robot.txt

User-agent: GPTBot
Disallow: /

ENTANGLEMENT AND BELL INEQUALITY VIOLATION IN CHARMONIUM DECAYS

Oxford

2 October 2024

Marco Fabbrichesi INFN, Trieste, Italy

Where have we already seen entanglement or Bell inequality violation at high energies?

New York Times headline
May 4th, 1935

Flavor space

 $K^0 \bar{K}^0$ and $B^0 \bar{B}^0$ oscillations

F Benatti and R Floreanini, <u>Phys. Rev. D57 (1998) R1332</u>, <u>Eur. Phys. J. C13 (2000) 267</u>

A Go, Belle Collaboration, <u>Phys. Phys. Lett. 99 (2007) 131802</u>

neutrino oscillations

Leggett-Garg inequality violation

Minos (6σ)

JA Formaggio, DI Kaiser, MM Murskyj and TE Weiss, Phys. Rev. Lett. 117 (2016) 050402

J Naikoo et al, Phys. Rev. D 99 (2019) 095001

B-meson decays

	E	${\cal I}_3$
• $B^0 \to J/\psi K^*(892)^0 [5]$	0.756 ± 0.009	2.548 ± 0.015
• $B^0 \to \phi K^* (892)^0$ [22]	$0.707 \pm 0.133^*$	$2.417 \pm 0.368^*$
• $B^0 \to \rho K^* (892)^0$ [23]	$0.450 \pm 0.077^*$	$2.208 \pm 0.151^*$
• $B_s \rightarrow \phi \phi$ [24]	0.734 ± 0.037	2.525 ± 0.064
• $B_s \to J/\psi \phi [25]$	0.731 ± 0.032	2.462 ± 0.080
	entanglement	Bell inequality

 8.2σ

	Parameter		Res	ult
	$ A_0 ^2$		0.384 ± 0.0	07 ± 0.003
	$ A_{\perp} ^2$		0.310 ± 0.0	06 ± 0.003
	δ_{\parallel} [rad]		2.463 ± 0.0	29 ± 0.009
	$\delta_{\perp}^{''}$ [rad]		2.769 ± 0.1	05 ± 0.011
	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{ }$	δ_{\perp}
$ A_0 ^2$	1	-0.342	-0.007	0.064
$\Lambda_{\perp} ^2$		1	0.140	0.088
			1	0.179
L				1

R. Aaij *et al.* [LHCb], Phys. Rev. Lett. **131**, no.17, 171802 (2023) [arXiv:2304.06198 [hep-ex]].

MF, R. Floreanini, E. Gabrielli and L. Marzuolo, Phys. Rev D 109 (2024) 3, L031104

E. Gabrielli and L. Marzuolo, arXiv:2406.17772 (2024)

** K Chen et al, <u>Eur. Phys. J. C 84 (2024) 580</u> $B_c^{\pm} \rightarrow J/\psi \, \rho^{\pm}$

** RA Morales and A Szynkman, <u>arXiv:2409.13033</u> $B^0 \to K^* \mu^+ \mu^-$

Pairs of top quarks

 $D = -0.547 \pm 0.002 \text{ [stat]} \pm 0.021 \text{ [syst]}$

ATLAS Collaboration, Nature 633 (2024) 542

Y. Afik and J.R.M. de Nova, <u>Eur. Phys. J. Plus</u> **136** (2021) 907

$$D = -0.478^{+0.025}_{-0.027}$$

CMS Collaboration, arXiv:2406.03976 (2024)

CMS Collaboration, arXiv:2409.11067 (2024)

Charmonium

$$\rho = \frac{1}{4} \left[\mathbb{1}_2 \otimes \mathbb{1}_2 + \sum_{i=1}^3 \mathcal{B}_i^+(\sigma_i \otimes \mathbb{1}_2) + \sum_{i=1}^3 \mathcal{B}_j^-(\mathbb{1}_2 \otimes \sigma_j) + \sum_{i,j=1}^3 \mathcal{C}_{ij}(\sigma_i \otimes \sigma_j) \right]$$

$$R = \rho \left(\sigma_y \otimes \sigma_y \right) \rho^* \left(\sigma_y \otimes \sigma_y \right)$$

Concurrence
$$\mathscr{C}[\rho] = \max(0, r_1 - r_2 - r_3 - r_4)$$

$$CC^T \qquad [m_1, m_2, m_3]$$

Horodecki condition
$$\mathfrak{m}_{12} \equiv m_1 + m_2 > 1$$

$$\rho = \frac{1}{9} \left[\mathbb{1}_3 \otimes \mathbb{1}_3 \right] + \sum_{a=1}^8 f_a \left[T^a \otimes \mathbb{1}_3 \right] + \sum_{a=1}^8 g_a \left[\mathbb{1}_3 \otimes T^a \right] + \sum_{a,b=1}^8 h_{ab} \left[T^a \otimes T^b \right]$$

$$\mathcal{C}_{2} = 2 \max \left[-\frac{2}{9} - 12 \sum_{a} f_{a}^{2} + 6 \sum_{a} g_{a}^{2} + 4 \sum_{ab} h_{ab}^{2}; -\frac{2}{9} - 12 \sum_{a} g_{a}^{2} + 6 \sum_{a} f_{a}^{2} + 4 \sum_{ab} h_{ab}^{2}; \right]$$

Entropy
$$\mathscr{E}[\rho] \equiv -\text{Tr}[\rho_A \ln \rho_A] = -\text{Tr}[\rho_B \ln \rho_B]$$

Negativity
$$\mathcal{N}(\rho) = \sum_{k} \frac{|\lambda_k| - \lambda_k}{2}$$

Bell operator
$$\mathcal{I}_3 = \operatorname{Tr}[\rho \mathcal{B}_3]$$

$$\boldsymbol{\xi} = (\theta, \Omega_1, \Omega_2),$$

$$\mathcal{W}(\xi) = \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)$$

$$+ \alpha_1 \alpha_2 \left(\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi) \right)$$

$$+ \sqrt{1 - \alpha^2} \sin(\Delta \Phi) \left(\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi) \right), \qquad (6.55)$$

$$\mathcal{F}_0(\boldsymbol{\xi}) = 1$$

 $\mathcal{F}_1(\boldsymbol{\xi}) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$

 $\mathcal{F}_2(\boldsymbol{\xi}) = \sin\theta \cos\theta (\sin\theta_1 \cos\theta_2 \cos\phi_1 + \cos\theta_1 \sin\theta_2 \cos\phi_2)$

 $\mathcal{F}_3(\boldsymbol{\xi}) = \sin\theta \cos\theta \sin\theta_1 \sin\phi_1$

 $\mathcal{F}_4(\boldsymbol{\xi}) = \sin\theta \cos\theta \sin\theta_2 \sin\phi_2$

 $\mathcal{F}_5(\boldsymbol{\xi}) = \cos^2 \theta$

 $\mathcal{F}_6(\boldsymbol{\xi}) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2. \tag{6.56}$

G. Faldt and A. Kupsc, Phys. Lett B 772 (2017) 16

maximum likelihood fit

Somme events

Somme events

needed

$$\rho_{\lambda_1 \lambda_2, \lambda_1' \lambda_2'} \propto w_{\lambda_1 \lambda_2} w_{\lambda_1' \lambda_2'}^* \sum_{k} D_{k, \lambda_1 - \lambda_2}^{(J)*}(0, \Theta, 0) D_{k, \lambda_1' - \lambda_2'}^{(J)}(0, \Theta, 0)$$

Charmonium spin-0 states

$$\eta_c o \Lambda + ar{\Lambda} \quad ext{and} \quad \chi_c^0 o \Lambda + ar{\Lambda}$$

$$|\psi_0\rangle \propto w_{\frac{1}{2}-\frac{1}{2}}|\frac{1}{2},\frac{1}{2}\rangle \otimes |\frac{1}{2},-\frac{1}{2}\rangle + w_{-\frac{1}{2}\frac{1}{2}}|\frac{1}{2},-\frac{1}{2}\rangle \otimes |\frac{1}{2},\frac{1}{2}\rangle$$

Concurrence

$$\mathscr{C} = 1$$

Horodecki condition

$$\mathfrak{m}_{12}=2$$

N. A. Tornqvist, Suggestion for Einstein-podolsky-rosen Experiments Using Reactions Like $e^+e^- \to \Lambda\bar{\Lambda} \to \pi^- p \pi^+ \bar{p}$, Found. Phys. 11 (1981) 171–177.

N. A. Tornqvist, The Decay $J/\psi \to \Lambda \bar{\Lambda} \to \pi^- p \pi^+ \bar{p}$ as an Einstein-Podolsky-Rosen Experiment, Phys. Lett. A 117 (1986) 1–4.

S. P. Baranov, Bell's inequality decays $\eta_c \to \Lambda \bar{\Lambda}$, $\chi_c \to \Lambda \bar{\Lambda}$ and Phys. G **35** (2008) 075002.

$$\chi_c^0 \to \phi + \phi$$

$$|\Psi\rangle = w_{-1-1} |-1, -1\rangle + w_{00} |00\rangle + w_{11} |1, 1\rangle$$

$$\left| \frac{w_{1,1}}{w_{00}} \right| = 0.299 \pm 0.003|_{\text{stat}} \pm 0.019|_{\text{syst}}.$$

BESIII Collaboration, M. Ablikim et al., Helicity amplitude analysis of $\chi_c^J \to \phi \phi$, JHEP **05** (2023) 069, [arXiv:2301.12922].

Entropy

$$\mathscr{E}[\rho] = 0.531 \pm 0.0021$$

 (255σ)

Bell operator
$$\operatorname{Tr} \rho_{\phi\phi} \mathscr{B} = 2.2961 \pm 0.0165$$
 (18 σ)

Charmonium spin-1 states

$$J/\psi o \Lambda + \bar{\Lambda}$$
 and $\psi(3686) o \Lambda + \bar{\Lambda}$

$$|\psi_{\uparrow}
angle \ \propto \ w_{rac{1}{2}\,rac{1}{2}}\,|rac{1}{2}\,rac{1}{2}
angle \otimes |rac{1}{2}\,rac{1}{2}
angle$$

$$|\psi_{\downarrow}\rangle \propto w_{-\frac{1}{2}-\frac{1}{2}}|\frac{1}{2}-\frac{1}{2}\rangle \otimes |\frac{1}{2}-\frac{1}{2}\rangle$$

$$|\psi_0\rangle \propto w_{\frac{1}{2}-\frac{1}{2}}|\frac{1}{2}\frac{1}{2}\rangle \otimes |\frac{1}{2}-\frac{1}{2}\rangle + w_{-\frac{1}{2}\frac{1}{2}}|\frac{1}{2}-\frac{1}{2}\rangle \otimes |\frac{1}{2}\frac{1}{2}\rangle,$$

$$\alpha = 0.4748 \pm 0.0022|_{\text{stat}} \pm 0.0031|_{\text{syst}}$$
 and $\Delta \Phi = 0.7521 \pm 0.0042|_{\text{stat}} \pm 0.0066|_{\text{syst}}$.

BESIII Collaboration, M. Ablikim et al., Precise Measurements of Decay Parameters and CP Asymmetry with Entangled Λ - $\bar{\Lambda}$ Pairs, Phys. Rev. Lett. **129** (2022), no. 13 131801, [arXiv:2204.11058].

Concurrence

$$\mathscr{C} = 0.475 \pm 0.0039 \quad (122\sigma)$$

Horodecki condition

$$\mathfrak{m}_{12} = 1.225 \pm 0.004$$

 (56σ)

Bell inequality violation

decay	\mathfrak{m}_{12}	significance	
$J/\psi \to \Lambda \bar{\Lambda}$	1.225 ± 0.004	56.3	
$\psi(3686) o \Lambda \bar{\Lambda}$	1.476 ± 0.100	4.8	
$J/\psi o \Xi^- ar\Xi^+$	1.343 ± 0.018	19.1	,
$J/\psi\to\Xi^0\bar\Xi^0$	1.264 ± 0.017	15.6	
$\psi(3686)\to\Xi^-\bar\Xi^+$	1.480 ± 0.095	5.1	
$\psi(3686) \to \Xi^0 \bar{\Xi}^0$	1.442 ± 0.161	2.7	
$J/\psi \to \Sigma^- \bar{\Sigma}^+$	1.258 ± 0.007	36.9	
$\psi(3686) o \Sigma^- \bar{\Sigma}^+$	1.465 ± 0.043	10.8	
$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	1.171 ± 0.007	24.4	
$\psi(3686) \to \Sigma^0 \bar{\Sigma}^0$	1.663 ± 0.065	10.2	

Charmonium spin-2 states

$$\chi_c^2 \to \phi \phi$$

Entanglement

$$\mathcal{N}(\rho) = 0$$
, and $\mathscr{C}_2 = 0$.

Horodecki condition $\operatorname{Tr} \mathscr{B} \rho_{\phi\phi} = 1.202 \pm 0.032$

BESIII Collaboration, M. Ablikim et al., Helicity amplitude analysis of $\chi_c^J \to \phi \phi$, JHEP **05** (2023) 069, [arXiv:2301.12922].

Other processes

$$e^+ + e^- \to \Lambda + \bar{\Lambda}$$

$$|\Lambda_b \to J/\psi + \Lambda|$$

$$\rho_{\Lambda J/\psi} \propto p_{\uparrow} |\psi_{\uparrow}\rangle \langle \psi_{\uparrow}| + p_{\downarrow} |\psi_{\downarrow}\rangle \langle \psi_{\downarrow}|,$$

$$\mathscr{C}[\rho] = 0.12 \pm 0.11$$
 and $\mathfrak{m}_{12} = 1.01 \pm 0.04$.

BESIII Collaboration, M. Ablikim et al., Complete Measurement of the Λ Electromagnetic Form Factors, Phys. Rev. Lett. **123** (2019), no. 12 122003, [arXiv:1903.09421].

$$\mathcal{N}(\rho) = 0.05 \pm 0.06 \,,$$

ATLAS Collaboration, G. Aad et al., Measurement of the parity-violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \to J/\psi + \Lambda^0$ with the ATLAS detector, Phys. Rev. D 89 (2014), no. 9 092009, [arXiv:1404.1071].

Entanglement as a function of the form factors

no dependence on the other parameter $\Delta\Phi$.

$$\bar{u}_{\Lambda} \left[F_1 \gamma^{\mu} + \frac{1}{2m_{\Lambda}} \sigma^{\mu\nu} q^{\nu} F_2 \right] u_{\Lambda} A_{\mu}^{J/\psi}$$

$$\bar{u}_{\Lambda} \left[F_{1} \gamma^{\mu} + \frac{1}{2m_{\Lambda}} \sigma^{\mu\nu} q^{\nu} F_{2} \right] u_{\Lambda} A_{\mu}^{J/\psi} \qquad \qquad \frac{G_{M}}{G_{E}} = \left| \frac{G_{M}}{G_{E}} \right| e^{i\Delta\Phi} \quad \text{and} \quad \alpha = \frac{s|G_{M}|^{2} - 4m_{\Lambda}^{2}|G_{E}|^{2}}{s|G_{M}|^{2} + 4m_{\Lambda}^{2}|G_{E}|^{2}}.$$

computed at $\Theta = \pi/3$. Right side: The concurrence as a function of the parameter α at $\Theta = \pi/2$ is $\mathscr{C}[\rho] = |\alpha|$. There is

what is still missing

- · some amplitudes (e.g. scalar states into hyperons)
- · better data (e.g. for spin 2 or direct hyperon production)
- · phases of most amplitudes
- uncertainty correlations

Quantum correlations and decoherence

Figure 6.1: Decay $\eta_c \to \Lambda \bar{\Lambda}$: Fraction (out of 1000) of Λ baryons decaying at different lengths from the primary vertex. The Vertical dashed line stands for the inner surface of the beam pipe (3.15 cm from the primary vertex).

