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Simple and experimentally practical Quantum Tomography is 
an indispensable tool
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Main goal
Determine the initial helicity state  of a general scattering process from the 
angular distribution data of the final particles

ρ
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Steps to follow:

Extra: Re-derivation from Quantum Information perspective 

(Weyl-Wigner-Moyal formalism)

Ashby-Pickering, Barr, Wierzchucka, 2023
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Following this setup, the quantum state of the -particle system is given by n
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 are the  spherical coordinates in . 
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| ⃗piλi⟩ = D̂(R)
n

∏
i=1

| ⃗p0
i λi⟩ = |Rp0λ⟩

Here  is the unitary representation of ,   are the particle’s helicities and 
 are the  spherical coordinates in . 


A more convenient representation is

D̂(R) R λ
p0 3n − 3 ℛℱ 0

|RE ⃗χκλ⟩ = |Rκλ⟩

 and  fixedE ⃗χ

Now,  is a set of  parameters to be chosen depending on the caseκ 3n − 7
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Reconstruction of density matrix  ρ
We make use of the relation between ,  and the normalized differential cross 
section (narrow width approximation):
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We expand both  and  over a convenient basis. We take the irreducible tensor 
operators , defined by their transformation under rotations


Γ ρ
{TL

M}

D̂(R)TL
M′ 

D̂(R)−1 = ∑
M

DL
M M′ 

(R)TL
M, DJ

M M′ 
(R) δJ, J′ 

= ⟨J M | D̂(R) |J′ M′ ⟩
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Elements of each operator:


with  an “effective” spin for the whole system, .

{TL
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sT d = 2sT + 1

[TL
M]σT σ′ T

= (2L + 1)1/2 CsT σT
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Using the orthogonality condition, for any operator we get
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From the transformation of  under rotations we get the expansion of {TL
M} ΓT(R)

D̂(R)TL
M′ 

D̂(R)−1 = ∑
M

DL
M M′ 

(R)TL
M ⟹ ΓT(R) =

1
d ∑

L M [∑
M′ 

B̃L M′ 
DL

M M′ 
(R)] TL

M

We have factorized the kinematic dependence as

B̃L M′ 
= B̃L M′ 

(κ̄, κ), DL
M M′ 

(R) = DL
M M′ 

(Ω)



From the transformation of  under rotations we get the expansion of {TL
M} ΓT(R)

D̂(R)TL
M′ 

D̂(R)−1 = ∑
M

DL
M M′ 

(R)TL
M ⟹ ΓT(R) =

1
d ∑

L M [∑
M′ 

B̃L M′ 
DL

M M′ 
(R)] TL

M

We have factorized the kinematic dependence as

B̃L M′ 
= B̃L M′ 

(κ̄, κ), DL
M M′ 

(R) = DL
M M′ 

(Ω)

In the same fashion,

ρ =
1
d ∑

L M

AL M TL
M ⟹

1
σ

dσ
dΩ dκ̄ dκ

=
1

8π2KK̄ ∑
L M

AL M ∑
M′ 

B̃*L M′ 

DL
M M′ 

(R)*



Finally, from the orthogonality conditions for the Wigner D-matrices we get

∫ dΩ [ 1
σ

dσ
dΩ dκ̄ dκ ] ( 2L + 1

4π )
1/2

DL
M M′ 

(Ω) =
BL M′ 

(κ̄, κ)*
4π

AL M(κ̄)

with 
BL M′ 

(κ̄, κ) ≡ ( 4π
2L + 1 )

1/2 B̃L M′ 
(κ, κ̄)

K̄K

Quantum Tomography: angular data  (theoretically computable) 
+ BL M′ 
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(κ, κ̄)
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For M′ = 0 ∫ dΩ [ 1
σ

dσ
dΩ dκ̄ dκ ] YM *

L (Ω) =
BL M′ 

(κ̄, κ)*
4π

AL M(κ̄)

Quantum Tomography: angular data  (theoretically computable) 
+ BL M′ 
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(Ā1 B̄1 C̄1…) (Ā2 B̄2 C̄2…)… (ĀN B̄N C̄N…) → (A1 B1 C1…) (A2 B2 C2…)… (AN BN CN…)



Factorizable case
Let us consider a scattering process of the form
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In this context instead of using , it is convenient to use the factorized one:{TL
M}

N

⨂
j=1

TLj
Mj

Lj, Mj

⟹ ρ =
1
d ∑

L1 L2 …LN

∑
M1 M2 …MN

AL1 M1, L2 M2,…, LN MN

N

⨂
j=1

TLj
Mj
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∫ dΩ [ 1
σ

dσ
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N

∏
j=1 (
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4π )
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When all the processes are decays ( )N = m

Ā1 Ā2…Ām → (A1 B1 C1…) (A2 B2 C2…)… (Am Bm Cm…),

 spin polarization vector of particle 


 except for  spin correlation matrix of particles  and 


 spin correlation tensor of the whole system

Lj = Lj0δj j0 ⟶ A0 0,…,Lj0 Mj0,…,0 0 j0

Lj = 0 Lj1, Lj2 ⟶ A0 0,…,Lj1 Mj1,…,Lj2 Mj2,…,0 0 j1 j2

Lj ≠ 0 ∀j ⟶ AL1 M1, L2 M2,…, Lm Mm

⋮



Physical examples
· ,tt̄ → (bW+)(b̄W−) → (bl+νl)(b̄l−ν̄l) ρ =

1
4

1

∑
L1 L2=0

∑
M1 M2

AL1 M1, L2 M2
TL1

M1
(1/2) ⊗ TL2

M2
(1/2) .

αb ≃ − 0.41, αl ≃ 1
AL1 M1, L2 M2

=
4π

BL1
BL2

∫ dΩ1dΩ2 [ 1
σ

dσ
dΩ1 dΩ2 ] YM1 *

L1
(Ω1)Y

M2 *
L2

(Ω2)
B0 = 4π, BLi=1 =

4π
3

αi
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· ,V1V2 → ( f1 f̄1)( f2 f̄2) ρ =
1
9

2

∑
L1 L2=0

∑
M1 M2

AL1 M1, L2 M2
TL1

M1
(1) ⊗ TL2

M2
(1) .

αZ ≃ − 0.13, αW ≃ − 1, δi ≃ 0B0 = 4π, BLi=1 = 2παi, BLi=2 =
2π
5

(1 − 3δi)



· tt̄W → (bW+)(b̄W−)(lνl) → (bl+νl)(b̄l−ν̄l)(lνl)

ρ =
1
12

1

∑
L1 L2=0

2

∑
L3=0

∑
M1 M2 M3

AL1 M1, L2 M2, L3 M3
TL1

M1
(1/2) ⊗ TL2

M2
(1/2) TL3

M3
(1)

AL1 M1, L2 M2, L3 M3
=

4π
BL1

BL2
BL3

∫ dΩ1dΩ2dΩ3 [ 1
σ

dσ
dΩ1dΩ2dΩ3 ] YM1 *

L1
(Ω1)Y

M2 *
L2

(Ω2)Y
M3 *
L3

(Ω3)

B0 = 4π, BL1=1 = BL2=1 =
4π
3

, BL3=1 = − 2π, BL3=2 =
2π
5

.
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· Generalized Wigner Q and P symbols:
ΦQ
A ≡ Tr{A Fl} = Tr{A ΓT}, Tr{A B} =

d
8π2K̄K ∫ dΩ ΦQ

B ΦP
A .

ΦQ
TL

M
= ∑

M′ 

B̃L M′ 
(κ̄, κ)* DL

M M′ 
(Ω)*, ΦP

TL
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(Ω, κ̄, κ) =
4π
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· Applying the definition of the Q and P symbols as well as the decomposition of  in terms of :
ρ TL
M
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Conclusions
• We have developed a practical way of performing the Quantum Tomography of 

the initial helicity state  in general scattering processes. 


• The method is based on computing the coefficients of the expansion over 
 by averaging the angular distribution of the final particles under Wigner 

D-matrices kernels.


• We have further given explicit formulas for the angular dependence of both a 
generalization of the production/decay matrix  and of the diff. cross section, 
elaborating on the factorizable case with some examples.
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Thank you for your attention!


