Quantum Tomography of helicity states for general scattering processes.

Alexander Bernal, ift UAM-CSIC Based on Phys.Rev.D 109 (2024) 11, 116007

Merton College, Oxford

Quantum tests in collider physics

Motivation

all the spin information of the system, in particular:

- Spin polarizations
- Spin correlations
- Entanglement
- Violation of Bell inequalities
- Etc

From knowing the helicity density matrix of a quantum state we have access to

Motivation

all the spin information of the system, in particular:

- Spin polarizations
- Spin correlations
- Entanglement
- Violation of Bell inequalities
- Etc

Simple and experimentally practical Quantum Tomography is an indispensable tool

Ashby-Pickering, Barr, Wierzchucka, 2023

From knowing the helicity density matrix of a quantum state we have access to

Determine the initial helicity state ρ of a general scattering process from the angular distribution data of the final particles

- Generalize the definition of the production/decay matrix Γ

- Generalize the definition of the production/decay matrix Γ
- cross section

• Find the kinematic dependence of both Γ and the normalized differential

- Generalize the definition of the production/decay matrix Γ
- Find the kinematic dependence of both Γ and the normalized differential cross section
- Expand ρ in terms of $\{T_M^L\}$ (Irreducible tensor operators) and compute the coefficients of the expansion from the previous results

- Generalize the definition of the production/decay matrix Γ
- Find the kinematic dependence of both Γ and the normalized differential cross section
- Expand ρ in terms of $\{T_M^L\}$ (Irreducible tensor operators) and compute the coefficients of the expansion from the previous results

Extra: Re-derivation from Quantum Information perspective (Weyl-Wigner-Moyal formalism)

Ashby-Pickering, Barr, Wierzchucka, 2023

State representation of relativistic manyparticle systems

We consider an *n*-particle system with fixed λ_i and \vec{p}_i such that $\vec{\chi} = \sum \vec{p}_i = \vec{0}$.

State representation of relativistic manyparticle systems

We distinguish 2 reference frames relevant for the work:

We consider an *n*-particle system with fixed λ_i and \vec{p}_i such that $\vec{\chi} = \sum \vec{p}_i = \vec{0}$.

Following this setup, the quantum state of the *n*-particle system is given by

$$\prod_{i=1}^{n} |\vec{p}_{i}\lambda_{i}\rangle = \hat{D}(R)\prod_{i=1}^{n} |\vec{p}_{i}^{0}\lambda_{i}\rangle = |Rp^{0}\lambda\rangle$$

Here $\hat{D}(R)$ is the unitary representation of R, λ are the particle's helicities and p^0 are the 3n - 3 spherical coordinates in \mathscr{RF}^0 .

Following this setup, the quantum state of the *n*-particle system is given by

$$\prod_{i=1}^{n} |\vec{p}_{i}\lambda_{i}\rangle = \hat{D}(R)\prod_{i=1}^{n} |\vec{p}_{i}^{0}\lambda_{i}\rangle = |Rp^{0}\lambda\rangle$$

Here $\hat{D}(R)$ is the unitary representation of R, λ are the particle's helicities and p^0 are the 3n-3 spherical coordinates in \mathscr{RF}^0 .

A more convenient representation is

REZK

Now, κ is a set of 3n - 7 parameters to be chosen depending on the case

$$\lambda \rangle = |R\kappa\lambda\rangle$$

$$\uparrow$$

E and χ fixed

Generalized decay matrix **F**

We define the decay matrix as:

 $\Gamma_{\bar{\lambda}\bar{\lambda}'} \propto \sum \mathcal{M}_{\lambda\bar{\lambda}} \mathcal{M}_{\lambda\bar{\lambda}'}^*, \quad \mathcal{M}_{\lambda\bar{\lambda}} = \langle R \kappa \lambda | T | \bar{R} \bar{\kappa} \bar{\lambda} \rangle$ λ

with $\mathcal{M}_{\lambda \bar{\lambda}}$ the so-called helicity amplitudes.

Generalized decay matrix Γ

We define the decay matrix as:

$$\Gamma_{\bar{\lambda}\bar{\lambda}'} \propto \sum_{\lambda} \mathcal{M}_{\lambda\bar{\lambda}} \mathcal{M}_{\lambda\bar{\lambda}'}^{*},$$

with $\mathcal{M}_{\lambda \bar{\lambda}}$ the so-called helicity amplitudes.

We are particularly interested in the transposed matrix Γ^T :

$$\begin{split} \Gamma^T &= \Gamma^T(\bar{R}^{-1}R) = \Gamma^T(R) = \hat{D}(R) \, \Gamma^T(1) \, \hat{D}(R)^{-1}, \quad R = R(\varphi_1, \theta_1, \varphi_{12}) = R(\Omega) \\ \bar{R} \stackrel{\dagger}{=} 1 \end{split}$$

One only needs to compute the elements of $\Gamma^{I}(1)$ and then rotate the matrix accordingly.

$\mathcal{M}_{\lambda\,\bar{\lambda}} = \langle R\,\kappa\,\lambda \,|\,T \,|\,\bar{R}\,\bar{\kappa}\,\bar{\lambda} \rangle$

Generalized decay matrix **F**

We define the decay matrix as:

$$\Gamma_{\bar{\lambda}\bar{\lambda}'} \propto \sum_{\lambda} \mathcal{M}_{\lambda\bar{\lambda}} \mathcal{M}_{\lambda\bar{\lambda}'}^{*},$$

with $\mathcal{M}_{\lambda \bar{\lambda}}$ the so-called helicity amplitudes.

We are particularly interested in the transposed matrix Γ^{T} :

$$\Gamma^{T} = \Gamma^{T}(\bar{R}^{-1}R) = \Gamma^{T}(R) = \hat{D}(R) \Gamma^{T}(1) \hat{D}(R)^{-1}, \quad R = R(\varphi_{1}, \theta_{1}, \varphi_{12}) = R(\Omega)$$

$$\bar{R} \stackrel{\dagger}{=} 1$$

accordingly. In general, in the canonical basis $e_{\sigma\sigma'}$

$$a_{\sigma\sigma'} = \sum_{\lambda} \langle \bar{1}\,\bar{\kappa}\,\sigma \,|\, T^{\dagger} \,|\, 1\,\kappa\,\lambda \rangle \langle 1\,\kappa\,\lambda \,|\, T \,|\, \bar{1}\,\bar{\kappa}\,\sigma' \rangle, \quad a_{\sigma\sigma} = \sum_{\lambda} |\langle 1\,\kappa\,\lambda \,|\, T \,|\, \bar{1}\,\bar{\kappa}\,\sigma \rangle |^{2}$$

Red. helicity amplitudes

$\mathcal{M}_{\lambda\,\bar{\lambda}} = \langle R\,\kappa\,\lambda \,|\,T\,|\,\bar{R}\,\bar{\kappa}\,\bar{\lambda} \rangle$

One only needs to compute the elements of $\Gamma^{I}(1)$ and then rotate the matrix

Reconstruction of density matrix ρ

We make use of the relation between ρ , Γ and the normalized differential cross section (narrow width approximation):

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{d}{8\pi^2 \bar{K} K} \, Tr\{\rho \, \Gamma^T(R)\},\,$$

$$\bar{K} = \int d\bar{\kappa}, \quad K = \int d\kappa, \quad d = \prod_{i} (2s_i + 1)$$

)

Reconstruction of density matrix ρ

We make use of the relation between ρ , Γ and the normalized differential cross section (narrow width approximation):

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{d}{8\pi^2 \bar{K} K} \, Tr\{\rho \, \Gamma^T(R)\},\,$$

operators $\{T_M^L\}$, defined by their transformation under rotations

$$\hat{D}(R)T_{M'}^{L}\hat{D}(R)^{-1} = \sum_{M} D_{MM'}^{L}(R)T_{M}^{L}$$

$$\bar{K} = \int d\bar{\kappa}, \quad K = \int d\kappa, \quad d = \prod_i (2s_i + 1)$$

We expand both Γ and ρ over a convenient basis. We take the irreducible tensor

$$D^J_{MM'}(R)\,\delta_{J,J'} = \langle JM | \hat{D}(R) | J'M' \rangle$$

Properties

Dimensionality of the basis $\{T_M^L\}$: $L \in \{0, 1, ..., (d-1)\}, M \in \{-L, ..., L\}$

Properties

Dimensionality of the basis $\{T_M^L\}$: $L \in \{0, 1, ..., (d-1)\}, M \in \{-L, ..., L\}$

Normalization condition:

$Tr\{T_{M}^{L}(T_{M'}^{L'})^{\dagger}\} = d\,\delta_{LL'}\delta_{MM'}$

Properties

Dimensionality of the basis $\{T_M^L\}$: $L \in \{0, 1, ..., (d-1)\}, M \in \{-L, ..., L\}$

Normalization condition:

Elements of each operator:

with s_T an "effective" spin for the whole system, $d = 2s_T + 1$.

$$Tr\{T_{M}^{L}(T_{M'}^{L'})^{\dagger}\} = d\,\delta_{LL'}\delta_{MM'}$$

 $\left[T_{M}^{L}\right]_{\sigma_{T}\sigma_{T}'} = (2L+1)^{1/2} C_{s_{T}\sigma_{T}LM}^{s_{T}\sigma_{T}}$

Using the orthogonality condition, for any operator we get

$$\mathcal{O} = \frac{1}{d} \sum_{LM} \mathcal{O}_{LM} T_M^L, \text{ with}$$

vith $\mathcal{O}_{LM} = Tr\{\mathcal{O}(T_M^L)^{\dagger}\}$

Using the orthogonality condition, for any operator we get

$$\mathcal{O} = \frac{1}{d} \sum_{LM} \mathcal{O}_{LM} T_M^L, \text{ with}$$

Applying this result to $e_{\sigma\sigma'}$

vith $\mathcal{O}_{LM} = Tr\{\mathcal{O}(T_M^L)^{\dagger}\}$

$Tr\{e_{\sigma\sigma'}(T_M^L)^{\dagger}\} = Tr\{e_{\sigma\sigma'}(T_M^L)^T\} = \left[T_M^L\right]_{\sigma_T\sigma_T'} = (2L+1)^{1/2}C_{s_T\sigma_T'LM}^{s_T\sigma_T}$

Using the orthogonality condition, for any operator we get

$$\mathcal{O} = \frac{1}{d} \sum_{LM} \mathcal{O}_{LM} T_M^L, \text{ with}$$

Applying this result to $e_{\sigma\sigma'}$

$$Tr\{e_{\sigma\sigma'}(T_M^L)^{\dagger}\} = Tr\{e_{\sigma\sigma'}(T_M^L)^T\} = [T_M^L]_{\sigma_T\sigma_T'} = (2L+1)^{1/2}C_{s_T\sigma_T'LM}^{s_T\sigma_T}$$

and plugging this expression in Γ^T (1) leads to

$$\Gamma^{T}(1) = \frac{1}{d} \sum_{LM} \tilde{B}_{LM} T_{M}^{L},$$

vith $\mathcal{O}_{LM} = Tr\{\mathcal{O}(T_M^L)^{\dagger}\}$

$$\tilde{B}_{LM} \equiv \tilde{B}_{LM} \left(a_{\sigma \sigma'}, C^{S_T \sigma_T}_{S_T \sigma'_T LM} \right)$$

From

In the transformation of
$$\{T_M^L\}$$
 under rotations we get the expansion of $\Gamma^T(R)$
 $\hat{D}(R)T_{M'}^L\hat{D}(R)^{-1} = \sum_M D_{MM'}^L(R)T_M^L \implies \Gamma^T(R) = \frac{1}{d}\sum_{LM} \left[\sum_{M'} \tilde{B}_{LM'} D_{MM'}^L(R)\right] T_M^L$

We have factorized the kinematic dependence as

$$\tilde{B}_{LM'} = \tilde{B}_{LM'}(\bar{\kappa}, \kappa), \quad D^L_{MM'}(R) = D^L_{MM'}(\Omega)$$

From

m the transformation of
$$\{T_M^L\}$$
 under rotations we get the expansion of $\Gamma^T(R)$
 $\hat{D}(R)T_{M'}^L\hat{D}(R)^{-1} = \sum_M D_{MM'}^L(R)T_M^L \implies \Gamma^T(R) = \frac{1}{d}\sum_{LM} \left[\sum_{M'} \tilde{B}_{LM'}D_{MM'}^L(R)\right]T_M^L$

We have factorized the kinematic dependence as

$$\tilde{B}_{LM'} = \tilde{B}_{LM'}(\bar{\kappa}, \kappa), \quad D^L_{MM'}(R) = D^L_{MM'}(\Omega)$$

In the same fashion,

$$\rho = \frac{1}{d} \sum_{LM} A_{LM} T_M^L \implies \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{1}{8\pi^2 K \bar{K}} \sum_{LM} A_{LM} \sum_{M'} \tilde{B}^*_{LM'} D^L_{MM'}(R)^*$$

Finally, from the orthogonality conditions for the Wigner D-matrices we get

$$\int d\Omega \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa}\right] \left(\frac{2L+1}{4\pi}\right)^{1/2} D^L_{MM'}(\Omega) = \frac{B_{LM'}(\bar{\kappa},\kappa)^*}{4\pi} A_{LM}(\bar{\kappa})$$

with

$$B_{LM'}(\bar{\kappa},\kappa) \equiv \left(\frac{4\pi}{2L+1}\right)^{1/2} \frac{\tilde{B}_{LM'}(\kappa,\bar{\kappa})}{\bar{K}K}$$

Quantum Tomography: angular data $+ B_{LM'}$ (theoretically computable) $\rightarrow A_{LM}$

Finally, from the orthogonality conditions for the Wigner D-matrices we get

$$\int d\Omega \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left(\frac{2L+1}{4\pi} \right)^{1/2} D^L_{MM'}(\Omega) = \frac{B_{LM'}(\bar{\kappa},\kappa)^*}{4\pi} A_{LM}(\bar{\kappa})$$

with

$$B_{LM'}(\bar{\kappa},\kappa) \equiv \left(\frac{4\pi}{2L+1}\right)^{1/2} \frac{\tilde{B}_{LM'}(\kappa,\bar{\kappa})}{\bar{K}K}$$

Quantum Tomography: angular data $+ B_{LM'}$ (theoretically computable) $\rightarrow A_{LM}$

$$\int d\Omega \, \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \, Y_L^{M*}(\Omega) = \frac{B_{LM'}(\bar{\kappa}, \kappa)^*}{4\pi} A_{LM}(\bar{\kappa})$$

For M' = 0

Factorizable case

Let us consider a scattering process of the form

 $(\bar{A}_1 \bar{B}_1 \bar{C}_1 \dots) (\bar{A}_2 \bar{B}_2 \bar{C}_2 \dots) \dots (\bar{A}_N \bar{B}_N \bar{C}_N \dots) \to (A_1 B_1 C_1 \dots) (A_2 B_2 C_2 \dots) \dots (A_N B_N C_N \dots)$

Factorizable case

Let us consider a scattering process of the form

 $(\bar{A}_1 \bar{B}_1 \bar{C}_1 \dots) (\bar{A}_2 \bar{B}_2 \bar{C}_2 \dots) \dots (\bar{A}_N \bar{B}_N \bar{C}_N \dots)$

The decay matrix Γ and the diff. cross section are in this case

$$\Gamma = \bigotimes_{j=1}^{N} \Gamma_{j}(R_{j}) \implies \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \mathcal{N}Tr \left\{ \rho \left(\bigotimes_{j=1}^{N} \Gamma_{j}^{T}(R_{j}) \right) \right\}$$

.)
$$\rightarrow (A_1 B_1 C_1 ...) (A_2 B_2 C_2 ...) ... (A_N B_N C_N ...)$$

Factorizable case

Let us consider a scattering process of the form

 $(\bar{A}_1 \bar{B}_1 \bar{C}_1 \dots) (\bar{A}_2 \bar{B}_2 \bar{C}_2 \dots) \dots (\bar{A}_N \bar{B}_N \bar{C}_N \dots)$

The decay matrix Γ and the diff. cross section are in this case

$$\Gamma = \bigotimes_{j=1}^{N} \Gamma_{j}(R_{j}) \implies \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \mathcal{N}Tr \left\{ \rho \left(\bigotimes_{j=1}^{N} \Gamma_{j}^{T}(R_{j}) \right) \right\}$$

In this context instead of using $\{T_M^L\}$, it is convenient to use the factorized one:

$$\left\{\bigotimes_{j=1}^{N} T_{M_{j}}^{L_{j}}\right\}_{L_{j},M_{j}} \implies \rho = \frac{1}{d} \sum_{L_{1}L_{2}...L_{N}} \sum_{M_{1}M_{2}...M_{N}} A_{L_{1}M_{1},L_{2}M_{2},...,L_{N}M_{N}} \bigotimes_{j=1}^{N} T_{M_{j}}^{L_{j}}$$

.)
$$\rightarrow (A_1 B_1 C_1 ...) (A_2 B_2 C_2 ...) ... (A_N B_N C_N ...)$$

Applying a similar reasoning than for the general case

$$\int d\Omega \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left[\prod_{j=1}^{N} \left(\frac{2L_j + 1}{4\pi} \right)^{1/2} D_M^N \right]$$

 $D_{M_{j}M_{j}'}^{L_{j}}(\Omega_{j}) = \frac{\prod_{j=1}^{N} B_{L_{j}M_{j}'}(\bar{\kappa},\kappa)^{*}}{4\pi} A_{L_{1}M_{1},L_{2}M_{2},...,L_{N}M_{N}}(\bar{\kappa})$

Applying a similar reasoning than for the general case

$$\int d\Omega \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left[\prod_{j=1}^{N} \left(\frac{2L_j + 1}{4\pi} \right)^{1/2} D_{M_j M_j'}^{L_j}(\Omega_j) \right] = \frac{\prod_{j=1}^{N} B_{L_j M_j'}(\bar{\kappa}, \kappa)^*}{4\pi} A_{L_1 M_1, L_2 M_2, \dots, L_N M_N}(\bar{\kappa})$$

When all the processes are decays (N = m)

$$\bar{A}_1 \bar{A}_2 \dots \bar{A}_m \to (A_1 B_1 C_1 \dots) (A_2 B_2 C_2 \dots) \dots (A_m B_m C_m \dots),$$

 $L_j = L_{j_0} \delta_{jj_0} \longrightarrow A_{00,...,L_{j_0}M_{j_0},...,00}$ spin polarization vector of particle j_0

 $L_{j} = 0 \text{ except for } L_{j_{1}}, L_{j_{2}} \longrightarrow A_{00, \dots, L_{j_{1}}M_{j_{1}}, \dots, L_{j_{2}}M_{j_{2}}, \dots, 00} \text{ spin correlation matrix of particles } j_{1} \text{ and } j_{2}$ $L_j \neq 0$ $\forall j \longrightarrow A_{L_1M_1, L_2M_2, \dots, L_mM_m}$ spin correlation tensor of the whole system

Physical examples

 $\cdot t\bar{t} \rightarrow (bW^+)(\bar{b}W^-) \rightarrow (bl^+\nu_l)(\bar{b}l^-\bar{\nu}_l), \quad \rho =$

$$A_{L_{1}M_{1},L_{2}M_{2}} = \frac{4\pi}{B_{L_{1}}B_{L_{2}}} \int d\Omega_{1}d\Omega_{2} \left[\frac{1}{\sigma}\frac{d\sigma}{d\Omega_{1}d\Omega_{2}}\right] Y_{L_{1}}^{M_{1}*}(\Omega_{1})Y_{L_{2}}^{M_{2}*}(\Omega_{2}) \qquad B_{0} = \sqrt{4\pi}, \quad B_{L_{i}=1} = \sqrt{\frac{4\pi}{3}}\alpha_{i} \\ \alpha_{b} \simeq -0.41, \quad \alpha_{l} \simeq 1$$

$$\frac{1}{4} \sum_{L_1 L_2 = 0}^{1} \sum_{M_1 M_2} \sum_{M_1 M_2} A_{L_1 M_1, L_2 M_2} T_{M_1}^{L_1}(1/2) \otimes T_{M_2}^{L_2}(1/2).$$

Physical examples

 $\cdot t\bar{t} \rightarrow (bW^+)(\bar{b}W^-) \rightarrow (bl^+\nu_l)(\bar{b}l^-\bar{\nu}_l), \quad \rho =$

$$A_{L_{1}M_{1},L_{2}M_{2}} = \frac{4\pi}{B_{L_{1}}B_{L_{2}}} \int d\Omega_{1}d\Omega_{2} \left[\frac{1}{\sigma}\frac{d\sigma}{d\Omega_{1}d\Omega_{2}}\right] Y_{L_{1}}^{M_{1}*}(\Omega_{1})Y_{L_{2}}^{M_{2}*}(\Omega_{2}) \qquad B_{0} = \sqrt{4\pi}, \quad B_{L_{i}=1} = \sqrt{\frac{4\pi}{3}}\alpha_{i} \\ \alpha_{b} \simeq -0.41, \quad \alpha_{l} \simeq 1$$

$$V_1 V_2 \to (f_1 \bar{f}_1) (f_2 \bar{f}_2), \qquad \rho = \frac{1}{9} \sum_{L_1 L_2 = 0}^2 \sum_{M_1 M_2} A_{L_1 M_1, L_2 M_2} T_{M_1}^{L_1}(1) \otimes T_{M_2}^{L_2}(1).$$

$$B_0 = \sqrt{4\pi}, \quad B_{L_i=1} = \sqrt{2\pi}\alpha_i, \quad B_{L_i=2} = \sqrt{\frac{2\pi}{5}}(1-3\delta_i) \qquad \alpha_Z \simeq -0.13, \quad \alpha_W \simeq -1, \quad \delta_i \simeq 0$$

$$\frac{1}{4} \sum_{L_1 L_2 = 0}^{1} \sum_{M_1 M_2} \sum_{M_1 M_2} A_{L_1 M_1, L_2 M_2} T_{M_1}^{L_1}(1/2) \otimes T_{M_2}^{L_2}(1/2).$$

 $\cdot t\bar{t}W \rightarrow (bW^+)(\bar{b}W^-)(l\nu_l) \rightarrow (bl^+\nu_l)(\bar{b}l^-\bar{\nu}_l)(l\nu_l)$

$$\rho = \frac{1}{12} \sum_{L_1 L_2 = 0}^{1} \sum_{L_3 = 0}^{2} \sum_{M_1 M_2 M_3} A_{L_1 M_1, L_2 M_3}$$

$$A_{L_1M_1, L_2M_2, L_3M_3} = \frac{4\pi}{B_{L_1}B_{L_2}B_{L_3}} \int d\Omega_1 d\Omega_2 d\Omega_3 \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2 d\Omega_3}\right] Y_{L_1}^{M_1*}(\Omega_1) Y_{L_2}^{M_2*}(\Omega_2) Y_{L_3}^{M_3*}(\Omega_2) Y_{L_3}^{M_3*}($$

$$B_0 = \sqrt{4\pi}, \quad B_{L_1=1} = B_{L_2=1} = \sqrt{\frac{4\pi}{3}},$$

$_{M_2, L_3 M_3} T^{L_1}_{M_1}(1/2) \otimes T^{L_2}_{M_2}(1/2) T^{L_3}_{M_3}(1)$

$$B_{L_3=1} = -\sqrt{2\pi}, \quad B_{L_3=2} = \sqrt{\frac{2\pi}{5}}.$$

Weyl-Wigner-Moyal formalism

Re-derivation using concepts from quantum information:

• Positive Operator-Valued Measure (POVM):

positive semi-definite hermitian operators $\{F_l = \mathscr{K}_l^{\dagger} \mathscr{K}_l\}_l$, with $\sum \mathscr{K}_l^{\dagger} \mathscr{K}_l = \sum F_l = 1$. $\mathscr{K}_{\lambda\bar{\lambda}} \propto \mathscr{M}_{\lambda\bar{\lambda}} \implies F_{\bar{\lambda}\bar{\lambda'}} = \Gamma^T_{\bar{\lambda}\bar{\lambda'}}$

Weyl-Wigner-Moyal formalism

Re-derivation using concepts from quantum information:

· Positive Operator-Valued Measure (POVM): positive semi-definite hermitian operators { F_l =

$$\mathscr{K}_{\lambda \bar{\lambda}} \propto \mathscr{M}_{\lambda \bar{\lambda}} =$$

· Generalized Wigner Q and P symbols: $\Phi_A^Q \equiv$

$$\Phi_{T_M^L}^Q = \sum_{M'} \tilde{B}_{LM'}(\bar{\kappa},\kappa)^* D_{MM'}^L(\Omega)^*, \qquad \Phi_{T_M^L,M'}^P(\Omega,\bar{\kappa},\kappa) = \frac{4\pi}{B_{LM'}(\bar{\kappa},\kappa)} \left(\frac{2L+1}{4\pi}\right)^{1/2} D_{MM'}^L(\Omega)^*, \qquad \Phi_{\rho}^Q = \frac{8\pi^2 \bar{K}K}{d} \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \,$$

$$\mathscr{K}_{l}^{\dagger} \mathscr{K}_{l} \}_{l}, \text{ with } \sum_{l} \mathscr{K}_{l}^{\dagger} \mathscr{K}_{l} = \sum_{l} F_{l} = 1.$$

$$\Rightarrow F_{\bar{\lambda}\bar{\lambda}'} = \Gamma_{\bar{\lambda}\bar{\lambda}'}^{T}$$

$$\equiv Tr\{A F_l\} = Tr\{A \Gamma^T\}, \qquad Tr\{A B\} = \frac{d}{8\pi^2 \bar{K}K} \int d\Omega \Phi_B^Q \Phi_A^Q$$

Weyl-Wigner-Moyal formalism

Re-derivation using concepts from quantum information:

· Positive Operator-Valued Measure (POVM): positive semi-definite hermitian operators { F_l =

$$\mathcal{K}_{\lambda\bar{\lambda}}\propto \mathcal{M}_{\lambda\bar{\lambda}}=$$

· Generalized Wigner Q and P symbols: $\Phi_A^Q \equiv$

$$\Phi_{T_M^L}^Q = \sum_{M'} \tilde{B}_{LM'}(\bar{\kappa},\kappa)^* D_{MM'}^L(\Omega)^*, \qquad \Phi_{T_M^L,M'}^P(\Omega,\bar{\kappa},\kappa) = \frac{4\pi}{B_{LM'}(\bar{\kappa},\kappa)} \left(\frac{2L+1}{4\pi}\right)^{1/2} D_{MM'}^L(\Omega)^*, \qquad \Phi_{\rho}^Q = \frac{8\pi^2 \bar{K}K}{d} \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\bar{\kappa}} d\bar{\kappa} \, d$$

· Applying the definition of the Q and P symbols as well as the decomposition of ρ in terms of T_M^L :

$$\int d\Omega \left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left(\frac{2L+1}{4\pi} \right)^{1/2} D^L_{MM'}(\Omega) = \frac{B_{LM'}(\bar{\kappa},\kappa)^*}{4\pi} A_{LM}(\bar{\kappa})$$

$$\Rightarrow \mathscr{K}_{l}^{\dagger} \mathscr{K}_{l} \}_{l}, \text{ with } \sum_{l} \mathscr{K}_{l}^{\dagger} \mathscr{K}_{l} = \sum_{l} F_{l} = 1.$$
$$\Rightarrow F_{\bar{\lambda}\bar{\lambda}'} = \Gamma_{\bar{\lambda}\bar{\lambda}'}^{T}$$

$$\equiv Tr\{A F_l\} = Tr\{A \Gamma^T\}, \qquad Tr\{A B\} = \frac{d}{8\pi^2 \bar{K}K} \int d\Omega \Phi_B^Q \Phi_R^Q$$

Conclusions

- the initial helicity state ρ in general scattering processes.
- D-matrices kernels.
- elaborating on the factorizable case with some examples.
- We have re-derived everything using the Weyl-Wigner-Moyal formalism.

We have developed a practical way of performing the Quantum Tomography of

 The method is based on computing the coefficients of the expansion over $\{T_M^L\}$ by averaging the angular distribution of the final particles under Wigner

• We have further given explicit formulas for the angular dependence of both a generalization of the production/decay matrix Γ and of the diff. cross section,

Conclusions

- the initial helicity state ρ in general scattering processes.
- D-matrices kernels.
- elaborating on the factorizable case with some examples.
- We have re-derived everything using the Weyl-Wigner-Moyal formalism.

Thank you for your attention!

We have developed a practical way of performing the Quantum Tomography of

 The method is based on computing the coefficients of the expansion over $\{T_M^L\}$ by averaging the angular distribution of the final particles under Wigner

• We have further given explicit formulas for the angular dependence of both a generalization of the production/decay matrix Γ and of the diff. cross section,

