

Bounds on top operators in the SMEFT from entanglement measurements

Pablo Copete Garrido (MSc), Fernando Cornet-Gómez, Belén Durán González (MSc), Federica Fabbri, Víctor Miralles, Marcos Miralles López, <u>María Moreno Llácer</u>* and Marcel Vos, *IFIC (Uni. Valencia and CSIC), Spain

Quantum tests in collider physics, Merton College, Oxford, October 2024

- Both ATLAS and CMS have observed quantum entanglement in events with top quark pairs.
- These new measurements can be included in global fits to constrain the top-quark related Wilson coeficients of the Standard Model Effective Field Theory (SMEFT).
- \rightarrow Talk divided into two parts:
- Understanding parton-to-detector level migration effects
- SMEFT bounds from recent entanglement measurements

Introduction

From CERN EP seminar, Giulia Negro (CMS)

Entanglement of top quarks

- Can be measured using spin correlations variables
- Depends on production mode, $m_{t\bar{t}}$, scattering angle of the top quark (Θ)

Introduction

From CERN EP seminar, Giulia Negro (CMS)

How to probe entanglement $|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle \pm |\downarrow\downarrow\rangle)$ • Four maximally entangled states: $|\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle \pm |\downarrow\uparrow\rangle)$ $gg \rightarrow t\bar{t}$ 1000 Afik, De Nova Eur. Phys. J. Plus 136, 907 Spin-triplet vector state 900 0.8 $(\Phi^+ - \Phi^-, \Psi^+, \Phi^+ + \Phi^-)$ 0.7 800 $M_{t\bar{t}}[{ m GeV}]$ 0.6 • At high $m_{t\bar{t}}$ and low $|\cos \Theta|$: 700 0.5 $C_{kk} < 0$ and $C_{rr} < 0$ 0.4 600 0.3 $\Delta_E = C_{nn} - C_{rr} - C_{kk} = 3\tilde{D} > 1$ 500 0.2 0.1 0.6 0.2 0.4 0.8 Spin-singlet pseudoscalar 2Θ state $\Psi^ \pi$ • At low $m_{t\bar{t}}$: $C_{rr} > 0$ and $C_{k\bar{k}} > 0$

$$\Delta_E = C_{nn} + C_{rr} + C_{kk} = Tr[C] = -3D > 1$$

 $D = -\frac{\mathfrak{u}[C]}{3} \to D < -1/3$

 $\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$ Sufficient condition for entanglement

→ measure D, \tilde{D} to access entanglement information in top quark events!

Sensitive observables to entanglement with top quarks

Threshold
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{ab}} = \frac{1}{2} \left(1 + \alpha_a \alpha_b D \cos\theta_{ab} \right)$$

being $\cos \theta_{ab} \equiv \hat{p}_a \cdot \hat{p}_b$

angle between the directions of two decay products measured <u>in their parent top</u> <u>quark and antiquark rest frames</u>

Boosted
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta'_{ab}} = \frac{1}{2} \left(1 + \alpha_a \alpha_b D_3 \cos\theta'_{ab} \right)$$

being $\cos \theta'_{ab} \equiv \hat{p}_a \cdot \hat{p}'_b$

with inverted sign of n-component in one of the decay products

Conditions for entanglement

$$D = -\frac{(C_{kk} + C_{rr} + C_{nn})}{3} < -1/3$$
$$D_n = -\frac{(C_{kk} + C_{rr} - C_{nn})}{3} > +1/3$$

NLO predictions (parton-level)

Parton Level NLO

Observable	Inclusive	Threshold	Boosted	
Ckk	$+0.342 \pm 0.009$	$+0.61 \pm 0.03$	-0.60 ± 0.15	
Crr	$+0.029 \pm 0.009$	$+0.42 \pm 0.03$	-0.45 ± 0.15	l c
Cnn	$+0.329 \pm 0.009$	$+0.58 \pm 0.03$	$+0.87 \pm 0.14$	1
D	-0.233 ± 0.005	-0.54 ± 0.02	$+0.06 \pm 0.09$	ŗ
Dn	-0.014 ± 0.005	-0.15 <u>+</u> 0.02	+0.64 ±0.09	(

Jncertainties quoted are due to limited MC statistics.

Theoretical unc. on these predictions not included (expected to be small).

Entanglement measurements with top quarks @ LHC

ATLAS & CMS results

Parton-level

Channel	Threshold regime	Boosted regime	
Dilepton	ATLAS (140/fb) >5 σ [1] m _{tt} <380 GeV Particle-level CMS (36/fb) >5 σ [2] m _{tt} <400 GeV & β_z <0.9 Parton-level		
Lepton+jets	CMS (140/fb) 2.2σ [3] m _{tt} <400 GeV	CMS (140/fb) >5σ [3] m _{tt} >800 GeV & cos(θ) <0.4	

[1] Nature 633 (2024) 542
 [2] arXiv:2406.03976
 [3] arXiv:2409.11067

CMS I+jets paper includes the full matrix measurements in various regions of the phase-space.

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

Parton-level

Understanding distorsions at detector-level

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

Distorsions at detector level (dilepton - threshold regime)

	Parton-level	Detector-level	Migration factor	
D – threshold regime	-0.54 ± 0.02	-0.177 ± 0.009	~3	
Dn – boosted regime	0.64 ± 0.09	0.42 ± 0.03	~1.5	Effe
				000

Effect reduced in boosted regime

Parton vs detector level (dilepton channel, no cuts on m_{tt})

CUT SELECTION	$p_T(jet)$ (GeV)		$p_T(l)(GeV)$	$\eta_{jet,l}$		
BASE	>25		>27	$-2.5 < \eta_{jet,l} < 2.5$		
p _T (l)	>25		>10	$-2.5 < \eta_{jet,l} < 2.5$		
No η cut	>25		>27	-		
CARDS SELECTION						
BASE		Default ATLAS Delphes Cards				
		light-jet m	istagging rate	Decreased ~50%		
B-tag		c-jet mistagging rate		Decreased ~75%		
		b-taggin	ng efficiency	Increased ~10%		
Jet reso		Jet resolution		Increased ~50%		
NEUTRINO SELECTION						
BASE		MET + neutrino weighting method				
Real v + WM		Real v summed + neutrino weighting method				
Real v			Real v			

Understanding causes of reconstruction level smearing

Study carried out with Delphes

01 11	PARTO	N LEVEL		RECONSTRUCTION LEVEL					
Observable	No cuts	Base	Base	$p_t(l)$	No η cut	B-tag	Jet reso	Real v + WM	Real v
Ckk	-0.342	-0.43	-0.087	-0.001	-0.087	-0.088	-0.087	-0.082	-0.285
Crr	-0.029	-0.04	-0.130	-0.119	-0.131	-0.131	-0.130	-0.110	-0.027
Cnn	-0.329	-0.39	-0.331	-0.335	-0.331	-0.328	-0.314	-0.313	-0.399
D	-0.233	-0.287	-0.183	-0.151	-0.183	-0.182	-0.177	-0.168	-0.237
D ₃	-0.014	-0.029	0.038	0.072	0.038	0.036	0.034	0.040	0.029

The method used to reconstruct each individual neutrino is key to mitigate migration effects.

Notable differences seen at particle-level for two different parton-shower models

Nature 633 (2024) 542

Setting bounds in top SMEFT operators (using CMS results at parton-level)

follow-up from results in JHEP02(2022)032 & arXiv: 2205.02140

		parameter	$tar{t}$	single t	tW	tZ	t decay	$t \bar{t} Z$	$t\bar{t}W$
		$C_{Qq}^{1,8}$	Λ^{-2}	_	_	_	_	Λ^{-2}	Λ^{-2}
		$C_{Qq}^{3,8}$	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}
		C_{tu}^8, C_{td}^8	Λ^{-2}	_	_	_	_	Λ^{-2}	_
		$C_{Qq}^{1,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$
	LL, RR	$C_{Qq}^{3,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	_	Λ^{-2}	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$
14 four formion on	, ,	C^1_{tu},C^1_{td}	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	_
14 Iour-termion op.		$\hline C^8_{Qu}, C^8_{Qd}$	Λ^{-2}	_	_	_	_	Λ^{-2}	_
		C_{tq}^8	Λ^{-2}	_	_	_	_	Λ^{-2}	Λ^{-2}
		C_{Qu}^1, C_{Qd}^1	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	_
		C^1_{tq}	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$
	Dit, itD	$C^{\phi Q}$	-	_	_	Λ^{-2}	_	Λ^{-2}	_
		$C^3_{\phi Q}$	-	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	_	-
		$C_{\phi t}$	_	_	_	Λ^{-2}	_	Λ^{-2}	_
8 two-fermion op.	t V,h	$C_{\phi tb}$	_	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	_	_
	t	C_{tZ}	_	_	_	Λ^{-2}	_	Λ^{-2}	_
		C_{tW}	_	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	_	_
		C_{bW}	_	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	_	_
		C_{tG}	Λ^{-2}	$[\Lambda^{-2}]$	Λ^{-2}	_	$[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}

Entanglement measurements with top quarks @ LHC

ATLAS & CMS results

[3] arXiv:2409.11067 Channel **Threshold regime Boosted regime** Dilepton ATLAS (140/fb) >5σ [1] CMS I+jets paper includes the full m_#<380 GeV matrix measurements in various Particle-level regions of the phase-space. Here we have just explored the CMS (36/fb) >5σ [2] threshold and boosted regimes. m_{tt}<400 GeV & β_z<0.9 More to explore in terms of EFT... **Parton-level** CMS (140/fb) 2.2σ [3] CMS (140/fb) >5σ [3] Lepton+jets m_#<400 GeV m_{tt}>800 GeV & |cos(θ)|<0.4 Parton-level **Parton-level** CMS 36.3 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) CMS POWHEGv2 + HERWIG+++ η_t / γ_t 1.1 C_{kk})/3 MG5_aMC@NLO(FxFx) + PYTHIA8 + η_t / η_t Data POWHEGv2 + PYTHIA8 + η_t / η_t stat, total unc. // MC Stat. Powheg+P8 0.9 Powheg+H7 Entanglement boundary $m(t\bar{t}) < 400 \text{ GeV}$ ບ້ MG5+P8 ↔ Data extr. with PH+P8 0.8 $\beta_{\rm z}({\rm t\bar{t}}) < 0.9$ MiNNLO+P8 Data extr. with PH+P8+n 0.7 0.6 0 Ш 0.5 -0.491+0.026 Ď 0.4 6.1(5.5)σ 4.0(3.6)σ \downarrow Separable states \downarrow 0.3 $m(t\bar{t}) > 800 \text{ GeV}$ m(tt) > 1000 GeV $-0.480^{+0.02}_{-0.02}$ $|\cos(\theta)| < 0.4$ $|\cos(\theta)| < 0.4$ -0.35 -0.55 -0.50 -0.40 -0.30 -0.60 -0.45 D

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

[1] Nature 633 (2024) 542

[2] arXiv:2406.03976

Parametrisation for O_{tG}

$$X = X_{\rm SM} + \frac{1}{\Lambda^2} \sum_{i} C_i X_i^{(1)} + \frac{1}{\Lambda^4} \sum_{ij} C_i C_j X_{ij}^{(2)} + \mathcal{O}(\Lambda^{-4})$$

Quadratic Terms

Linear Terms

Dependence derived with MadGraph5_aMC@NLO & SMEFT@NLO

- From D \rightarrow c_{tG}/ $\Lambda^2 \in$ [-0.20, 0.26] TeV⁻² @ 68%CL C_{nn} seems also sensitive in threshold regime
- From $D_n \rightarrow c_{tG}/\Lambda^2 \in [-0.66, 0.69]$ TeV⁻² @ 68%CL C_{kk} and C_{nn} also sensitive in boosted regime

Sensitivity on O_{tG} operator from various observables

- Sensitivity from D @ threshold and D_n @ boosted compared to that from other observables: differential cross-sections in tt, diff. tt charge-asymmetry, diff. ttZ σ , diff. tty σ , ttH σ
- New entanglement observables may help to resolve blind directions
- When including only linear terms, bounds from D_n are degraded significantly

Sensitivity on O_{tG} operator from various observables

- Sensitivity from D @ threshold and D_n @ boosted compared to that from other observables: differential cross-sections in tt, diff. tt charge-asymmetry, diff. ttZ σ , diff. tty σ , ttH σ
- New entanglement observables may help to resolve blind directions
- When including only linear terms, bounds from D_n are degraded significantly

Sensitivity on 4F operators from various observables

Linear+Quad. limits

ctG and 4F- octets

- Individual limits obtained from these two entanglement observables are still not very competitve, but may help to resolve blind directions

Sensitivity on 4F operators from various observables

Linear limits

ctG and 4F- octets

- Limits degraded when considering only linear terms

Sensitivity on global fits from those observables

ctG and 4F- octets

Lin+Entanglement Lin No Entanglement Lin+Entanglement Lin No Entanglement Lin No Entanglement $\mathsf{Lin}+\mathsf{Entanglement}$ Lin+Entanglement Lin No Entanglement Lin+EntanglementLin No Entanglement Lin+Entanglement Lin No Entanglement 10^{2} Lin No Entanglement Lin+Entanglement Ranges 95% (TeV $^{-2}$) Quad+Entanglement Quad No Entanglement Quad+Entanglement Quad No Entanglement 10^{1} Quad No Entanglement Quad+Entanglement Quad+Entanglement Quad No Entanglement Lin+Entanglement Lin No Entanglement 10^{0} 10^{-} $\dot{C}^{\chi \dot{G}}$ C.00 C. Od Cog Can Crg Cra (B)

VERY PRELIMINARY

Understanding parton-to-detector level migration effects

- Migration effects ~factor 3 in threshold region; seem to be smaller in the boosted regime

- The method used to reconstruct each neutrino in dilepton events is key to mitigate migration effects

- Need to understand differences seen by ATLAS at particle-level for two different partonshower models

SMEFT bounds

- SMEFT new interactions modify both conventional and quantum observables
 - Dimension-6 operators can modify the degree of entanglement between top quarks
- Recently measured observables can break degeneracies between operators when combined with other observables
 - Quadratic terms are very relevant

Next steps: global SMEFT analyses including these new available experimental results.

THANKS FOR YOUR ATTENTION

BACK-UP

Linear+Quad. limits

4F-singlets

Linear limits

Sensitivity on global fits from those observables

4F-singlets

VERY PRELIMINARY

Sensitivity on global fits from those observables

ctG and 4F- octets

Lin+Entanglement Lin No Entanglement Lin+Entanglement Lin No Entanglement Lin No Entanglement $\mathsf{Lin}+\mathsf{Entanglement}$ Lin+Entanglement Lin No Entanglement Lin+EntanglementLin No Entanglement Lin+Entanglement Lin No Entanglement 10^{2} Lin No Entanglement Lin+Entanglement Ranges 95% (TeV $^{-2}$) Quad+Entanglement Quad No Entanglement Quad+Entanglement Quad No Entanglement 10^{1} Quad No Entanglement Quad+Entanglement Quad+Entanglement Quad No Entanglement Lin+Entanglement Lin No Entanglement 10^{0} 10^{-} $\dot{C}^{\chi \dot{G}}$ C.00 C. Od Cog Can Crg Cra (B)

VERY PRELIMINARY

σ individual limits (expected)

	from Dn (95%CL) linear	from D (95%CL) linear	from Dn (95%CL) linear+quad.	from D (95%CL) linear+quad.
ctG	[-32.14, 32.14]	[-0.43, 0.48]	[-0.94, 0.97]	[-0.39,0.57]
cQd(8)	[-4.20, 4.20]	[-19.76, 17.71]	[-2.72, 7.73]	[-8.15, 5.58]
cQq(1,8)	[-4.02, 4.02]	[-10.86, 9.73]	[-2.14, 4.59]	[-5.95, 13.16]
cQq(3,8)	[-8.71, 8.71]	[-33.90, 37.81]	[-2.71, 3.93]	[-17.16, 34.74]
cQu(8)	[-8.44, 8.44]	[-33.27, 37.11]	[-3.68, 6.52]	[-10.71, 15.80]
ctd(8)	[-5.19, 5.19]	[-8.66, 7.77]	[-2.25, 3.96]	[-8.80, 4.13]
ctq(8)	[-4.72, 4.72]	[-14.75, 13.22]	[-1.86, 3.08]	[-16.67, 7.37]
ctu(8)	[-12.08, 12.08]	[-16.09, 14.43]	[-2.45, 3.08]	[-5.03, 7.33]
cQd(1)	[-54.60, 54.60]	[-15.02, 16.75]	[-2.42, 2.53]	[-4.67, 6.77]
cQq(1,1)	[-8.97, 8.97]	[-47.74, 42.81]	[-1.85, 1.53]	[-6.17, 5.39]
cQq(3,1)	[-23.29, 23.29]	[-54.79, 61.11]	[-1.55, 1.66]	[-12.61, 10.45]
cQu(1)	[-255.15, 255.15]	[-371.69, 414.58]	[-1.76, 1.75]	[-11.10, 11.44]
ctd(1)	[-15.29, 15.29]	[-23.98, 26.74]	[-2.16, 2.51]	[-6.19, 5.03]
ctq(1)	[-22.72, 22.72]	[-777.28, 866.97] :)	[-1.78, 1.65]	[-16.40, 16.75]
ctu(1)	[-16.93, 16.93]	[-12.59, 14.04]	[-1.78, 1.61]	[-5.93, 4.17]

4F singlets @ boosted

Ċ.,

 C_{n_1} D_n

D

--- C++

--- C_{nn}

- D_n

--- D

0.5

D_n, CMS PAS TOP-23-007

1.0

1.5

2.0

1.0

0.5

D_n. CMS PAS TOP-23-007

1.5

2.0

Boosted Region: $m_{t\bar{t}} > 800 \text{ GeV}$

0.0

 $C^{(1)}_{Qq}/\Lambda^2 \; [{\rm TeV^{-2}}]$

Boosted Region: $m_{t\bar{t}} > 800 \text{ GeV}$

0.0

 $C_{ta}^{(1)}/\Lambda^2$ [TeV⁻²]

 $|\cos \theta| < 0.4$

 $|\cos \theta| < 0.4$

0.4

0.2

-1.5

-2.0

-1.0

-0.5

0.0

 $C_{tu}^{(1)}/\Lambda^2 \, [\text{TeV}^{-2}]$

0.5

1.0

1.5

2.0

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

vzrivizuze iniaria inivience Liacer - Bounds on Top SMEFT from entanglement measurements

Distorsions at detector level (dilepton - boosted regime)

 $M_{t\bar{t}} > 800 \text{ GeV } \& |\cos\theta_{t \text{ TRF}}| < 0.2$

	Parton-level	Detector-level	Migration factor
D – threshold regime	-0.54 ± 0.02	-0.177 ± 0.009	~3
Dn – boosted regime	0.64 ± 0.09	0.42 ± 0.03	~1.5

ctG limits from various observables @ boosted regime

$\frac{CtG}{Const}(2\sigma)$	BOOSTED
Ckk	[-1.08,0.34]
Crr	[-1.00,0.76]
Cnn	[-0.40,0.64]
D	[-0.15,1.59]
D ₃	[-0.93,0.30]

arXiv:2105.00006

From CERN EP seminar, Giulia Negro (CMS)

Comparison with ATLAS

- Entanglement in top quark observed by both ATLAS and CMS with >5 standard deviations!
 - despite different analyses...

	ATLAS	CMS
Dataset	Full Run 2 (140 fb ⁻¹)	2016 (35.9 fb ⁻¹)
tī decay	Dilepton: eµ	Dilepton: ee, eµ and µµ
tt reconstruction	Ellipse method	Weighting method
Main selections	340 < m(tī) < 380 GeV	345 < m(tt̄) < 400 GeV, beta <0.9
Triggers	Single lepton	Single lepton + dilepton
Corrected to	Particle-level	Parton-level
Fit type	No fit, calibration curve	Profile likelihood template fit
Alternative hypothesis D	Reweighting	Mixing samples with/without spin corr
Threshold effects	Neglected	Considered (toponium contribution)
Nominal MC	PowhegBox+Pythia8	PowhegBox+Pythia8
Alternative MC	PowhegBox+Herwig7, bb4l	PowhegBox+Herwig++, MG5_AMC@NLO
Significance	>> 5 standard deviations	> 5 standard deviations
	$D_{obs} = -0.547 \pm 0.002(\text{stat}) \pm 0.021(\text{syst})$ $D_{exp} = -0.470 \pm 0.002(\text{stat}) \pm 0.018(\text{syst})$	$D_{obs} = -0.480^{+0.016}_{-0.017}(\text{stat})^{+0.020}_{-0.023}(\text{syst})$ $D_{exp} = -0.467^{+0.016}_{-0.017}(\text{stat})^{+0.021}_{-0.024}(\text{syst})$

ATLAS dilepton

Top quark pair reconstruction

- Reconstruction of top quarks momenta complicated due to 2 neutrinos
 - Several methods were developed before, using m(top) and m(W) as constraints

Dilepton vs lepton+jets top quark reconstruction

• $m_{\ell b}$ weighting method

Æ

- use algebraic method to solve for neutrino 3-vectors
- pick solution with smallest $m_{t\bar{t}}$
- pair lepton and jet according to expected $m_{\ell b}$

$$\begin{split} m_{W^+}^2 &= (E_{\ell^+} + E_{\nu})^2 - (p_{\ell_x^+} + p_{\nu_x})^2, \\ &- (p_{\ell_y^+} + p_{\nu_y})^2 - (p_{\ell_x^+} + p_{\nu_z})^2, \\ m_{W^-}^2 &= (E_{\ell^-} + E_{\bar{\nu}})^2 - (p_{\ell_x^-} + p_{\bar{\nu}_x})^2, \\ &- (p_{\ell_y^-} + p_{\bar{\nu}_y})^2 - (p_{\ell_x^-} + p_{\bar{\nu}_z})^2, \\ m_t^2 &= (E_b + E_{\ell^+} + E_{\nu})^2 - (p_{b_x} + p_{\ell_x^+} + p_{\nu_x})^2, \\ &- (p_{b_y} + p_{\ell_y^+} + p_{\nu_y})^2 - (p_{b_z} + p_{\ell_z^+} + p_{\bar{\nu}_z})^2, \\ m_{\bar{t}}^2 &= (E_{\bar{b}} + E_{\ell^-} + E_{\bar{\nu}})^2 - (p_{\bar{b}_x} + p_{\ell_x^-} + p_{\bar{\nu}_x})^2, \\ &- (p_{\bar{b}_y} + p_{\ell_y^-} + p_{\bar{\nu}_y})^2 - (p_{\bar{b}_x} + p_{\ell_x^-} + p_{\bar{\nu}_x})^2, \\ \end{split}$$

- Artificial NN
 - goal = correctly identify detector-level objects and up/down jet assignment
 - NN trained on permutations
- For each event:
 - provide all possible permutations of objects as input to NN
 - use permutation resulting in the highest NN score
 - calculate neutrino momentum with W boson mass constraint

$$(p_{\nu} + p_l)^2 = m_W^2$$

Dilepton vs lepton+jets

Dilepton arXiv:2406.03976 accepted by ROPP

- 36.3 fb⁻¹ of 2016 data @13 TeV
 - based on <u>PRD 100 (2019) 072002</u>
- Lower branching ratio
- top spin info 100 % transmitted to charged leptons → easy to identify
- Lower p_T cuts for leading/subleading lepton (25/20 GeV) → higher efficiency at the threshold
- Worse $m_{t\bar{t}}$ resolution \rightarrow not ideal for differential measurement
- Best for threshold region
 - high entanglement
 - mostly time-like separated events

Lepton + jets arXiv:2409.11067 submitted to PRD

- 138 fb⁻¹ of data @13 TeV collected in full Run 2
- Higher branching ratio
- top spin info ~100 % transmitted to downtype quarks → hard to identify
- Higher p_T cut for single lepton (30 GeV) and for 4 jets (30 GeV) \rightarrow lower efficiency at the threshold but OK for high $m_{t\bar{t}}$
- Better m_{tt̄} resolution → good for differential measurement
- Advantage for high $m_{t\bar{t}}$
 - high entanglement
 - mostly space-like separated events

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

EFT operators involving the top quark considered

8 two-fermion op.

Operator	Definition	Description
O_{tW}	$\left(\overline{Q}\sigma^{\mu u}t ight) au^{I} ilde{arphi}W^{i}_{\mu u}$	Modifies the tWb , $t\bar{t}\gamma$ and $t\bar{t}Z$ vertices
O_{tB}	$\left(\overline{Q}\sigma^{\mu\nu}t\right)\tilde{\varphi}B_{\mu\nu}$	Modifies the tWb , $t\bar{t}\gamma$ and $t\bar{t}Z$ vertices
O_{tG}	$\left(\overline{Q}\sigma^{\mu\nu}T^{a}t\right)\tilde{\varphi}G^{a}_{\mu u}$	Modifies the $t\overline{t}g$ vertex
$O_{arphi Q}^{(1)}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \left(\overline{Q} \gamma^{\mu} Q \right)$	Modifies the $b\overline{b}Z$ and $t\overline{t}Z$ vertices
$O_{arphi Q}^{(3)}$	$\left(\varphi^{\dagger} i \overleftarrow{D}_{\mu}^{i} \varphi \right) \left(\overline{Q} \tau^{I} \gamma^{\mu} Q \right)$	Modifies the tWb , $b\overline{b}Z$ and $t\overline{t}Z$ vertices
$O_{\varphi t}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) (\overline{t} \gamma^{\mu} t)$	Modifies the $t\overline{t}Z$ vertex
$O_{t\varphi}$	$\left(\overline{Q}t\right)\left(\epsilon\varphi^{*}\varphi^{\dagger}\varphi ight)$	Modifies Yukawa coupling of the top quarks
$O_{\varphi b}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \left(\overline{b} \gamma^{\mu} b \right)$	Modifies the $b\overline{b}Z$ vertex

14 four-fermion op.

• 8 four-quark operators with LL and RR chiral structure

$$\begin{split} O_{Qq}^{1,8} &= (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i}) \\ O_{Qq}^{3,8} &= (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i}) \\ O_{Qq}^{3,8} &= (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i}) \\ O_{tu}^{8} &= (\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i}) \\ O_{td}^{8} &= (\bar{t}\gamma^{\mu}T^{A}t)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) \end{split} \qquad \begin{aligned} O_{Qq}^{1,1} &= (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i}) \\ O_{Qq}^{3,1} &= (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i}) \\ O_{tu}^{1} &= (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ O_{td}^{1} &= (\bar{t}\gamma^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i}) ; \end{aligned}$$

$$\begin{aligned} q_i &= (u_L^i, d_L^i) & u_i &= u_R^i, \ d_i &= d_R^i & i &= 1, 2 \\ Q &= (t_L, b_L) & t &= t_R, \ b &= b_R \end{aligned}$$

• 6 four-quark operators with LR and RL chiral structure

 $\begin{aligned} O^{8}_{Qu} &= (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{u}_{i}\gamma_{\mu}T^{A}u_{i}) & O^{1}_{Qu} &= (\bar{Q}\gamma^{\mu}Q)(\bar{u}_{i}\gamma_{\mu}u_{i}) \\ O^{8}_{Qd} &= (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) & O^{1}_{Qd} &= (\bar{Q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i}) \\ O^{8}_{tq} &= (\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})(\bar{t}\gamma_{\mu}T^{A}t) & O^{1}_{tq} &= (\bar{q}_{i}\gamma^{\mu}q_{i})(\bar{t}\gamma_{\mu}t) ; \end{aligned}$

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements 39

JHEP02(2020)131

SMEFT operators relevant for the top quark

Basis: complete, non-redundant set of operators Dimension 6: several operators affecting top guark interactions

Two-fermion op. (2F): $QQ + V_{,G,\varphi}$

Four-fermion op. (4F): QQQQ, QQqq, QQII

- The exact number depends on CP/flavour assumptions
- In our studies, we consider only real parameters
- In our first study, we considered eight 2F operators

Left and right-handed couplings of EW dipole operators 2F operators relevant the t- and b-guark to the Z for top quark physics $O^{3}_{\varphi Q} \equiv \frac{1}{2} \left(\bar{q} \tau^{I} \gamma^{\mu} q \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}^{I}_{\mu} \varphi \right)$ $O_{uW} \equiv \left(\bar{q}\tau^{I}\sigma^{\mu\nu}u\right)\left(\varepsilon\varphi^{*}W_{\mu\nu}^{I}\right)$ $O_{dW} \equiv (\bar{q}\tau^{I}\sigma^{\mu\nu}d) \left(\varphi W_{\mu\nu}^{I}\right)_{\text{tensor}}$ $O_{uB} \equiv (\bar{q}\sigma^{\mu\nu}u) \left(\varepsilon \varphi^{*}B_{\mu\nu}\right)^{\text{tensor}}$ $\mathcal{O}_{tW}, \mathcal{O}_{tB}$ - $t\bar{t}Z$ and $t\bar{t}\gamma$ vertices $\mathcal{O}_{\phi t}, \mathcal{O}_{\phi Q^3}, \mathcal{O}_{\phi Q^1} - t\bar{t}Z$ vertex $Q_{dB} \equiv (\bar{q}\sigma^{\mu\nu}d)(\varphi B_{\mu\nu})$ $\underline{O_{\varphi d}} = \frac{1}{2} \left(\overline{d} \gamma^{\mu} d \right) \left(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi \right)$ Chromo magnetic dipole operators Top/Bottom yukawa Basis rotated following the prescription of the LHC Top WG: $O_{uG} \equiv (\bar{q}\sigma^{\mu\nu}T^{A}u) \left(\varepsilon\varphi^{*}G^{A}_{\mu\nu}\right)$ $O_{dG} \equiv (\bar{q}\sigma^{\mu\nu}T^{A}d) \left(\varphi G^{A}_{\mu\nu}\right) \text{ tensor}$ scalar $O_{u\phi} \equiv (\bar{q}u) \left(\varepsilon \phi^* \, \phi^\dagger \phi \right)$ $O_{\rm tB} \rightarrow O_{\rm t7} = \cos\theta_{\rm W}O_{\rm tW} - \sin\theta_{\rm W}O_{\rm tB}$ $O_{d\varphi} \equiv (\bar{q}d) (\varphi \ \varphi^{\dagger} \varphi)$ $O^{(1)}_{\omega Q} \rightarrow O_{\omega Q} = O^{(1)}_{\omega Q} - O^{(3)}_{\omega Q}$ arXiv: 1802.07237 Charged current interaction $O_{\varphi ud} \equiv \frac{1}{2} \left(\bar{u} \gamma^{\mu} d \right) \left(\varphi^{T} \varepsilon i D_{\mu} \varphi \right) = 0$

Measurements used in our fit to top quark EW couplings

JHEP02(2022)032

Process	Observable	\sqrt{s}	$\int \mathcal{L}$	Experiment
$pp \rightarrow t\bar{t}H + tHq$	σ	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}\gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \rightarrow tZq$	σ	$13 { m TeV}$	77.4 fb^{-1}	CMS
$pp \rightarrow t\gamma q$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS
$pp \to t\bar{t}W$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS
$pp \to t\bar{b} \text{ (s-ch)}$	σ	$8 { m TeV}$	$20 {\rm ~fb^{-1}}$	LHC
$pp \rightarrow tW$	σ	$8 { m TeV}$	$20 {\rm ~fb^{-1}}$	LHC
$pp \to tq \text{ (t-ch)}$	σ	$8 { m TeV}$	$20 {\rm ~fb^{-1}}$	LHC
$t \to Wb$	F_0, F_L	$8 { m TeV}$	$20 {\rm ~fb^{-1}}$	LHC
$p\bar{p} \rightarrow t\bar{b} \text{ (s-ch)}$	σ	$1.96~{\rm TeV}$	$9.7 { m ~fb^{-1}}$	Tevatron
$e^-e^+ \to b\bar{b}$	R_b , A_{FBLR}^{bb}	\sim 91 GeV	202.1 pb^{-1}	LEP/SLD

Sensitivity

Sensitivity of each observable

- * LH/RH couplings of t/b quarks to Z: $O_{\varphi t}, O_{\varphi 0}^{-}, O_{\varphi 0}^{(3)}$
- * EW dipole operators: **0**_{tZ}, **0**_{tW}, **0**_{bW}
- * Top Yukawa: O_{to}
- * Charged current interaction: $O_{\varphi tb}$

Purple and green bars Dark: differential $t\overline{t}Z$ and $t\overline{t}\gamma$ Light (full length): inclusive "

Sensitivity coming from: $C_{tW} \rightarrow W$ helicity and $t\bar{t}\gamma$ $C_{\varphi Q}^{-} \& C_{\varphi Q}^{(3)} \rightarrow \text{LEP/SLC}$ $C_{tZ} \rightarrow t\bar{t}\gamma$ and $t\bar{t}Z$ $C_{\varphi tb} \rightarrow tZ$ and W helicity

Significant improvement from $t\bar{t}Z$ and $t\bar{t}\gamma$ differential measurements ©

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

Complementarity between observables

- * LH/RH couplings of t/b quarks to Z: $O_{\varphi l}, O_{\varphi l}^{-}, O_{\varphi l}^{(3)}$
- * EW dipole operators: \boldsymbol{O}_{tZ} , \boldsymbol{O}_{tW} , \boldsymbol{O}_{bW}
- * Top Yukawa: $O_{t\varphi}$
- * Charged current interaction: $O_{\varphi tb}$

Results of the global fit

 \checkmark Constraints of linear (only Λ^{-2} terms) global fit are similar to those of the quadratic ($\Lambda^{-2} + \Lambda^{-4}$) fit

- Overall comparable results
- Main difference between the two sets of results seen for C_{tZ}
- \checkmark Bounds compatible with SM within 2σ
- \checkmark 95% prob. bounds: ± 0.35-7 TeV-2

Including more observables and extending the basis

Including observables sensitive to 4F, the robust limits improve.

95% CL bounds

C/Λ^2	Linear (95% probability)		Lin.+Quad. (95% probability)		(95% probability)
$({\rm TeV}^{-2})$	Individual	Global-Baseline	Individual	Global-Baseline	Global-Robust
$C_{t\varphi}$	[-3.17, 3.47]	[-3.13, 3.63]	[-3.05, 4.05]	[-2.82, 4.92]	[-121.82, 62.82]
$C^{-}_{\varphi Q}$	[-0.038, 0.079]	[-2.84, 0.78]	[-0.038, 0.079]	[-2.42, 1.62]	[-2.84, 1.62]
$C^3_{\varphi Q}$	[-0.019, 0.040]	[-0.41, 1.39]	[-0.019, 0.040]	[-0.94, 0.81]	[-0.94, 1.39]
$C_{\varphi t}$	[-6.6, 1.8]	[-8.96, 0.96]	[-8.6, 1.5]	[-9.01, 1.11]	[-37.50, 21.50]
C_{tW}	[-0.30, 0.38]	[-0.26, 0.44]	[-0.28, 0.32]	[-0.19, 0.50]	[-0.35, 0.50]
C_{tZ}	[-0.82, 2.21]	[-0.75, 2.37]	[-0.39, 0.57]	[-0.35, 0.88]	[-2.43, 3.53]
$C_{arphi tb}$	—	—	[-6.61, 6.71]	[-7.55, 7.05]	_
C_{bW}	—	_	[-0.47, 0.47]	[-0.91, 0.91]	_

The power of differential cross sections

Experimental correlations ansatz

WC correlations: linear fit

Figure A.3: Correlation matrix between the different EFT operators obtained in the baseline linear (Λ^{-2}) fit. Cells are filled if the correlation is higher than 10% in absolute value. The operator $O_{\varphi b}$, that modifies only the bottom quark electro-weak couplings, is taken into account in the fit but limits on its coefficients are not reported since the obtained values are not competitive using only the observables considered in the fit.

WC correlations: quadratic fit

Figure A.4: Correlation matrix between the different EFT operators obtained in the baseline quadratic (Λ^{-4}) fit. Cells are filled if the correlation is higher than 10% in absolute value. The operators that modify only the bottom quark electroweak couplings, $O_{\varphi d}$ and O_{dZ} , are taken into account in the fit but limits on their coefficients are not reported since the obtained values are not competitive using only the observables considered in the fit.

production at $\sqrt{s} = 13$ TeV with the ATLAS detector [arXiv:2208.12095]

quarks in the all-hadronic final state with 139 ifb of ATLAS data [arXiv:2205.02817]

New measurements, extending basis & HL-LHC projections

Process	Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment
$pp \rightarrow t\bar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	140 fb ⁻¹	CMS
$pp \rightarrow t\bar{t}$	dA _C /dm _{tī} (4+2 bins)	13 TeV	$140~{ m fb}^{-1}$	ATLAS
$pp \rightarrow t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	13 TeV	$140 { m ~fb^{-1}}$	ATLAS
$pp \rightarrow t \bar{t} \gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	13 TeV	$140 \ \mathrm{fb}^{-1}$	ATLAS
$pp \rightarrow t\bar{t}H + tHq$	σ	13 TeV	$140~{ m fb}^{-1}$	ATLAS
$pp \rightarrow tZq$	σ	13 TeV	77.4 fb ⁻¹	CMS
$pp \rightarrow t\gamma q$	σ	13 TeV	36 fb ⁻¹	CMS
$pp \rightarrow t\bar{t}W$	σ	13 TeV	36 fb ⁻¹	CMS
$pp ightarrow t ar{b}$ (s-ch)	σ	8 TeV	20 fb ⁻¹	LHC
$pp \rightarrow tW$	σ	8 TeV	20 fb ⁻¹	LHC
$pp \rightarrow tq$ (t-ch)	σ	8 TeV	20 fb ⁻¹	LHC
$t \rightarrow Wb$	F 0, F L	8 TeV	20 fb ⁻¹	LHC
$par{p} ightarrow tar{b}$ (s-ch)	σ	1.96 TeV	9.7 fb ⁻¹	Tevatron
$e^-e^+ ightarrow bar{b}$	R_b , A^{bb}_{FBLR}	\sim 91 GeV	$202.1 \ \mathrm{pb^{-1}}$	LEP/SLD

Prospects for future linear and circular e+e- colliders

- Including also QQII operators (besides the QQqq and 2F op.) in the global fit
- Only linear terms considered
- Input observables in $e^+e^- \rightarrow bb$, tt and ttH production
- Full advantage of running at different CM energies (and even two beam polarisations)
- The higher-energy measurements are more relevant for the QQII operators

Machine	$\mathrm{P}_{e^+}/\mathrm{P}_{e^-}$	Energy	Luminosity	Observables	
	$\pm 30\% / \mp 80\%$	$250 { m GeV}$	$2 ext{ ab}^{-1}$		
ILC		$500 { m GeV}$	$4 \mathrm{~ab^{-1}}$	$\sigma_{b\bar{b}}, A^{b\bar{b}}_{FB}, \mathcal{O}_{t\bar{t}}, \sigma_{t\bar{t}H}$	
		$1 { m TeV}$	8 ab^{-1}		
	$0\%/\pm 80\%$	$380 { m GeV}$	1 ab^{-1}	$\sigma_{bar{b}},A^{bar{b}}_{FB},\mathcal{O}_{tar{t}},\sigma_{tar{t}H}$	
CLIC		$1.5 { m TeV}$	$2.5~{ m ab}^{-1}$		
		$3 { m TeV}$	5 ab^{-1}		
	Unpolarised	Z-pole	$57.5/150 \text{ ab}^{-1}$		
CEDC/ECC as		$240~{ m GeV}$	$20/5 { m ~ab^{-1}}$	$- Ab\overline{b}$	
		$350~{ m GeV}$	$0.2~{ m ab^{-1}}$	$\sigma_{b\bar{b}}, A_{FB}, O_{t\bar{t}}$	
		$360/365~{ m GeV}$	$1/1.5 { m ~ab^{-1}}$		
				la susta (Ola e e march la es	

Inputs/Observables: JHEP10(2018)168 arXiv: 2206.08326

Expected constraints for ILC

- ILC (>500 GeV) is ideal for EW couplings: improvements by factors of up to 200
- Two different energies above the tt threshold needed to constrain all 2F and 4F operators
- The two sets of operators have very different scaling with energy:
- 4F op. grows quadratically, while 2F op. dependence is constant or grows only linearly

02/10/2024 María Moreno Llácer - Bounds on Top SMEFT from entanglement measurements

arXiv: 2205.02140

Comparisons of future colliders

- Limits are significantly better at linear e⁺e⁻ than circular e⁺e⁻ not only because of higher collision energies but also polarized beams which help lift degeneracies

arXiv: 2205.02140

