

No general rule beyond low dimension,  !    ℋ2 ⊗ ℋ2

(see however J Moreno’s talk on  !  )   ℋ2 ⊗ ℋd



Still, in some relevant physical scenarios, one can find 
more general rules.
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E.g.  

Higgs production and decay diagrams

3

ttH and tH

PLB 849 (2024) 138469

Associated 
production (VH)

Vector boson 
fusion (VBF)

Gluon-gluon 
fusion (ggF)

JHEP 08 (2016) 045

Matthew Basso (TRIUMF/SFU)

Decays to photons, 
vector bosons, and 
fermions

Notice that the theoretical form of the density matrix (12) imposes strong constraints on the

various Aj

LM
, CL1M1L2M2 coe�cients. At the end of the day it simply reads
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with
1p
2
A1

2,0 + 1 = C2,2,2,�2. (27)

We do not replace the latter relation in (26). It could be used, for example, as a way to estimate

the uncertainties in the experimental determination of the density matrix, or to improve the deter-

mination of the independent coe�cients and thereby improve the precision in the measurement of

the entanglement observables. An investigation of the optimal way to extract the latter from data

is beyond the scope of the present work.

4 Conditions for entanglement

Intuitively, a “classical” system of two vector bosons with vanishing spin-third-component can only

be in three states: |+�i , |00i or |�+i. Any superposition of these possibilities implies an entangled

quantum state. Hence, one can expect that if the ⇢�matrix is non-entangled, it can contain just

three non-vanishing entries, namely the diagonal ones: ⇢+�,+�, ⇢00,00 and ⇢�+,�+. Thus, if any

of the six remaining entries is di↵erent from zero, that would be a signal of entanglement. It is

interesting to show that this is indeed the case, by using the above-mentioned Peres-Horodecki

criterion, see Eq. (2) and below. For a generic spin-density matrix with vanishing third-component,

⇢ =

0
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Conservation of  !   implies  JZ = 0
the corresponding partially transposed matrix reads

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 c

0 0 0 0 0 b 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 0 0 0 0 f 0

0 0 0 0 d 0 0 0 0

0 b⇤ 0 0 0 0 0 0 0

0 0 0 0 0 0 g 0 0

0 0 0 f⇤ 0 0 0 0 0

c⇤ 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

, (29)

which has eigenvalues a, d, g,±|b|,±|c|,±|f |. Therefore if b 6= 0, c 6= 0 or f 6= 0 the density matrix

is entangled. Note that the reverse is also true: if b = c = f = 0 the state is obviously separable,

as ⇢ is diagonal in the separable basis. This represents a noteworthy example beyond a two-qubit

system, where, thanks to an underlying symmetry, the Peres-Horodecki condition for entanglement

is not just su�cient, but also necessary.

When applied this condition to our density matrix (26), it turns out that the ZZ system is

entangled if and only if

C2,1,2,�1 6= 0 or C2,2,2,�2 6= 0 . (30)

5 Conditions for violation of Bell inequalities

As mentioned in section 2, the explicit form of the CGLMP inequality depends on the specific choice

of the four observables, A1, A2, B1, B2 associated to the Alice and Bob Hilbert spaces. The optimal

choice, i.e. the one that leads to a larger violation of the inequality, depends on the state at hand

(in our case the density operator, ⇢).

This issue was considered in Ref. [15] in a more abstract context. Namely, denoting by |ii
A
, |ji

B

(i, j = 1, 2, 3) two orthonormal bases of HA, HB, if the state at hand is the maximally entangled

state of the form �� 0↵ =
1p
3
(|11i+ |22i+ |33i) , (31)

where |iji = |ii
A
|ji

B
, then a particular choice of the four observables A1, A2, B1, B2 was argued to

maximize the violation of the CGLMP inequality. A compact way to express this optimal choice is

by building the corresponding Bell operator, say O0
Bell

[20]. In terms of the TL

M
matrices of Eqs.(14,

16) O0
Bell

reads

O0
Bell

=
4

3
p
3

�
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�1 ⌦ T 1
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�
+
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�
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2 + T 2
�2 ⌦ T 2

�2

�
. (32)

Coming back to the H ! ZZ decay, and working in the usual spin basis

{|+i , |0i , |�i}A ⌦ {|+i , |0i , |�i}B , (33)

for a particular event, the spin state of the ZZ system is given by Eq. (7), which in general does not

have the form (31). However, in the non-relativistic limit, which corresponds to � = 1 in Eq. (7),

8

ρ = ρT2 =

H ⟶ WW, ZZ
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entangled if and only if
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5 Conditions for violation of Bell inequalities

As mentioned in section 2, the explicit form of the CGLMP inequality depends on the specific choice

of the four observables, A1, A2, B1, B2 associated to the Alice and Bob Hilbert spaces. The optimal

choice, i.e. the one that leads to a larger violation of the inequality, depends on the state at hand

(in our case the density operator, ⇢).

This issue was considered in Ref. [15] in a more abstract context. Namely, denoting by |ii
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Coming back to the H ! ZZ decay, and working in the usual spin basis

{|+i , |0i , |�i}A ⌦ {|+i , |0i , |�i}B , (33)

for a particular event, the spin state of the ZZ system is given by Eq. (7), which in general does not

have the form (31). However, in the non-relativistic limit, which corresponds to � = 1 in Eq. (7),

8

ρ = ρT2 =

Eigenvalues of !   !    ρT2 : a, d, g, ± |b | , ± |c | , ± | f |

H ⟶ WW, ZZ

Peres-Horodecki criterion 
sufficient and necessary  

Aguilar-Saavedra, Bernal, JAC and Moreno  2022 



Can we generalize this result to more general systems?

What about Bell inequalities?
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Consider a generic bipartite system, !  
for which there exists an additive observable

ℋA ⊗ ℋB

which has a definite value, !J
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̂J = ̂JA + ̂JB



Consider a generic bipartite system, !  
for which there exists an additive observable

ℋA ⊗ ℋB

which has a definite value, !J

5

̂J = ̂JA + ̂JB

H ⟶ WW, ZZ ̂J ≡ ̂JZ

Meson decays 

Spin chains   !( ̂J ≡ Magnetization)

Atom-cavity systems   !( ̂J ≡ Energy)

This setup remains along unitary evolution if such 
global quantities are conserved



̂J = ̂JA + ̂JB ,

Entanglement

!  well definedJ
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Use bases of eigenstates of ! ̂JA, ̂JB

̂J = ̂JA + ̂JB ,

Density matrix elements

Entanglement

ℋA ⟶ { |m⟩}, eigenvalues !  (possibly degenerate)M

ℋB ⟶ { |p⟩}, Eigenvalues !  (possibly degenerate)P

ρ(mp)(nq)

ℋB ⊗ ℋB ⟶ { |m p⟩}, Eigenvalues !  (possibly deg.)J = M + P

!  well definedJ

may be  !  only if  !≠ 0 M + P = N + Q = J

6



The partial-transposed matrix 

Entanglement

ρT2

(mq)(np)
= ρ(mp)(nq)

is block-diagonal: one block for each pair !(M, P)

Eigenvalues 
of    ̂JA, ̂JB
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The partial-transposed matrix 

Entanglement

ρT2

(mq)(np)
= ρ(mp)(nq)

is block-diagonal: one block for each pair !(M, P)

Two different kinds of blocks, depending on the corresponding 
diagonal elements,   

ρT2

(mq)(mq)

M + Q = J ⟶ !  may be  !ρT2

(mq)(mq)
≠ 0

M + Q ≠ J ⟶ !ρT2

(mq)(mq)
= 0

Eigenvalues 
of    ̂JA, ̂JB
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Entanglement

M + Q = J ⟶ ! !   (possibly)ρT2

(mq)(mq)
≠ 0
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Entanglement
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⟹ N = M, P = Q

8



Entanglement

M + Q = J ⟶ ! !   (possibly)ρT2

(mq)(mq)
≠ 0

Row:

!     may be !  only if  !ρT2
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Principal submatrix of dimension

(deg M ⋅ deg Q) × (deg M ⋅ deg Q)
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Principal submatrix of dimension

(deg M ⋅ deg Q) × (deg M ⋅ deg Q)

If    non-degenerate     just one (diagonal) entryM, Q ⟹
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Higgs-boson decays

Entanglement

Is block-diagonal: one block for each pair !

H ⟶ WW, ZZ

Now, M and Q are the eigenvalues of ĴA and ĴB corresponding to states |~mi, |~qi, i.e. with
JA = M =

P
imi, JB = Q =

P
i qi. So we have to explore sectors of the Hilbert space,

characterized by the pair of values (JA, JB), satisfying JA + JB = J . Each sector has an
associated principal submatrix as (3.11). It turns out that the structure of the submatrix is
greatly determined by the degeneracy of these eigenvalues. So in the next subsections we will
distinguish three different scenarios, depending on the degeneracy of the (JA, JB) pair.

3.2 Non-degenerate case

We study first the case when the pair JA = M,JB = Q (with M + Q = J) of the sector under
consideration is non-degenerate, i.e. there is only one choice of ~m, ~q such that

P
imi = M ,P

i qi = Q. Then the submatrix (3.11) is formed of a single (and diagonal) element, which is also
a diagonal element of the original ⇢ matrix. Consequently, if all JA = M,JB = Q sectors with
M +Q = J are non-degenerate, all non-vanishing off-diagonal entries in ⇢ correspond to crossed
off-diagonal entries in ⇢

T2 , see Eq. (3.14). Thereby, in the non-degenerate case, the presence of
an off-diagonal entry in the density matrix ⇢ guarantees that the Peres-Horodecki criterion is
fulfilled and the state is entangled. On the other hand, if ⇢ is diagonal the state is obviously
separable. Therefore the non-degenerate case represents a remarkable class of scenarios where
the Peres-Horodecki criterion for entanglement turns out to be both sufficient and necessary.

To illustrate this case, let us discuss a simple but physically interesting example. Suppose that
the two spin chains of Alice and Bob are made just by one spin site. Then, ĴA, ĴB are simply the
third component of the respective spin, ĴA ⌘ Ĵ

(A)
z , ĴB ⌘ Ĵ

(B)
z (see Eq. (3.3)), so their eigenvalues

are non-degenerate. The global additive observable, Ĵ = ĴA+ ĴB, is simply the third-component
of the total angular momentum.

For the sake of concreteness suppose sA = sB = 1, hence dA = dB = 3, but any other choice
leads to similar results. Hence

HA = span {|1iA , |0iA , |�1iA} , HB = span {|1iB , |0iB , |�1iB} . (3.15)

Let us now suppose that ⇢ describes a state with well defined third component of the total
angular momentum, say J = 0 3. Therefore, the only entries of ⇢ that can be different from zero
are those corresponding to the states:

|1,�1i , |0, 0i , |�1, 1i (3.16)

(in an obvious notation). Accordingly, the most general density matrix reads

⇢ =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 ⇢(1,�1)(1,�1) 0 ⇢(1,�1)(0,0) 0 ⇢(1,�1)(�1,1) 0 0
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Now, M and Q are the eigenvalues of ĴA and ĴB corresponding to states |~mi, |~qi, i.e. with
JA = M =

P
imi, JB = Q =

P
i qi. So we have to explore sectors of the Hilbert space,

characterized by the pair of values (JA, JB), satisfying JA + JB = J . Each sector has an
associated principal submatrix as (3.11). It turns out that the structure of the submatrix is
greatly determined by the degeneracy of these eigenvalues. So in the next subsections we will
distinguish three different scenarios, depending on the degeneracy of the (JA, JB) pair.

3.2 Non-degenerate case

We study first the case when the pair JA = M,JB = Q (with M + Q = J) of the sector under
consideration is non-degenerate, i.e. there is only one choice of ~m, ~q such that

P
imi = M ,P

i qi = Q. Then the submatrix (3.11) is formed of a single (and diagonal) element, which is also
a diagonal element of the original ⇢ matrix. Consequently, if all JA = M,JB = Q sectors with
M +Q = J are non-degenerate, all non-vanishing off-diagonal entries in ⇢ correspond to crossed
off-diagonal entries in ⇢

T2 , see Eq. (3.14). Thereby, in the non-degenerate case, the presence of
an off-diagonal entry in the density matrix ⇢ guarantees that the Peres-Horodecki criterion is
fulfilled and the state is entangled. On the other hand, if ⇢ is diagonal the state is obviously
separable. Therefore the non-degenerate case represents a remarkable class of scenarios where
the Peres-Horodecki criterion for entanglement turns out to be both sufficient and necessary.

To illustrate this case, let us discuss a simple but physically interesting example. Suppose that
the two spin chains of Alice and Bob are made just by one spin site. Then, ĴA, ĴB are simply the
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ℋB : { |p0⟩, |q0⟩, | t1⟩, . . . , | tdB−2⟩}tj≠p0,q0

,

Define !  observables asA1, A2, B1, B2

Now we are going to prove the following statement, which is the main result of this section: for
the above system there exists an CHSH inequality (4.2) which is violated provided there is a
non-vanishing off-diagonal entry of ⇢, say
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such that
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M0 6= N0, P0 6= Q0,

(N0, Q0) non-degenerate,

(4.4)

where
ĴA | ~m0i = M0 | ~m0i , ĴA | ~n0i = N0 | ~n0i ,

ĴB |~p0i = P0 |~p0i , ĴB |~q0i = Q0 |~q0i ,
(4.5)

with ĴA and ĴB given in Eq. (3.3). We call ⇢(~m0~p0)(~n0~q0) our anchor element. The conditions
in the first line of Eq. (4.4) stem from ⇧J ⇢⇧J = ⇢, and are mandatory for the density matrix
element (4.3) to be non-vanishing. The condition of the second line corresponds to the definition
of a “crossed off-diagonal entry", see Eq. (3.14). The last line of (4.4) is an extra non-degeneracy
condition that we impose on the N0, Q0 eigenvalues. Note that this condition is not imposed
on the whole spectrum of ĴA and/or ĴB. Notice also that if the non-degenerate eigenvalues are
M0, P0, rather than N0, Q0, everything goes equivalently since in that case the role of the anchor
entry could be played by ⇢(~n0~q0)(~m0~p0) = ⇢

⇤
(~m0~p0)(~n0~q0)

6= 0.

Now, let us assume that there is indeed an entry ⇢(~m0~p0)(~n0~q0) 6= 0 fulfilling Eqs. (4.3, 4.4) and
thus serves as anchor entry. In order to build an appropriate CHSH inequality upon it, let us
first do a re-ordering of the Alice’s and Bob’s bases:

HA : {|~m0i , |~n0i , |~s1i , ..., |~sdA�2i}~si 6=~m0,~n0 ,

HB : {|~p0i , |~q0i ,
��~t1
↵
, ...,

��~tdB�2

↵
}~tj 6=~p0,~q0

. (4.6)

The important point here is that the two first vectors of Alice’s and Bob’s bases correspond to
the indices appearing in our anchor entry (4.3); recall that ⇢(~m0~p0)(~n0~q0) = h~m0~p0|⇢̂|~n0~q0i. The
ordering of the rest of the basis states is irrelevant.

Now, for the observables A1,2, B1,2 involved in the CHSH inequality (4.2), we take the generic
form:

Ai =

 
âi~� 0

0 1dA�2

!
= âi~� � 1dA�2, Bj =

 
b̂j~� 0

0 1dB�2

!
= b̂j~� � 1dB�2. (4.7)

Here ~� = (�x,�y,�z), i.e. the vector of the standard Pauli matrices4, âi, b̂i are unitary vectors
and 1d is the d ⇥ d identity matrix. This construction is reminiscent of that given by Popescu
and Rohrlich in ref. [9]. Following this reference, a good choice for the â1 and â2 vectors is

â1 = (0, 0, 1), â2 = (1, 0, 0). (4.8)
4
The standard Pauli matrices are defined as

�x =

 
0 1

1 0

!
, �y =

 
0 �i

i 0

!
, �x =

 
1 0

0 �1

!

.
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Now we are going to prove the following statement, which is the main result of this section: for
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Besides, b̂1 and b̂2 are taken as unitary vectors with opposite polar angle:

b̂1 = (sin ✓ sin', sin ✓ cos', cos ✓) , b̂2 = (� sin ✓ sin',� sin ✓ cos', cos ✓) . (4.9)

Now we define ĉ1 and ĉ2 such that

b̂1 + b̂2 = 2 cos(✓)ĉ1, b̂1 � b̂2 = 2 sin(✓)ĉ2. (4.10)

More explicitly,
~c1 = (0, 0, 1) , ~c2 = (sin', cos', 0) . (4.11)

We are interested in the quantities B1 +B2, B1 �B2 that appear in the CHSH inequality (4.2).
From Eqs. (4.7, 4.10):

B1 +B2 = 2 cos(✓)C1, B1 �B2 = 2 sin(✓)C2, (4.12)

with

C1 =

 
ĉ1~� 0

0 1dB�2

!
= ĉ1~� � 1dB�2, C2 =

 
~c2~� 0

0 OdB�2

!
= ~c2~� �OdB�2, (4.13)

where Od is the d⇥ d null matrix.

With these definitions, we can expand the tensor products A1 ⌦ (B1 +B2) and A2 ⌦ (B1 �B2)

that appear in F (⇢), Eq. (4.2):

A1 ⌦ (B1 +B2) = 2 [(�z � 1dA�2)⌦ (cos ✓ �z � 1dB�2)]

= 2 [(�z � 1dA�2)⌦ (cos ✓ �z �OdB�2) + (�z � 1dA�2)⌦ (O2 � 1dB�2)]

= 2 [cos ✓ Oz +O0] ,

A2 ⌦ (B1 �B2) = 2 [(�x � 1dA�2)⌦ ((sin ✓ sin' �x + sin ✓ cos' �y)�OdB�2)]

= 2 [(�x � 1dA�2)⌦ (sin ✓ sin' �x �OdB�2) + (�x � 1dA�2)⌦ (sin ✓ cos' �y �OdB�2)]

= 2 [sin ✓ sin' Ox + sin ✓ cos' Oy] ,
(4.14)

where we have introduced 4 new observables defined by:

O0 = (�z � 1dA�2)⌦ (O2 � 1dB�2) , Oz = (�z � 1dA�2)⌦ (�z �OdB�2) ,

Ox = (�x � 1dA�2)⌦ (�x �OdB�2) , Oy = (�x � 1dA�2)⌦ (�y �OdB�2) .
(4.15)

Thus, F (⇢) is given by:

F (⇢) = 2 [hO0i⇢ + sin ✓ sin'hOxi⇢ + sin ✓ cos'hOyi⇢ + cos ✓hOzi⇢] . (4.16)

Note that the three last terms are simply the dot product ~̂b1·h ~Oi⇢ with h ~Oi⇢ = (hOxi⇢, hOyi⇢, hOzi⇢).
The maximum of this expression is obtained when the ✓,' angles are in such a way that the
unitary vector b̂1 is aligned with h ~Oi⇢, and it is equal to the modulus of this vector. Hence

max
✓,'

{F (⇢)}=2
h
hO0i⇢ +

q
hOxi2⇢ + hOyi2⇢ + hOzi2⇢

i
, (4.17)
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Now we are going to prove the following statement, which is the main result of this section: for
the above system there exists an CHSH inequality (4.2) which is violated provided there is a
non-vanishing off-diagonal entry of ⇢, say

⇢(~m0~p0)(~n0~q0) 6= 0 , (4.3)

such that
M0 + P0 = J, N0 +Q0 = J,

M0 6= N0, P0 6= Q0,

(N0, Q0) non-degenerate,

(4.4)

where
ĴA | ~m0i = M0 | ~m0i , ĴA | ~n0i = N0 | ~n0i ,

ĴB |~p0i = P0 |~p0i , ĴB |~q0i = Q0 |~q0i ,
(4.5)

with ĴA and ĴB given in Eq. (3.3). We call ⇢(~m0~p0)(~n0~q0) our anchor element. The conditions
in the first line of Eq. (4.4) stem from ⇧J ⇢⇧J = ⇢, and are mandatory for the density matrix
element (4.3) to be non-vanishing. The condition of the second line corresponds to the definition
of a “crossed off-diagonal entry", see Eq. (3.14). The last line of (4.4) is an extra non-degeneracy
condition that we impose on the N0, Q0 eigenvalues. Note that this condition is not imposed
on the whole spectrum of ĴA and/or ĴB. Notice also that if the non-degenerate eigenvalues are
M0, P0, rather than N0, Q0, everything goes equivalently since in that case the role of the anchor
entry could be played by ⇢(~n0~q0)(~m0~p0) = ⇢

⇤
(~m0~p0)(~n0~q0)

6= 0.

Now, let us assume that there is indeed an entry ⇢(~m0~p0)(~n0~q0) 6= 0 fulfilling Eqs. (4.3, 4.4) and
thus serves as anchor entry. In order to build an appropriate CHSH inequality upon it, let us
first do a re-ordering of the Alice’s and Bob’s bases:

HA : {|~m0i , |~n0i , |~s1i , ..., |~sdA�2i}~si 6=~m0,~n0 ,

HB : {|~p0i , |~q0i ,
��~t1
↵
, ...,

��~tdB�2

↵
}~tj 6=~p0,~q0

. (4.6)

The important point here is that the two first vectors of Alice’s and Bob’s bases correspond to
the indices appearing in our anchor entry (4.3); recall that ⇢(~m0~p0)(~n0~q0) = h~m0~p0|⇢̂|~n0~q0i. The
ordering of the rest of the basis states is irrelevant.

Now, for the observables A1,2, B1,2 involved in the CHSH inequality (4.2), we take the generic
form:

Ai =

 
âi~� 0

0 1dA�2

!
= âi~� � 1dA�2, Bj =

 
b̂j~� 0

0 1dB�2

!
= b̂j~� � 1dB�2. (4.7)

Here ~� = (�x,�y,�z), i.e. the vector of the standard Pauli matrices4, âi, b̂i are unitary vectors
and 1d is the d ⇥ d identity matrix. This construction is reminiscent of that given by Popescu
and Rohrlich in ref. [9]. Following this reference, a good choice for the â1 and â2 vectors is

â1 = (0, 0, 1), â2 = (1, 0, 0). (4.8)
4
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After some algebra…

max
θ,φ

{FCHSH (ρ)} = 2 [1 + 4 |ρ(m0 p0)(n0q0) |2 + ⟨𝒪z⟩2
ρ − ⟨𝒪z⟩ρ] > 2 ⟺ ρ(m0 p0)(n0q0) ≠ 0.

18



Bell nonlocality

On the other hand, the O�matrices defined in Eq. (4.15) are given by

O0 =

0

BBBBBBBBBBBBBBBBBB@
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dB dB . . . dB

dB �
 
O2 0

0 dB�2

!

dB . . . dB

dB dB
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. . . dB

...
...
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dB dB dB . . .
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1

CCCCCCCCCCCCCCCCCCA

, (4.23)
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, (4.24)
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, (4.25)

22

= dB × dB null matrix
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H ⟶ ττ, WW, ZZ

Application to Higgs decays:

Additive observable  !Jz = 0

All  !  sectors are non-degenerateJA
z , JB

z

All  non-diagonal elements in !  are crossed off-
diagonal and anchor entries

ρ

The presence of one off-diagonal entry in  !   is sufficient to 
certify entanglement and the existence of Bell non-locality

ρ
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Bell nonlocality

H ⟶ ZZTo clear a bit the notation, we rewrite the above expression as

⇢ =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 a11 0 a12 0 a13 0 0

0 0 0 0 0 0 0 0 0

0 0 a
⇤
12 0 a22 0 a23 0 0

0 0 0 0 0 0 0 0 0

0 0 a
⇤
13 0 a

⇤
23 0 a33 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

, (3.18)

where we have used ⇢ = ⇢
†. The corresponding partial transpose, ⇢T2 , reads

⇢
T2 =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 a13

0 0 0 0 0 a12 0 0 0

0 0 a11 0 0 0 0 0 0

0 0 0 0 0 0 0 a23 0

0 0 0 0 a22 0 0 0 0

0 a
⇤
12 0 0 0 0 0 0 0

0 0 0 0 0 0 a33 0 0

0 0 0 a
⇤
23 0 0 0 0 0

a
⇤
13 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

. (3.19)

The characteristic polynomial of this matrix is

P (�) = (�� a11)(�� a22)(�� a33)(�
2 � |a12|2)(�2 � |a13|2)(�2 � |a23|2), (3.20)

which means that it has at least one negative eigenvalue if and only if there is (at least) one
off-diagonal entry different from zero, in agreement with our above general results. Note here
that a11, a22 and a33 are non-negative since they are the diagonal entries of a density matrix.

3.3 One degenerate eigenvalue

Second, we study the case when one of the eigenvalues JA = M or JB = Q (with M +Q = J) of
the sector under consideration is degenerate (and the other is not). Without loss of generality,
we assume JA = M to be degenerate. Then, denoting {(~m)↵} the set of (~m) values satisfyingP

imi = M and ~q the (unique) choice corresponding to
P

i qi = Q, the diagonal block of ⇢T2

corresponding to this sector (see Eq. (3.11)) reads
0

BBBB@

⇢
T2
(~m1~q)(~m1~q)

⇢
T2
(~m1~q)(~m2~q)

⇢
T2
(~m1~q)(~m3~q)

. . .

⇢
T2
(~m2~q)(~m1~q)

⇢
T2
(~m2~q)(~m2~q)

⇢
T2
(~m2~q)(~m3~q)

. . .

⇢
T2
(~m3~q)(~m1~q)

⇢
T2
(~m3~q)(~m2~q)

⇢
T2
(~m3~q)(~m3~q)

. . .

...
...

... . . .

1

CCCCA
. (3.21)

Now, this principal submatrix, despite having non-vanishing off-diagonal entries, necessarily has
non-negative eigenvalues. The reason is simple. This ⇢T2 submatrix is also a principal submatrix
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5 Application

As it has been mentioned throughout the project, one of the simplest and most physically relevant
cases where we have an additive observable with well-defined value is the decay of a Higgs boson
into two W or Z bosons. We will focus here on the latter. Since two Z bosons arise from a
spinless particle, the spin component along the momentum direction, taken for convenience as
Jz, is vanishing for the joint system. Actually we have already addressed this case concerning
entanglement (see section 3.2) and the CHSH inequalities (see the second example of subsection
4.2).

Using the familiar Jz�basis for each space

HA = span {|1iA , |0iA , |�1iA} , HB = span {|1iB , |0iB , |�1iB} , (5.1)

the constraint that the total angular momentum has JZ = 0, leads to a density matrix with the
texture shown in Eq. (3.18). More precisely, following ref. [15], it has the form

⇢ =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
6(
p
2A1

2,0 + 2) 0 1
3C2,1,2,�1 0 1

3C2,2,2,�2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,1,2,�1 0 1

3(1�
p
2A1

2,0) 0 1
3C2,1,2,�1 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,2,2,�2 0 1

3C2,1,2,�1 0 1
6(
p
2A1

2,0 + 2) 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

, (5.2)

where the conservation of parity in the decay imposes C2,2,2�2 = 1p
2
A

1
2,0 + 1. The physical

meaning of the various constants in (5.2) is explained in detail in [15].

Comparing (5.2) with the notation introduced in Eq. (3.18), we can identify:

a12 = a23 =
1

3
C2,1,2,�1, a11 = a33 = a13 =

1

3
C2,2,2,�2. (5.3)

As discussed in subsection 3.1, since this is a completely non-degenerate case, the presence of a
non-vanishing off-diagonal element in ⇢ implies that the state is entangled. It means in particular
that for either a12 6= 0 and/or a13 6= 0 (the two independent off-diagonal entries) the system
is entangled. According to the simulations performed in [15] this means that entanglement in
H ! ZZ will be certified at 3� (10�) at LHC with luminosity L = 300 fb�1 (L = 3 ab�1), see
tables 5.1, 5.2. All this was already noticed and described in ref. [15].

Concerning non-locality, the authors of [15] focused on the violation of the so-called CGLMP
inequalities [12], which are somewhat more involved than the CHSH ones. This was also the
procedure followed in the subsequent literature (see e.g. [Fabriquesi...]). Generically, the CGLMP
inequalities are more powerful than the CHSH ones for systems beyond qubit-qubit, as it is the
case at hand. However, in this particular instance we have demonstrated (in subsection 4.1
and, more specifically, in the second example of subsection 4.2) that, provided an off-diagonal
element of ⇢ is different from zero, the system is not only entangled, but it also violates a CHSH
inequality.
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y are averages over the kinematical variables, as expressed in Eq. (11). Of course, when the ⇢ matrix

is extracted from experimental data, it does not present the exact form (12) due to systematic and

statistical errors, and the existence of (small) background.

3.2 The irreducible tensor operator parametrization

A convenient way to parametrize the 9⇥ 9 spin density-operator of the two vector bosons is to use

the basis of irreducible tensor operators {TL1
M1

⌦ TL2
M2

} [18], where

TL1
M1

, TL2
M2

2
�

13;T
1
1 , T

1
0 , T

1
�1;T

2
2 , T

2
1 , T

2
0 , T

2
�1, T

2
�2

 
. (13)

Here, TL

M
are normalized such that Tr

n
TL

M

�
TL

M

�†o
= 3, where

�
TL

M

�†
= (�1)M TL

M
. More precisely,

defining Jx, Jy and Jz as the spin-1 components operators, we have T 1
±1 = ⌥

p
3/2 (Jx ± iJy) and

T 1
0 =

q
3
2 Jz, i.e.

T 1
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r
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2
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0 1 0
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On the other hand,

T 2
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3
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2,

T 2
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3

⇥
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1
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1
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⇤
,

T 2
0 =
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1 + 2(T 1

0 )
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⇤
. (15)

Explicitly,

T 2
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3
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1

CA , T 2
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0
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1
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1
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1
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0 0 1

1

CA . (16)

Hence, the spin density matrix of the two vector bosons can be parametrized as

⇢ =
1

9

h
13 ⌦ 13 +A1

LM TL

M ⌦ 13 +A2
LM 13 ⌦ TL

M + CL1M1L2M2 TL1
M1

⌦ TL2
M2

i
, (17)

where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢

to be hermitian, and taking into account that
�
TL

M

�†
= (�1)M TL

M
, the coe�cients of the expansion

must fulfill A1,2
LM

= (�1)M (A1,2
L,�M

)⇤ and CL1M1L2M2 = (�1)M1+M2(CL1,�M1,L2,�M2)
⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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(basis of irreducible tensor operators)
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H ⟶ ZZTo clear a bit the notation, we rewrite the above expression as

⇢ =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 a11 0 a12 0 a13 0 0

0 0 0 0 0 0 0 0 0

0 0 a
⇤
12 0 a22 0 a23 0 0

0 0 0 0 0 0 0 0 0

0 0 a
⇤
13 0 a

⇤
23 0 a33 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

, (3.18)

where we have used ⇢ = ⇢
†. The corresponding partial transpose, ⇢T2 , reads

⇢
T2 =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 a13

0 0 0 0 0 a12 0 0 0

0 0 a11 0 0 0 0 0 0

0 0 0 0 0 0 0 a23 0

0 0 0 0 a22 0 0 0 0

0 a
⇤
12 0 0 0 0 0 0 0

0 0 0 0 0 0 a33 0 0

0 0 0 a
⇤
23 0 0 0 0 0

a
⇤
13 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

. (3.19)

The characteristic polynomial of this matrix is

P (�) = (�� a11)(�� a22)(�� a33)(�
2 � |a12|2)(�2 � |a13|2)(�2 � |a23|2), (3.20)

which means that it has at least one negative eigenvalue if and only if there is (at least) one
off-diagonal entry different from zero, in agreement with our above general results. Note here
that a11, a22 and a33 are non-negative since they are the diagonal entries of a density matrix.

3.3 One degenerate eigenvalue

Second, we study the case when one of the eigenvalues JA = M or JB = Q (with M +Q = J) of
the sector under consideration is degenerate (and the other is not). Without loss of generality,
we assume JA = M to be degenerate. Then, denoting {(~m)↵} the set of (~m) values satisfyingP

imi = M and ~q the (unique) choice corresponding to
P

i qi = Q, the diagonal block of ⇢T2

corresponding to this sector (see Eq. (3.11)) reads
0

BBBB@

⇢
T2
(~m1~q)(~m1~q)

⇢
T2
(~m1~q)(~m2~q)

⇢
T2
(~m1~q)(~m3~q)

. . .

⇢
T2
(~m2~q)(~m1~q)

⇢
T2
(~m2~q)(~m2~q)

⇢
T2
(~m2~q)(~m3~q)

. . .

⇢
T2
(~m3~q)(~m1~q)

⇢
T2
(~m3~q)(~m2~q)

⇢
T2
(~m3~q)(~m3~q)

. . .

...
...

... . . .

1

CCCCA
. (3.21)

Now, this principal submatrix, despite having non-vanishing off-diagonal entries, necessarily has
non-negative eigenvalues. The reason is simple. This ⇢T2 submatrix is also a principal submatrix
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5 Application

As it has been mentioned throughout the project, one of the simplest and most physically relevant
cases where we have an additive observable with well-defined value is the decay of a Higgs boson
into two W or Z bosons. We will focus here on the latter. Since two Z bosons arise from a
spinless particle, the spin component along the momentum direction, taken for convenience as
Jz, is vanishing for the joint system. Actually we have already addressed this case concerning
entanglement (see section 3.2) and the CHSH inequalities (see the second example of subsection
4.2).

Using the familiar Jz�basis for each space

HA = span {|1iA , |0iA , |�1iA} , HB = span {|1iB , |0iB , |�1iB} , (5.1)

the constraint that the total angular momentum has JZ = 0, leads to a density matrix with the
texture shown in Eq. (3.18). More precisely, following ref. [15], it has the form

⇢ =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
6(
p
2A1

2,0 + 2) 0 1
3C2,1,2,�1 0 1

3C2,2,2,�2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,1,2,�1 0 1

3(1�
p
2A1

2,0) 0 1
3C2,1,2,�1 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,2,2,�2 0 1

3C2,1,2,�1 0 1
6(
p
2A1

2,0 + 2) 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

, (5.2)

where the conservation of parity in the decay imposes C2,2,2�2 = 1p
2
A

1
2,0 + 1. The physical

meaning of the various constants in (5.2) is explained in detail in [15].

Comparing (5.2) with the notation introduced in Eq. (3.18), we can identify:

a12 = a23 =
1

3
C2,1,2,�1, a11 = a33 = a13 =

1

3
C2,2,2,�2. (5.3)

As discussed in subsection 3.1, since this is a completely non-degenerate case, the presence of a
non-vanishing off-diagonal element in ⇢ implies that the state is entangled. It means in particular
that for either a12 6= 0 and/or a13 6= 0 (the two independent off-diagonal entries) the system
is entangled. According to the simulations performed in [15] this means that entanglement in
H ! ZZ will be certified at 3� (10�) at LHC with luminosity L = 300 fb�1 (L = 3 ab�1), see
tables 5.1, 5.2. All this was already noticed and described in ref. [15].

Concerning non-locality, the authors of [15] focused on the violation of the so-called CGLMP
inequalities [12], which are somewhat more involved than the CHSH ones. This was also the
procedure followed in the subsequent literature (see e.g. [Fabriquesi...]). Generically, the CGLMP
inequalities are more powerful than the CHSH ones for systems beyond qubit-qubit, as it is the
case at hand. However, in this particular instance we have demonstrated (in subsection 4.1
and, more specifically, in the second example of subsection 4.2) that, provided an off-diagonal
element of ⇢ is different from zero, the system is not only entangled, but it also violates a CHSH
inequality.
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y are averages over the kinematical variables, as expressed in Eq. (11). Of course, when the ⇢ matrix

is extracted from experimental data, it does not present the exact form (12) due to systematic and

statistical errors, and the existence of (small) background.

3.2 The irreducible tensor operator parametrization

A convenient way to parametrize the 9⇥ 9 spin density-operator of the two vector bosons is to use

the basis of irreducible tensor operators {TL1
M1

⌦ TL2
M2

} [18], where
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Here, TL

M
are normalized such that Tr

n
TL

M
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M

�†o
= 3, where
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M

�†
= (�1)M TL

M
. More precisely,

defining Jx, Jy and Jz as the spin-1 components operators, we have T 1
±1 = ⌥
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3/2 (Jx ± iJy) and

T 1
0 =
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2 Jz, i.e.
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On the other hand,
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±2 =
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Explicitly,
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Hence, the spin density matrix of the two vector bosons can be parametrized as

⇢ =
1

9

h
13 ⌦ 13 +A1

LM TL

M ⌦ 13 +A2
LM 13 ⌦ TL

M + CL1M1L2M2 TL1
M1

⌦ TL2
M2

i
, (17)

where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢

to be hermitian, and taking into account that
�
TL

M

�†
= (�1)M TL

M
, the coe�cients of the expansion

must fulfill A1,2
LM

= (�1)M (A1,2
L,�M

)⇤ and CL1M1L2M2 = (�1)M1+M2(CL1,�M1,L2,�M2)
⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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H ⟶ ZZ

More precisely, since we have 3 crossed off-diagonal entries that serve as anchor elements (see
conditions (4.4)), we can formulate 3 CHSH inequalities, which are violated, although the ones
associated with a12 and a23 are the same. From Eq. (4.48), these inequalities read F (⇢)12  0,
F (⇢)13  0, with

F (⇢)12 = F (⇢)23 =2 + 2(a11 + a22)

0

@
s

1 +

✓
2a12

a11 + a22

◆2

� 1

1

A ,

F (⇢)13 =2 + 2(a11 + a33)

0

@
s

1 +

✓
2a13

a11 + a33

◆2

� 1

1

A

(5.4)

(the latter is obtained from Eq. (4.48) by permutation of the 2,3 indices).

We can simplify the above expressions by using the relations (5.3):

F (⇢)12 = F (⇢)23 = 2 + 2(1� a13)

0

@
s

1 +

✓
2a12

1� a13

◆2

� 1

1

A ,

F (⇢)13 = 2 + 4a13
⇣p

2� 1
⌘
.

(5.5)

Since F (⇢)13 � 2 and a13 are proportional, so are their uncertainties. Therefore, the level of
confidence at which a13 is different from zero is the same as the one at which F (⇢)13 is bigger
than 2. Actually, this is also the case for F (⇢)12 vs. a12, even though F (⇢)12 depends on both,
a12 and a13. The reason is that F (⇢)12 > 0 iff a12 > 0.

Now, from the simulated data evaluated and presented in [15], we can compute both a12, a13
and the respective CHSH inequalities (i.e. the values of F (⇢)12, F (⇢)13). The results are shown
in tables 5.1 and 5.2.

Clearly, both entanglement and violation of CHSH inequalities in H ! ZZ could be verified at
⇠ 3� (⇠ 10�) at LHC with L = 300 fb�1 (L = 3 ab�1), by using a12 to signal both phenomena
and at ⇠ 2� (⇠ 5�) by using a12.

This represents an important net improvement with respect to the results obtained in [15] (and
subsequent literature), where the sensitivity to the violation of the Bell (CGLMP) inequalities
was below ⇠ 2� (⇠ 5�) at LHC with L = 300 fb�1 (L = 3 ab�1).

Finally, let us mention that recently [16] it has been shown that for the H ! ZZ system, the
presence of entanglement also implies the violation of a different CGLMP inequality.
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H ⟶ ZZ

More precisely, since we have 3 crossed off-diagonal entries that serve as anchor elements (see
conditions (4.4)), we can formulate 3 CHSH inequalities, which are violated, although the ones
associated with a12 and a23 are the same. From Eq. (4.48), these inequalities read F (⇢)12  0,
F (⇢)13  0, with

F (⇢)12 = F (⇢)23 =2 + 2(a11 + a22)
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(the latter is obtained from Eq. (4.48) by permutation of the 2,3 indices).

We can simplify the above expressions by using the relations (5.3):

F (⇢)12 = F (⇢)23 = 2 + 2(1� a13)
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(5.5)

Since F (⇢)13 � 2 and a13 are proportional, so are their uncertainties. Therefore, the level of
confidence at which a13 is different from zero is the same as the one at which F (⇢)13 is bigger
than 2. Actually, this is also the case for F (⇢)12 vs. a12, even though F (⇢)12 depends on both,
a12 and a13. The reason is that F (⇢)12 > 0 iff a12 > 0.

Now, from the simulated data evaluated and presented in [15], we can compute both a12, a13
and the respective CHSH inequalities (i.e. the values of F (⇢)12, F (⇢)13). The results are shown
in tables 5.1 and 5.2.

Clearly, both entanglement and violation of CHSH inequalities in H ! ZZ could be verified at
⇠ 3� (⇠ 10�) at LHC with L = 300 fb�1 (L = 3 ab�1), by using a12 to signal both phenomena
and at ⇠ 2� (⇠ 5�) by using a12.

This represents an important net improvement with respect to the results obtained in [15] (and
subsequent literature), where the sensitivity to the violation of the Bell (CGLMP) inequalities
was below ⇠ 2� (⇠ 5�) at LHC with L = 300 fb�1 (L = 3 ab�1).

Finally, let us mention that recently [16] it has been shown that for the H ! ZZ system, the
presence of entanglement also implies the violation of a different CGLMP inequality.
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0 10 GeV 20 GeV 30 GeV

N 450 418 312 129

a12 �0.33± 0.10 �0.32± 0.11 �0.35± 0.13 �0.35± 0.20

a13 0.20± 0.12 0.21± 0.13 0.25± 0.14 0.27± 0.21

F (⇢)12 2.47 2.46 2.55 2.57

> 2 (3.2�) > 2 (2.9�) > 2 (2.7�) > 2 (1.7�)

F (⇢)13 2.33 2.35 2.41 2.45

> 2 (1.7�) > 2 (1.6�) > 2 (1.8�) > 2 (1.3�)

Table 5.1: Values of the crossed off-diagonal terms a12 and a13 signaling quantum entanglement,
as obtained from 1000 pseudoexperiments with L = 300 fb�1 in ref. [15]. The violation of the
corresponding CHSH inequalities (F (⇢)12  0, F (⇢)13  0)is reflected in rows (4,5) and (5,6)
respectively, where the central value of F (⇢) and the confidence level at which F (⇢) > 2, thus
signalling Bell-violation.

0 10 GeV 20 GeV 30 GeV

N 4500 4180 3120 1290

a12 �0.32± 0.03 �0.33± 0.03 �0.35± 0.04 �0.35± 0.06

a13 0.20± 0.04 0.21± 0.04 0.25± 0.05 0.28± 0.07

F (⇢)12 2.44 2.49 2.54 2.56

> 2 (9.5�) > 2 (10.0�) > 2 (8.7�) > 2 (5.5�)

F (⇢)13 2.33 2.35 2.41 2.46

> 2 (5.0�) > 2 (5.3�) > 2 (5.3�) > 2 (4.2�)

Table 5.2: The same as table 5.1, but for a luminosity L = 3 ab�1.
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ity, and calculate the observables from the di↵erential distribution, as aforementioned. Repeating

this procedure, we obtain the mean and standard deviation for each observable. The mean value

resulting from the pseudo-experiments is quite close to the theoretical value calculated with the full

Monte Carlo sample, and the standard deviation corresponds to the expected statistical uncertainty.

Systematic uncertainties are not included in our analysis. Given the clean final state and the good

experimental resolution for charged leptons, these uncertainties are expected to be small. In any

case, they must be addressed within an experimental analysis using a full detector simulation.

As discussed in section 3.1, the larger the mass m2 of the o↵-shell Z boson, the more entangled

the ZZ state is. However, requiring a lower cut on mZ2 also decreases the statistics, increasing

the uncertainty in the measurements. We give results without any cut and also with lower cuts

mZ2 � 10, 20, 30 GeV.

Table 1 gives the results for L = 300 fb�1. The entanglement can be probed at the 3� level using

C2,1,2,�1, and below the 2� level using C2,2,2,�2, see Eq. (30). A combination of both observables,

which is beyond the scope of this work, would improve the sensitivity. On the other hand, the

sensitivity to the violation of the Bell inequalities, see Eq. (43), is below the 2� level.

min mZ2
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N 450 418 312 129

C2,1,2,�1 �0.98± 0.31 �0.97± 0.33 �1.05± 0.38 �1.06± 0.61

C2,2,2,�2 0.60± 0.37 0.64± 0.38 0.74± 0.43 0.82± 0.63

I3 2.66± 0.46 2.67± 0.49 2.82± 0.57 2.88± 0.89

Table 1: Values of the spin correlation coe�cients C2,1,2,�1 and C2,2,2,�2 signaling quantum entan-

glement, and the Bell operator I3 signaling violation of the Bell inequalities, obtained from 1000

pseudo-experiments with with L = 300 fb�1.

Table 2 gives the results for L = 3 ab�1. In this case, the entanglement can be probed beyond

the 5� level using both coe�cients, reaching a 10% precision in the case of C2,1,2,�1. The sensitivity

to a violation of the Bell inequalities is at the 4.5� level.

min mZ2

0 10 GeV 20 GeV 30 GeV

N 4500 4180 3120 1290

C2,1,2,�1 �0.95± 0.10 �1.00± 0.10 �1.04± 0.12 �1.04± 0.19

C2,2,2,�2 0.60± 0.12 0.64± 0.12 0.74± 0.14 0.83± 0.20

I3 2.63± 0.15 2.71± 0.16 2.81± 0.18 2.84± 0.28

Table 2: The same as Table 1, for L = 3 ab�1.
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More precisely, since we have 3 crossed off-diagonal entries that serve as anchor elements (see
conditions (4.4)), we can formulate 3 CHSH inequalities, which are violated, although the ones
associated with a12 and a23 are the same. From Eq. (4.48), these inequalities read F (⇢)12  0,
F (⇢)13  0, with
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(the latter is obtained from Eq. (4.48) by permutation of the 2,3 indices).

We can simplify the above expressions by using the relations (5.3):

F (⇢)12 = F (⇢)23 = 2 + 2(1� a13)
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Since F (⇢)13 � 2 and a13 are proportional, so are their uncertainties. Therefore, the level of
confidence at which a13 is different from zero is the same as the one at which F (⇢)13 is bigger
than 2. Actually, this is also the case for F (⇢)12 vs. a12, even though F (⇢)12 depends on both,
a12 and a13. The reason is that F (⇢)12 > 0 iff a12 > 0.

Now, from the simulated data evaluated and presented in [15], we can compute both a12, a13
and the respective CHSH inequalities (i.e. the values of F (⇢)12, F (⇢)13). The results are shown
in tables 5.1 and 5.2.

Clearly, both entanglement and violation of CHSH inequalities in H ! ZZ could be verified at
⇠ 3� (⇠ 10�) at LHC with L = 300 fb�1 (L = 3 ab�1), by using a12 to signal both phenomena
and at ⇠ 2� (⇠ 5�) by using a12.

This represents an important net improvement with respect to the results obtained in [15] (and
subsequent literature), where the sensitivity to the violation of the Bell (CGLMP) inequalities
was below ⇠ 2� (⇠ 5�) at LHC with L = 300 fb�1 (L = 3 ab�1).

Finally, let us mention that recently [16] it has been shown that for the H ! ZZ system, the
presence of entanglement also implies the violation of a different CGLMP inequality.
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0 10 GeV 20 GeV 30 GeV

N 450 418 312 129

a12 �0.33± 0.10 �0.32± 0.11 �0.35± 0.13 �0.35± 0.20

a13 0.20± 0.12 0.21± 0.13 0.25± 0.14 0.27± 0.21

F (⇢)12 2.47 2.46 2.55 2.57

> 2 (3.2�) > 2 (2.9�) > 2 (2.7�) > 2 (1.7�)

F (⇢)13 2.33 2.35 2.41 2.45

> 2 (1.7�) > 2 (1.6�) > 2 (1.8�) > 2 (1.3�)

Table 5.1: Values of the crossed off-diagonal terms a12 and a13 signaling quantum entanglement,
as obtained from 1000 pseudoexperiments with L = 300 fb�1 in ref. [15]. The violation of the
corresponding CHSH inequalities (F (⇢)12  0, F (⇢)13  0)is reflected in rows (4,5) and (5,6)
respectively, where the central value of F (⇢) and the confidence level at which F (⇢) > 2, thus
signalling Bell-violation.
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N 4500 4180 3120 1290
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a13 0.20± 0.04 0.21± 0.04 0.25± 0.05 0.28± 0.07
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F (⇢)13 2.33 2.35 2.41 2.46

> 2 (5.0�) > 2 (5.3�) > 2 (5.3�) > 2 (4.2�)

Table 5.2: The same as table 5.1, but for a luminosity L = 3 ab�1.
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sensitivity to the violation of the Bell inequalities, see Eq. (43), is below the 2� level.
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Note:

The CHSH violation found is not the maximal Bell-violation

Other (CGLMP) inequalities, which are also violated, have been 
recently found in A. Bernal, P. Caban and J. Rembielinski, 2024 
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SUMMARY

For bipartite system with an additive observable

which has a definite value, !J

̂J = ̂JA + ̂JB

This holds for  ! , where the presence of any non-
vanishing off-diagonal entry of !  is a sufficient and necessary condition 
for entanglement and nonlocality 
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ρ

 !   ρ(mp)(nq) ≠ 0 with  !  and !  or !  non-degenerateM + Q ≠ J (M, P) (N, Q)
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Besides, b̂1 and b̂2 are taken as unitary vectors with opposite polar angle:

b̂1 = (sin ✓ sin', sin ✓ cos', cos ✓) , b̂2 = (� sin ✓ sin',� sin ✓ cos', cos ✓) . (4.9)

Now we define ĉ1 and ĉ2 such that

b̂1 + b̂2 = 2 cos(✓)ĉ1, b̂1 � b̂2 = 2 sin(✓)ĉ2. (4.10)

More explicitly,
~c1 = (0, 0, 1) , ~c2 = (sin', cos', 0) . (4.11)

We are interested in the quantities B1 +B2, B1 �B2 that appear in the CHSH inequality (4.2).
From Eqs. (4.7, 4.10):

B1 +B2 = 2 cos(✓)C1, B1 �B2 = 2 sin(✓)C2, (4.12)

with

C1 =

 
ĉ1~� 0

0 1dB�2

!
= ĉ1~� � 1dB�2, C2 =

 
~c2~� 0

0 OdB�2

!
= ~c2~� �OdB�2, (4.13)

where Od is the d⇥ d null matrix.

With these definitions, we can expand the tensor products A1 ⌦ (B1 +B2) and A2 ⌦ (B1 �B2)

that appear in F (⇢), Eq. (4.2):

A1 ⌦ (B1 +B2) = 2 [(�z � 1dA�2)⌦ (cos ✓ �z � 1dB�2)]

= 2 [(�z � 1dA�2)⌦ (cos ✓ �z �OdB�2) + (�z � 1dA�2)⌦ (O2 � 1dB�2)]

= 2 [cos ✓ Oz +O0] ,

A2 ⌦ (B1 �B2) = 2 [(�x � 1dA�2)⌦ ((sin ✓ sin' �x + sin ✓ cos' �y)�OdB�2)]

= 2 [(�x � 1dA�2)⌦ (sin ✓ sin' �x �OdB�2) + (�x � 1dA�2)⌦ (sin ✓ cos' �y �OdB�2)]

= 2 [sin ✓ sin' Ox + sin ✓ cos' Oy] ,
(4.14)

where we have introduced 4 new observables defined by:

O0 = (�z � 1dA�2)⌦ (O2 � 1dB�2) , Oz = (�z � 1dA�2)⌦ (�z �OdB�2) ,

Ox = (�x � 1dA�2)⌦ (�x �OdB�2) , Oy = (�x � 1dA�2)⌦ (�y �OdB�2) .
(4.15)

Thus, F (⇢) is given by:

F (⇢) = 2 [hO0i⇢ + sin ✓ sin'hOxi⇢ + sin ✓ cos'hOyi⇢ + cos ✓hOzi⇢] . (4.16)

Note that the three last terms are simply the dot product ~̂b1·h ~Oi⇢ with h ~Oi⇢ = (hOxi⇢, hOyi⇢, hOzi⇢).
The maximum of this expression is obtained when the ✓,' angles are in such a way that the
unitary vector b̂1 is aligned with h ~Oi⇢, and it is equal to the modulus of this vector. Hence

max
✓,'

{F (⇢)}=2
h
hO0i⇢ +

q
hOxi2⇢ + hOyi2⇢ + hOzi2⇢

i
, (4.17)
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Bell nonlocality

H ⟶ ZZ

At  !   both, entanglement and nonlocality, certified at !L = 300 fb−1 ∼ 3σ

At  !   both, entanglement and nonlocality, certified at !L = 3 ab−1 ∼ 10σ


