ENTANGLEMENT AND BELL INEQUALITY VIOLATION IN CHARMONIUM DECAYS

Marco Fabbrichesi INFN, Trieste, Italy

Where have we already seen entanglement or Bell inequality violation at high energies?

New York Times headline May 4th, 1935

EINSTEIN ATTACKS QUANTUM THEORY Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.' SEE FULLER ONE POSSIBLE Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

$K^0 \bar{K}^0$ and $B^0 \bar{B}^0$ oscillations

neutrino oscillations

> JA Formaggio, DI Kaiser, MM Murskyj and TE Weiss, Phys. Rev. Lett. 117 (2016) 050402

F Benatti and R Floreanini, Phys. Rev. D57 (1998) R1332, Eur. Phys. J. C13 (2000) 267 A Go, Belle Collaboration, Phys. Phys. Lett. 99 (2007) 131802

J Naikoo et al, Phys. Rev. D 99 (2019) 095001

B-meson decays

MF, R. Floreanini, E. Gabrielli and L. Marzola, Phys. Rev D 109 (2024) 3, L031104 E. Gabrielli and L. Marzola, arXiv:2406.17772 (2024)

	<i>p</i>	$B^{(0)}$
${\cal I}_3$	J/ψ rest frame	J/ψ
2.548 ± 0.015	μ	
$2.417 \pm 0.368^{*}$	μ^{-1}	
$2.208 \pm 0.151^{*}$		
2.525 ± 0.064	8.2σ	
2.462 ± 0.080		
	Parameter	Result
	$ A_0 ^2$	$0.384 \pm 0.007 \pm$
	$ A_{\perp} ^{-}$ δ_{\parallel} [rad]	$0.310 \pm 0.006 \pm 2.463 \pm 0.029 \pm 0.029 \pm 0.0029 \pm 0.0029 \pm 0.0029$
	δ_{\perp} [rad]	$2.769 \pm 0.105 \pm$
	$ A_0 ^2$	$ A_{\perp} ^2 \qquad \delta_{\parallel}$
D 11 1 11	$ A_0 ^2$ 1	-0.342 -0.007
Bell mequality	$ A_{\perp} ^2 \delta_{\parallel} \delta_{\perp}$	1 0.140 1

R. Aaij et al. [LHCb], Phys. Rev. Lett. 131, no.17, 171802 (2023) [arXiv:2304.06198 [hep-ex]].

 $B_c^{\pm} \to J/\psi \,\rho^{\pm}$ ** K Chen et al, <u>Eur. Phys. J. C 84 (2024) 580</u>

** RA Morales and A Szynkman, <u>arXiv:2409.13033</u> $B^0 \rightarrow K^* \mu^+ \mu^-$

n

 $K^*(892)^0$ rest frame

 $K^{*}(892)^{0}$

 K^+

Pairs of top quarks

 $D = -0.547 \pm 0.002 \text{ [stat]} \pm 0.021 \text{ [syst]}$ ATLAS Collaboration, <u>Nature 633 (2024) 542</u>

Y. Afik and J.R.M. de Nova, <u>Eur. Phys. J. Plus 136 (2021) 907</u>

 $D = -0.478^{+0.025}_{-0.027}$

CMS Collaboration, arXiv:2406.03976 (2024)

CMS Collaboration, arXiv:2409.11067 (2024)

Charmonium

MF, R. Floreanini, E. Gabrielli and L. Marzola, Phys. Rev. D110 (2024) 053008 see, also: S. Wu et al., Phys. Rev. D110 (2024) 054012

$$\rho = \frac{1}{4} \Big[\mathbb{1}_2 \otimes \mathbb{1}_2 + \sum_{i=1}^3 \mathcal{B}_i^+(\sigma_i \otimes \mathbb{1}_2) + \sum_{i=1}^3 \mathcal{B}_j^-(\mathbb{1}_2 \otimes \sigma_j) + \sum_{i,j=1}^3 \mathcal{C}_{ij}(\sigma_i \otimes \sigma_j) \Big]$$

Concurrence $\mathscr{C}[\rho] = \max(0, r_1 - r_2 - r_3 - r_4)$

 $R = \rho \left(\sigma_y \otimes \sigma_y \right) \rho^* \left(\sigma_y \otimes \sigma_y \right)$

A. Barr, MF, R. Floreanini, E. Gabrielli and L. Marzola, Progress in Particle and Nuclear Physics 139 (2024) 104134

the toolbox

Qutrits

$$\rho = \frac{1}{9} \left[\mathbb{1}_3 \otimes \mathbb{1}_3 \right] + \sum_{a=1}^8 f_a \left[T^a \otimes \mathbb{1}_3 \right] + \sum_{a=1}^8 g_a \left[\mathbb{1}_3 \otimes T^a \right] + \sum_{a,b=1}^8 h_{ab} \left[T^a \otimes T^b \right]$$

$$\mathscr{C}_{2} = 2 \max \left[-\frac{2}{9} - 12 \sum_{a} f_{a}^{2} + 6 \sum_{a} g_{a}^{2} + 4 \sum_{ab} h_{ab}^{2}; -\frac{2}{9} - 12 \sum_{a} g_{a}^{2} + 6 \sum_{a} f_{a}^{2} + 4 \sum_{ab} h_{ab}^{2}, 0 \right]$$

Entropy $\mathscr{E}[\rho] \equiv -\operatorname{Tr}[\rho_A \ln \rho_A] = -\operatorname{Tr}[\rho_B \ln \rho_B]$

Negativity
$$\mathcal{N}(\rho) = \sum_{k} \frac{|\lambda_k| - \lambda_k}{2}$$

Bell operator $\mathcal{I}_3 = \operatorname{Tr}[\rho \mathscr{B}_3]$

$\eta_c \to \Lambda + \bar{\Lambda} \quad \text{and} \quad \chi_c^0 \to \Lambda + \bar{\Lambda}$

$|\psi_0\rangle \propto w_{\frac{1}{2}-\frac{1}{2}} |\frac{1}{2}, \frac{1}{2}\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle + w_{-\frac{1}{2}\frac{1}{2}} |\frac{1}{2}, -\frac{1}{2}\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle$

Concurrence

Horodecki condition

 $\mathscr{C} = 1$

$\mathfrak{m}_{12}=2$

N. A. Tornqvist, Suggestion for Einstein-podolsky-rosen Experiments Using Reactions Like $e^+e^- \rightarrow \Lambda\bar{\Lambda} \rightarrow \pi^- p\pi^+\bar{p}$, Found. Phys. **11** (1981) 171–177.

N. A. Tornqvist, The Decay $J/\psi \rightarrow \Lambda \bar{\Lambda} \rightarrow \pi^- p \pi^+ \bar{p}$ as an Einstein-Podolsky-Rosen Experiment, Phys. Lett. A **117** (1986) 1–4. S. P. Baranov, Bell's inequality decays $\eta_c \to \Lambda \overline{\Lambda}$, $\chi_c \to \Lambda \overline{\Lambda}$ and Phys. G **35** (2008) 075002.

Charmonium spin-0 states

$$\chi_c^0 \to \phi + \phi$$

$$|\Psi\rangle = w_{_{-1\,-1}} \mid -1, \, -1\rangle + w_{_{0\,0}} \mid \!\! 0\,0\rangle + w_{_{1\,1}} \mid \!\! 1,\,1\rangle$$

$$\left| \frac{w_{1,1}}{w_{0\,0}} \right| = 0.299 \pm 0.003 |_{\text{stat}} \pm 0.019 |_{\text{syst}} \,.$$

BESIII Collaboration, M. Ablikim et al., Helicity amplitude analysis of $\chi_c^J \rightarrow \phi \phi$, JHEP **05** (2023) 069, [arXiv:2301.12922].

 Entropy
 $\mathscr{E}[\rho] = 0.531 \pm 0.0021$ (255σ)

 Bell operator
 Tr $\rho_{\phi\phi} \mathscr{B} = 2.2961 \pm 0.0165$ (18σ)

$$\left| J/\psi \to \Lambda + \overline{\Lambda} \quad \text{and} \quad \psi(3686) \to \Lambda + \overline{\Lambda} \right|$$

$$\begin{array}{ll} |\psi_{\uparrow}\rangle & \propto & w_{\frac{1}{2}\frac{1}{2}} \left|\frac{1}{2}\frac{1}{2}\rangle \otimes \left|\frac{1}{2}\frac{1}{2}\rangle \\ |\psi_{\downarrow}\rangle & \propto & w_{-\frac{1}{2}-\frac{1}{2}} \left|\frac{1}{2}-\frac{1}{2}\rangle \otimes \left|\frac{1}{2}-\frac{1}{2}\rangle \\ |\psi_{0}\rangle & \propto & w_{\frac{1}{2}-\frac{1}{2}} \left|\frac{1}{2}\frac{1}{2}\rangle \otimes \left|\frac{1}{2}-\frac{1}{2}\rangle + w_{-\frac{1}{2}\frac{1}{2}} \left|\frac{1}{2}-\frac{1}{2}\rangle \otimes \left|\frac{1}{2}\frac{1}{2}\rangle \end{array}\right. \end{array}$$

 $\alpha = 0.4748 \pm 0.0022|_{\text{stat}} \pm 0.0031|_{\text{syst}}$ and $\Delta \Phi = 0.752$

BESIII Collaboration, M. Ablikim et al., Precise Measurements of Decay Parameters and CP Asymmetry with Entangled Λ - $\overline{\Lambda}$ Pairs, Phys. Rev. Lett. **129** (2022), no. 13 131801, [arXiv:2204.11058].

Concurrence $\mathscr{C} = 0.475 \pm 0.0039$ Horodecki condition $\mathfrak{m}_{12} = 1.225 \pm 0.004$

Charmonium spin-1 states

 $\Delta \Phi = 0.7521 \pm 0.0042|_{\text{stat}} \pm 0.0066|_{\text{syst}}.$

(56σ)

Bell inequality violation

decay	\mathfrak{m}_{12}	significance
$J/\psi ightarrow \Lambda ar{\Lambda}$	1.225 ± 0.004	56.3
$\psi(3686) o \Lambda ar\Lambda$	1.476 ± 0.100	4.8
$J/\psi ightarrow \Xi^- \bar{\Xi}^+$	1.343 ± 0.018	19.1
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	1.264 ± 0.017	15.6
$\psi(3686) \rightarrow \Xi^- \bar{\Xi}^+$	1.480 ± 0.095	5.1
$\psi(3686) \rightarrow \Xi^0 \bar{\Xi}^0$	1.442 ± 0.161	2.7
$J/\psi ightarrow \Sigma^- \bar{\Sigma}^+$	1.258 ± 0.007	36.9
$\psi(3686) \rightarrow \Sigma^- \bar{\Sigma}^+$	1.465 ± 0.043	10.8
$J/\psi\to\Sigma^0\bar{\Sigma}^0$	1.171 ± 0.007	24.4
$\psi(3686) \rightarrow \Sigma^0 \bar{\Sigma}^0$	1.663 ± 0.065	10.2

$$\chi_c^2 \to \phi \phi$$

Entanglement

Horodecki condition

Charmonium spin-2 states

 $\mathcal{N}(\rho) = 0$, and $\mathscr{C}_2 = 0$.

 $\operatorname{Tr} \mathscr{B} \rho_{\phi\phi} = 1.202 \pm 0.032$

BESIII Collaboration, M. Ablikim et al., Helicity amplitude analysis of $\chi_c^J \to \phi \phi$, JHEP **05** (2023) 069, [arXiv:2301.12922].

Other processes

$$\langle \psi_{\uparrow} | + p_{\downarrow} | \psi_{\downarrow} \rangle \langle \psi_{\downarrow} | ,$$

$\mathscr{C}[\rho] = 0.12 \pm 0.11$ and $\mathfrak{m}_{12} = 1.01 \pm 0.04$.

BESIII Collaboration, M. Ablikim et al., Complete Measurement of the Λ Electromagnetic Form Factors, Phys. Rev. Lett. 123 (2019), no. 12 122003, [arXiv:1903.09421].

$\mathcal{N}(\rho) = 0.05 \pm 0.06 \,,$

ATLAS Collaboration, G. Aad et al., *Measurement of the parity-violating asymmetry* parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \to J/\psi + \Lambda^0$ with the ATLAS detector, *Phys. Rev. D* 89 (2014), no. 9 092009, [arXiv:1404.1071].

Entanglement as a function of the form factors

Figure 4.6: Left side: Entanglement as a function of the form factor parameters α and $\Delta \Phi$. The concurrence is computed at $\Theta = \pi/3$. Right side: The concurrence as a function of the parameter α at $\Theta = \pi/2$ is $\mathscr{C}[\rho] = |\alpha|$. There is no dependence on the other parameter $\Delta \Phi$.

$$G_M = F_1 + F_2$$
 and $G_E = F_1 + s/2m_{\Lambda}^2 F_1$

$${}^{\nu}F_2 \bigg] u_{\Lambda} A^{J/\psi}_{\mu} \qquad \qquad \frac{G_M}{G_E} = \bigg| \frac{G_M}{G_E} \bigg| e^{i\Delta\Phi} \quad \text{and} \quad \alpha = \frac{s|G_M|^2 - 4m_{\Lambda}^2|G_E|}{s|G_M|^2 + 4m_{\Lambda}^2|G_E|}$$

- some amplitudes (e.g. scalar states into hyperons) •
- •
- phases of most amplitudes •
- uncertainty correlations •

what is still missing

better data (e.g. for spin 2 or direct hyperon production)

Quantum correlations and decoherence

Figure 6.1: Decay $\eta_c \to \Lambda \overline{\Lambda}$: Fraction (out of 1000) of Λ baryons decaying at different lengths from the primary vertex. The Vertical dashed line stands for the inner surface of the beam pipe (3.15 cm from the primary vertex).

