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Motivation
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Simple and experimentally practical Quantum Tomography is
an indispensable tool
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Main goal

Determine the initial helicity state p of a general scattering process from the
angular distribution data of the final particles
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coefficients of the expansion from the previous results

Extra: Re-derivation from Quantum Information perspective
(Weyl-Wignher-Moyal formalism)

Ashby-Pickering, Barr, Wierzchucka, 2023
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We consider an n-particle system with fixed 4; and p. such that y = Z B, = 0.
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Following this setup, the quantum state of the n-particle system is given by
n n
H ‘ﬁi’li> = D(R)H |]_5?/1i> = |RPO/1>
i=1 i=1

Here ﬁ(R) is the unitary representation of R, A are the particle’s helicities and
p" are the 3n — 3 spherical coordinates in RF .
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Here ﬁ(R) is the unitary representation of R, A are the particle’s helicities and
p" are the 3n — 3 spherical coordinates in RF .

A more convenient representation is

| REyxA) = | RkA)
|

E and y fixed

Now, K is a set of 3n — 7/ parameters to be chosen depending on the case
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Generalized decay matrix I

We define the decay matrix as:

M"XZ/%M% » Myr=(RkA|T|RKA)

with . , > the so-called heI|C|ty amplitudes.
We are particularly interested in the transposed matrix I'’:
=T"(R"'R) =T"(R) = DRTT(1)DR)™', R =R(p,,0,,91,) = RQ)
_ 1
R=1
One only needs to compute the elements of '/ (1) and then rotate the matrix
accordingly. In general, in the canonical basis e__.

= Z(lKU\Tﬂ11</1)(11</HT\1120’) a, = Z\(IK/HT\IKU)\
Red. helicity amplitudes




Reconstruction of density matrix p

We make use of the relation between p, 1 and the normalized differential cross
section (harrow width approximation):
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Reconstruction of density matrix p

We make use of the relation between p, 1 and the normalized differential cross
section (harrow width approximation):

1 do B
o dQdicdc  Sm2RK

TripT'(R)}, K = Jdk, K = JdK, d = H(Zsl- + 1)

We expand both I and p over a convenient basis. We take the irreducible tensor
operators {TAL4}, defined by their transformation under rotations

D(R)TLDR)™" = Z DL (RTL, — D (RS, ;= (JM|DR)|J M')
M
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Dimensionality of the basis {TAL4}: Le {01,....d-1)}, Me{-L,....L}

Normalization condition:; T’”{Tz\% (TAZ/)T} — d5LL' 5MM'
. L _ 1/2 SO
Elements of each operator: Vv oo = LA D CT v

with s~ an “effective” spin for the whole system, d = 2s, + 1.
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and plugging this expression in I''(1) leads to

(1) = Z BLMTL’ BLM — BLM( Y0 C;;;TLM)



From the transformation of {TAL4} under rotations we get the expansion of '/ (R)
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From the transformation of {TAL4} under rotations we get the expansion of '/ (R)

n R 1 -
D(R)Ty;D(R)~" = Z Dy (RTy; = T(R) = - Z lz BLM’DAZM’(R)] Ty
M LM L m

We have factorized the kinematic dependence as
By =By (®,%), Dy p(R) = Dyj ()
In the same fashion,

1 1 do 1 N
—— VYA, T — _ M A B* DY (R)*
F dg; LM "M o dQ di dx 8n2l<1<§; LM%} Ly Prin )




Finally, from the orthogonality conditions for the Wigner D-matrices we get

1/2 _
1 do 2L+ 1 By (K, K)*
dQ - DL / Q — A i
{ [adszdzzdx] ( Az ) e e

with

Vs ) 2B, (k, K)

B (&%) = (2L+1 KK

Quantum Tomography: angular data + B; ,, (theoretically computable) — A; j,



Finally, from the orthogonality conditions for the Wigner D-matrices we get

12 N
[ - [l 7 ] <2L+ 1) Dy Q) = AT Apm(K)

o d€2dk dk 47 A7

with

A 172 B 7 (K, K)
2L+ 1 KK

By 1y (K, K) = (
Quantum Tomography: angular data + B; ,, (theoretically computable) — A; j,

B ! (’z‘a K)>I< _
WT A, 1)

1 d .
ForM' = 0 [dQ ——0_ Y£/1 () =
o dS di dxk
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Factorizable case

Let us consider a scattering process of the form

(A;B;C;..)(A,B,C,...)... (AyByCy...) > (A;B;C,...)(A, B, C,...)... (AyByCy...)

The decay matrix I and the diff. cross section are in this case

Al 1 do Al
= ®Fj(Rj) = —— = NTr < p [@rf(kj)]
j=1 j=1
In this context instead of using {TAL4}, it is convenient to use the factorized one:

N
{@iTj\ij} — ,0—— Z Z AL1M1L2M2 Ly My, ®T]
. LM

Ll Ly...Ly My M, ..
7>



Applying a similar reasoning than for the general case

1/2 N _
1 da N 2L] + 1 Lj szl BL] ]\4]{(K9 K)>I< _
asx o dS€2 di dx H dr DMJ Mf(Qj ) = 41 ALl Mo Lo Moo Ly My (k)
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Applying a similar reasoning than for the general case

1/2 N _
dS) : do . 2[7 + 1 DLj 0O _ Hj=1BLjA4f(K’ K)*A -
o dS dic dx H A ‘]WJ‘]WJ,( j) - A LlMlaLzMza---aLNMN(K)

j=1

When all the processes are decays (N = m)

AA,..A — (A B, C,..) (A4 B,C,...)... (A, B, C,...),

m-—m —m-

Li=L o — A 0....L, M, ,....00 SPIN polarization vector of particle j,

L; = O except for L; ,L; —> Ay, Ly My L, My ..,00 SPIN correlation matrix of particles j; and J,

Li#0 Vj— Ap y 1 m,....1, m, SPin correlation tensor of the whole system



Physical examples

_ _ _ 1 <
AT = (GWHOW) = GIw)BlE),  p=7 D D Aumm Ty (12 ® T2 (172).

L, L,=0 M, M,
. 4r
41 do Y M Bo = var, BLi:l B ?ai
A = dQ,dQ Q)Y@
LMy, Lo My BLlBLQJ e [adﬂldﬂzl b ) % ) a,~—041, o ~1
b— M M=



Physical examples
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- tiW = (bWH(BW)(Iv) — (blTv)(bl~T))(Iv)
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Weyl-Wigner-Moyal formalism
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Weyl-Wigner-Moyal formalism

Re-derivation using concepts from quantum information:

- Positive Operator-Valued Measure (POVM):
positive semi-definite hermitian operators { F; = 5{;5{1}1, with Z %;ﬂ%fl = Z F,=1.
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- Generalized Wigner Q and P symbols: cDg =Tr{AF)} = Tr{AT"}, Tr{A B} = d JdQ cIDg D

812KK
oY Z B, (% x) DL . (Q) 7, 1, (Q, K, K) - < Ly Dy () < SwKK 1 do
— / K, K / 0 L / ’ K, K) = ! ’ —
T &M MM T M B,y (%,x) \ 4n MM g d ¢ dQdrkdx

- Applying the definition of the Q and P symbols as well as the decomposition of p in terms of TAL4:

1 do oL+1\" B, .. (%, k)*
A< DL (Q)=—Y """ A (K
J Ld@dMl( 4z ) i (E) PP AT




Conclusions

* We have developed a practical way of performing the Quantum Tomography of
the initial helicity state p in general scattering processes.

 The method is based on computing the coefficients of the expansion over

{TAL4} by averaging the angular distribution of the final particles under Wigner
D-matrices kernels.

* We have further given explicit formulas for the angular dependence of both a

generalization of the production/decay matrix I and of the diff. cross section,
elaborating on the factorizable case with some examples.

 We have re-derived everything using the Weyl-Wigner-Moyal formalism.
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Thank you for your attention!



