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Entropy is one of the oldest concepts in physics:

* Coarse-grained entropy —

The underlying dynamics is deterministic, but our ignorance of
microstates necessitates the use of probability.

— It tends to increase under unitary (time) evolution.

* Fine-grained entropy —

Quantum mechanics is inherently probabilistic and there’s intrinsic
randomness even if the wavefunction is completely known.

— It remains constant under unitary evolution.
p= sz|¢z><¢z| , pi=20, sz' =
i

von Neuman entropy: E(p) = —Tr(p In ,0)



There is no unique definition of entropy. Two commonly adopted ones are

* Renyi entropy: ER(,O) — - L log Tr ,On
— N
1 —Tr p"
» Tsallis entropy: ET(,O) — " 1,0

von Neuman entropy can be obtained in the limit n 2 1 in both cases.

Linear entropy is the n=2 case of Tsallis entropy

Ea(p) =1 —Tr p



We are interested in 2-to-2 scattering of distinguishable particles in the S-
matrix formalism:

AB—>AB

’ lout) = S|in) S =1+iT

p / <{kf}a ff|T|{ki}, fi)
24 \4 = (277)454 (Z ke — Z kl) Mfi,ff({ki}; {kf})

We compute the quantum correlation between particle-A and particle-B
and construct the bipartite system as

Ha = Ha QHp
HA/B = Hikinematic ® Havor

Kinematic = momentum and mass
Flavor = everything non-kinematic (could be spin!)



For now, we assume
* A pureinitial state
* No entanglement between the incoming momenta

* No entanglement between momentum and flavor qguantum numbers

* Allow possible entanglement among flavors
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For now, we assume

* A pure initial state

No entanglement between the incoming momenta

No entanglement between momentum and flavor quantum numbers

Allow possible entanglement among flavors

In QFT textbooks it is customary to employ momentum eigenstates for the
incoming particles.

(This is also how we prepare perform a high energy experiment!)

(plg) = (27)° 2E, 6° (9 — )

But then p=Ip)(p|  Trp={(plp) x §°(0)

One possibility is to introduce finite-volume regularization:

53(0):/d3x v



We will instead introducing wave packets, which is really how we do the
experiment!

in) = > Qula) ® 1i) ® [¢p) ® [i)

[Ya/B) =/p¢,A/B(p) p), /pE/(%)ij

W) = [ s W@ =1

The initial density matrix is now properly normalized:

p' = |in)(in|
trp' = (infin) = (Yalha)(YslYs) = 1



The out-state is in general a superposition of all outcome of the scattering:
lout) = S|in) = |outcome;) + |outcomesy) + - - -

We would like to focus on elastic scattering AB = AB and will insert a
projection operator to select the AB final state:

lout)e] = Paglout)



The out-state is in general a superposition of all outcome of the scattering:
lout) = S|in) = |outcome;) + |outcomesy) + - - -

We would like to focus on elastic scattering AB = AB and will insert a
projection operator to select the AB final state:

lout)e) = Paglout)

Applying the Luder’s rule, the properly normalized final state density
matrix is

F |Out) (out | P 1
t el e t
It (Paglout)(out]) 1 — Pipel out)el er{out

Pinel = (out|1 — Paglout) = (in|TT(1 — Pa)Tin)

|

The probability for AB to scatter inelastically into anything but AB.




We choose the following wave packet that is approximately uniform in the
transverse plane in the position space:

> /5 |+
AR
px <+ 2(5 -» /,, /’, : .
A L? characterizes the
Pz x Ll transverse size of
Py > ’J_.Z: the wave packet in
y .1;|i position space!
ny

(a) In momentum space (b) In position space



We choose the following wave packet that is approximately uniform in the
transverse plane in the position space:

->|_1_/§2;!:
P « 26, > R .
" PR L% characterizes the
Pz P transverse size of
Py > ’J_,Z the wave packet in
y a;{i position space!
L
(a) In momentum space (b) In position space
In position space the plane wave limit is

Notice that in the position space the wave packet is a "square pancake”
like object, as we expect the longitudinal direction to be “Lorentz
contracted.”



More specifically, the properly normalized wave packet is:

8y/T20p ~a =
(p) = TpfSB(P —ka/B)

0%(p) = 0(pa)do(py)d:(p2)
7Ok +8,) —OKk—38,) L . kL

%(k) = 3 Si(6,L/2) o g
5.0 _ Ot d) —0(k=5,)
2,

One can show that, in the limit
5y/|k| =0, 5oL > 1
03 (k) — &3(k)

We find it convenient to set 1/(d,L) < 5p/|E| so that there is a single
small parameter to expand.



Now we have carefully set up a wave packet formalism to compute the
cross section and entanglement entropy in the plane wave limit (i.e.
momentum eigenstates).

We are going to compute everything to the leading order in 5p/\lZ|



Now we have carefully set up a wave packet formalism to compute the
cross section and entanglement entropy in the plane wave limit (i.e.
momentum eigenstates).

We are going to compute everything to the leading order in 5p/\lZ|

Recall the final state density matrix

1 i )
Pf = ————|out)e el {out]| Pinel = <1n|TT(1 - PAB)T|1n>

1— Pinel ’

Let’s insert a complete basis 1 = Z/dHf|f><f|
We get g

Pinct = Lo([K]) |oinea + O (85 /IF]) |

Io(k)) = 4]F|vs | a (1) ¥ (p2) W (01)

Pb1,p2,91,q92
XY (q2)(2m)*0*(q1 + g2 — p1 — P2)
IL and Zhewei Yin: 2405.085056



After expanding around the plane wave limit,

— 1 - ine 7
Io(k]) = =5 (1 + O(6p/I]) Pinet = b + O(8,°/|[°)
L L?




After expanding around the plane wave limit,

- 1 — ine 7
() = 25 (1+ 06,/ 1)) Pinet = 255+ 06,7/ |RP)

There’s an intuitive understanding of this result. Let’s go back to Chapter 4
in Peskin and Schroeder:
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ag
We are scattering only two particles head on, so

p.AE.AA — IOBEBA =1 ’ A= L2 ) Ninel — 7Dinel



Similarly one can show

P = (n|T'Tlin) = 5 + O(8,%/IkP),

. . Oel "
Pa = (in|TTPagT|in) = 72 + O(0,°/|k|%).
Ptot — Pel + Pinel
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Similarly one can show

P = (i|T'Tlin) = =5 + O(6,°/IFI°),

. . Oel "
Po = (in|TTPppT|in) = 72 + O(0,°/|k|%).
Ptot — Pel + Pinel
Now let’s consider an initial that is unentangled in both momentum and
flavors, . . _
in) = Qlea) ® i) ® [¢) @ [0)

Q7 = wiw; w=(1,0,0,---), w' =(1,0,0,---)

And compute the subsystem linear entropy using the reduced density
matrix,

Im(MF

- = 47 —ZE SUine+0(5 E
5; _ IO(|]<:|) 11,11) | |\/— 1 (p/l |)

Flvs
= 21o((F]) [101 — Tinet + O3/ IF)]

Oe —
= 275 +0(8,°/IkP),

IL and Zhewei Yin: 2405.085056
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. . Oel "
Po = (in|TTPppT|in) = 72 + O(0,°/|k|%).
Ptot — Pel + Pinel
Now let’s consider an initial that is unentangled in both momentum and
flavors, . . _
in) = > Qlva) @ i) ® [¢8) @ [0)

Qi = wie! w=(1,0,0,---), w'=(1,0,0,-:-)

And compute the subsystem linear entropy using the reduced density
matrix,

Im(MF

o "~ )= 2|k S Oinel + O(6 k
5; _ IO(|k'|) 11,11) | L\/— 1 (p/| |)

= 2I,(|k|) [Utot — Oinel + O(0p/|k

Oo -
= 275 +0(8,°/IkP),
lout)e o1 (out|
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Now let’s consider an initial that is unentangled in both momentum and
flavors, . . _
in) = > Qlva) @ i) ® [¢8) @ [0)

Qi = wie! w=(1,0,0,---), w'=(1,0,0,-:-)

And compute the subsystem linear entropy using the reduced density
matrix,

o Im(ME -
£ = Io() i

) — 2|kl v/ Oinel + O(8p/ |K])

NG
Optical theorem: -
2ImT =T1T. — 210(|k|) [Utot —Uinel+0(5p/|k
Oel -
= 279 + 06,7/ IkP), f

lout)e o1 (out|

IL and Zhewei Yin: 2405.085056



Next we consider the case of a mixed initial state, but unentangled:
P = Ps @ Ppy ® Py @ Py
If the subsystem density matrix satisfies

(p%,)? o P,

which is the case of unpolarized scattering, the subsystem entanglement
entropy is

2 0al —
f __el 5% 5
gQ,A — nA 12 +O(5p /lkl )



Next we consider the case of a mixed initial state, but unentangled:
P = Ps @ Ppy ® Py @ Py
If the subsystem density matrix satisfies

(p%,)? o P,

which is the case of unpolarized scattering, the subsystem entanglement
entropy is

2 Jel 5 g
E = 22 RO(0,°/|k|°
/ZAv na L2 ( > /l | )
The number of flavor d.o.f. Unpolarized elastic

occupied in the beam cross section




In the end there’s a surprisingly simple statement:

AB — AB
Ha = Ha @ HB

The entanglement entropy in the wave packet formalism is

£ (fh) — N Ol for both the n-Tsallis
n(Pa) = n—1L2 and Renyi entropies
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In the end there’s a surprisingly simple statement:

AB — AB
Ha = Ha @ HB

The entanglement entropy in the wave packet formalism is

£ (fh) — N Ol for both the n-Tsallis
n(Pa) = n—1L2 and Renyi entropies

IL and Zhewei Yin: to appear

In plain English,

The entanglement entropy is the cross section in unit of the
transverse size of the wave packet.



Duality in the cross section:

* Itis an effective area characterizing the strength of interaction when
two particles collide:

projectile

/b 0 O — 7-‘-7.2
£

target

* Quantum-mechanically, it is a probability measure of a specific process
taking place.

scattering
center

dQ




Duality in the cross section:

* Itis an effective area characterizing the strength of interaction when
two particles collide:

projectile

b

* Quantum-mechanically, it is a probability measure of a specific process
taking place.

scattering
center

dQ

This is an area law: Entropy ~ Area




Area laws for entropy have been a subject of fascination:

* Bekenstein-Hawking entropy

A

SBH:E

* Massless free field theory:

VOLUME 71, NUMBER 5 PHYSICAL REVIEW LETTERS 2 AUGUST 1993

Entropy and Area

Mark Srednicki*

Center for Particle Astrophysics, University of California, Berkeley, California 94720
and Theoretical Physics Group, Lawrence Berkeley Laboratory, | Cyclotron Road, Berkeley, California 94720
(Received 15 March 1993)

The ground-state density matrix for a massless free field is traced over the degrees of freedom residing
inside an imaginary sphere; the resulting entropy is shown to be proportional to the area (and not the
volume) of the sphere. Possible connections with the physics of black holes are discussed.



* Quantum many-body systemes:

arXiv: 0808.3773

s(I) = |0I|

FIG. 1 A lattice L with a distinguished set I C L (shaded area).
Vertices depict the boundary 91 of I with surface area s(I) = |91|.

All examples involve macroscopic (black hole) or many-body systems and
there is a clearly defined boundary to construct an area.



In our case, it is a simple 2-to-2

scattering without a priori a
clearly defined boundary:




In our case, it is a simple 2-to-2

scattering without a priori a

clearly defined boundary: , )
A >

With the benefit of hindsight,

perhaps we can view the cross
section as the space-like boundary
between future and past light-cones.

S\ IGHT COV

How general is this viewpoint? /st o\
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So far we considered the subsystem entropy between particle-A and
particle-B:

HAB — HA R HB HA/B — Hkinematic X Hﬂavor

There are other possibilities of constructing a bipartite system:

¢ %AB — Hkinematic 024 Hﬂavor Hkinematic — HPA X HPB

Hﬂavor — 7'[ﬂavorA X %ﬂavorB

¢ N Cel fc Elastic cross section where at least
g’n, — n—1 L2 one of the particles changes “flavor”
¢ HAB — HﬂavorA ) HﬂavorA HﬂavorA — HpA X %pB X HﬂavorB
of — T Oel fc(A) Elastic cross section where
" n—1 L2 particle-A changes “flavor”

IL and Zhewei Yin: to appear



There are intriguing consequences of relating “entropy” to “cross
section”:

» Total and elastic cross sections are known to increase with respect to
energy:

VOLUME 24, NUMBER 25 PHYSICAL REVIEW LETTERS 22 JuNE 1970

LIMIT OF CROSS SECTIONS AT INFINITE ENERGY *

Hung Chengf
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Tai Tsun Wu
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 15 May 1970)

At infinite energy, we predict: (1) 0 op approaches infinitz-r (2) the ratio of the real part
to the imaginary part of the forward elastic amplitude approaches zero; (3) 0¢/0(, ap-

roaches 4; (4) the width of diffraction peak approaches zero; its product With Org; IS &
constant. We give theoretical evidence based on massive quantum electrodynamics as
well as experimental evidence in support of these predictions, and a physical picture for

high-energy scattering.

This is a counter-intuitive result, and controversial at the
time, as the partonic rate usually decreases with 1/s.



The growth has since been verified experimentally,
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* Froissiart and Martin showed there’s a universal bound on the total cross

section: 5
Otot < log” s



Concluding Remarks/Questions:

* |n 2-to-2 scattering,

Entanglement Entropy is Cross Section!

* Entanglement entropy grows with energy in high energy scattering.

* The growth is bounded logarithmically by the Foissart bound.

Does this suggest some sort of thermodynamics law in particle scattering?

* Can we interpret other examples of area laws as ~“probability’”” or “cross
sections”?

e Can we measure the size of the wave packet experimentally?



