

Jesús M. Moreno Instituto de Física Teórica CSIC/UAM, Madrid

Picture credits: J. Herzog

EXCELENCIA SEVERO OCHOA

Introduction & motivation

- Review of Horodecki's result for qubit-qubit systems
- Main result: Necessary and sufficient condition for Bell in qubit-qubit systems
- Applications
 - Quantum non locality in the atom cavity system
 - Quantum non locality in random matrices sets
 - Quantum non locality in the tW system at the LHC

Summary

Based on work done in collaboration with A. Bernal, J.A. Casas, 2024

Qubits play a main role in entanglement tests at low energies (Quantum optics, atomic physics) & high energies (ATLAS and CMS entanglement in t-tbar states)

Qubits play a main role in entanglement tests at low energies (Quantum optics, atomic physics) & high energies (ATLAS and CMS entanglement in t-tbar states)

<u>Qudits</u> show up in high energy physics as massive gauge bosons (W, Z) qutrits . Low energy systems (atomic physics, etc) have been used in Quantum information.

Qubits play a main role in entanglement tests at low energies (Quantum optics, atomic physics) & high energies (ATLAS and CMS entanglement in t-tbar states)

<u>Qudits</u> show up in high energy physics as massive gauge bosons (W, Z) qutrits . Low energy systems (atomic physics, etc) have been used in Quantum information.

Qubits-qudits states are also of physical interest, they play an important role in quantum information processing and, and show up in the context of high-energy physics, e.g, the top – W boson system.

Qubits play a main role in entanglement tests at low energies (Quantum optics, atomic physics) & high energies (ATLAS and CMS entanglement in t-tbar states)

<u>Qudits</u> show up in high energy physics as massive gauge bosons (W, Z) qutrits . Low energy systems (atomic physics, etc) have been used in Quantum information.

Qubits-qudits states are also of physical interest, they play an important role in quantum information processing and, and show up in the context of high-energy physics, e.g, the top – W boson system.

Bell non locality is fully characterized in qubit-qubit systems What about Bell non locality in **qubits-<u>qudits</u>** states?

Question from JA Aguilar-Saavedra

qubit-qubit system: Horodecki's result

A generic state in $\mathcal{H}_2\otimes\mathcal{H}_2$ can be decomposed as

$$\rho = \frac{1}{4} \left(\mathbb{1}_2 \otimes \mathbb{1}_2 + \boldsymbol{a}.\boldsymbol{\sigma} \otimes \mathbb{1}_2 + \mathbb{1}_2 \otimes \boldsymbol{b}.\boldsymbol{\sigma} + \sum_{i,j=1}^3 C_{ij}\sigma_i \otimes \sigma_j \right)$$

Bell CHSH-like inequalities (two measurements, two outcomes {+1,-1}) for this system

$$\mathcal{O}_{\text{Bell}} = AB + AB' + A'B - A'B'$$

are tight: they capture the facets of the Local Hidden Polytope. Notice that $Tr(\rho \mathcal{O}_{Bell})$ only depends on the spin correlations, C_{ij}

Horodecki's result:

$$\langle \mathcal{O}_{\text{Bell}} \rangle_{\text{max}} = 2\sqrt{\kappa_1 + \kappa_2}$$

R. Horodecki, P. Horodecki, M. Horodecki, 1995

 κ_i are the CC^T eigenvalues

Oxford 2024

From qubit-qubit to qubit-qudit

Naive generalization to $\mathcal{H}_2 \otimes \mathcal{H}_d$ using SU(d) Gell-Mann matrices

$$\rho = \frac{1}{2d} \left(\mathbb{1}_2 \otimes \mathbb{1}_d + \mathbf{a}\boldsymbol{\sigma} \otimes \mathbb{1}_d + \mathbb{1}_2 \otimes \mathbf{b}\boldsymbol{\lambda} + \sum_{i=1}^3 \sum_{\alpha=1}^{d^2-1} C_{i\alpha}\sigma_i \otimes \lambda_\alpha \right)$$

doesn't work. Some drawbacks:

- $Tr(\rho O_{Bell})$ depends on the spin polarization for d ≥ 3
- The B set of $d \times d$ operators is more subtle
 - Several signatures $\{+1, -1\}$ for $d \ge 4$

•
$$B \neq \vec{u} \vec{\lambda}$$
 for $d \ge 3$

qubit-qudit: block decomposition

We find useful this **alternative** parameterization of a generic $\mathcal{H}_2\otimes\mathcal{H}_d$ state

$$\rho = \frac{1}{2} \begin{pmatrix} \beta_0 + \beta_3 & \beta_1 - i\beta_2 \\ \beta_1 + i\beta_2 & \beta_0 - \beta_3 \end{pmatrix} \leftarrow \begin{cases} \text{"Schmidt decomposition" using Paul matrices (} \approx \text{extracting matrix blocks} \\ = \frac{1}{2} (\mathbb{1}_2 \otimes \beta_0 + \sigma_i \otimes \beta_i) \end{pmatrix} \leftarrow \beta_0 = \text{Tr}_A \rho, \text{ hermitian} \end{cases}$$

Choosing a different representation $\sigma \to U^{\dagger} \sigma U$, $\sigma_i \to \mathcal{R}_{ij} \sigma_j$ will entail a different - SO(3) rotated - $\{\beta_i\}$ set, $\beta_i \to \mathcal{R}_{ij}\beta_j$

qubit-qudit: MAIN RESULT

 $\|\mathscr{M}\|_{1} = \sum eigen(\mathscr{M})$

 $\langle \mathcal{O}_{\text{Bell}} \rangle_{\text{max}}$ is a function of the Trace Norms, $\| \|_1$ of $\{\beta_i\}$

$$\langle O_{\text{Bell}} \rangle_{\max} = 2 \max_{\mathcal{R}} \sqrt{\|\beta_1\|_1^2 + \|\beta_2\|_1^2}$$

A. Bernal, J.A. Casas and JMM arXiv:2404.02092

Analytical & compact. Generalizes the well-known 2×2 result !

- Easy to implement numerically
- MANY APPLICATIONS for NONLOCAL TESTS!

Sketch of the proof

It is convenient to define the following vectors:

$$\vec{r}_A = (\operatorname{Tr}(\sigma_1 A), \operatorname{Tr}(\sigma_2 A), \operatorname{Tr}(\sigma_3 A)),$$

$$\vec{r}_B = (\operatorname{Tr}(\beta_1 B), \operatorname{Tr}(\beta_2 B), \operatorname{Tr}(\beta_3 B))$$

Then

$$\langle \mathcal{O}_{\text{Bell}}
angle = rac{1}{2} \vec{r}_A (\vec{r}_B + \vec{r}_{B'}) + rac{1}{2} \vec{r}_{A'} (\vec{r}_B - \vec{r}_{B'})$$

Now, since $\operatorname{Tr} A^2 = \operatorname{Tr} A'^2 = \operatorname{Tr} \mathbb{1}_2 = 2$, we get $\|\vec{r}_A\|^2 = \|\vec{r}_{A'}\|^2 = 4$.

$$\langle \mathcal{O}_{\text{Bell}} \rangle_{\max} = \max_{B,B'} \Big\{ \|\vec{r}_B + \vec{r}_{B'}\| + \|\vec{r}_B - \vec{r}_{B'}\| \Big\}.$$

Oxford 2024

Sketch of the proof

• Lemma I

Let \vec{v}, \vec{w} be two arbitrary vectors in a plane. Consider a simultaneous rotation of angle φ of both vectors and call the new vectors $\vec{v}(\varphi), \vec{w}(\varphi)$, so that $\vec{v} = \vec{v}(0), \ \vec{w} = \vec{w}(0)$. Then the following identity takes place:

$$\left(\|\vec{v}+\vec{w}\|+\|\vec{v}-\vec{w}\|\right)^2 = 4\max_{\varphi}\left\{v_1(\varphi)^2 + w_2(\varphi)^2\right\}, \qquad \varphi = \frac{1}{2}\arctan\frac{2w_1w_2}{v_1^2 + w_2^2 - w_1^2}$$

Then

$$\left(\|\vec{v} + \vec{w}\| + \|\vec{v} - \vec{w}\|\right)^2 = 4 \max_{\mathcal{R}} \left\{ (\mathcal{R}\vec{v})_1^2 + (\mathcal{R}\vec{w})_2^2 \right\}$$

Applying it to our case:

$$egin{aligned} &\langle \mathcal{O}_{ ext{Bell}}
angle_{ ext{max}} = 2 \; \max_{B,B',\,\mathcal{R}} \sqrt{\left| (\mathcal{R}ec{r}_B)_1
ight|^2 + \left| (\mathcal{R}ec{r}_{B'})_2
ight|^2} \; . \ &\langle \mathcal{O}_{ ext{Bell}}
angle_{ ext{max}} = 2 \; \max_{B,B',\,\mathcal{R}} \sqrt{\left| ext{Tr} ig[(\mathcal{R}ec{eta})_1 \cdot B ig] ig|^2 + \left| ext{Tr} ig[(\mathcal{R}ec{eta})_2 \cdot B' ig] ig|^2} \; . \end{aligned}$$

$$\begin{split} \langle \mathcal{O}_{\text{Bell}} \rangle_{\max} &= 2 \max_{\mathcal{R}} \sqrt{\|(\mathcal{R}\vec{\beta})_1\|_1^2 + \|(\mathcal{R}\vec{\beta})_2\|_1^2} \\ &= 2 \max_{\mathcal{R}} \left[\left(\sum_{i=1}^d |\lambda_i^{(1)}(\mathcal{R})| \right)^2 + \left(\sum_{i=1}^d |\lambda_i^{(2)}(\mathcal{R})| \right)^2 \right]^{1/2} \end{split}$$

A note on the numerical implementation

► Scan in (B, B'):

 $2(d^2 - 1)$ parameters $\mathcal{O}(d^2)$ signatures to be explored

 \blacktriangleright Wide range of $\mathcal{O}_{\rm Bell}$ values, many local extrema when increasing d

A note on the numerical implementation

 $\langle \mathcal{O}_{\rm Bell} \rangle_{\rm max}$ from a FULLY NUMERICAL (A,A', B,B') scan

- Scan in (B, B'):
 2(d² 1) parameters
 Ø(d²) signatures to be explored
- \blacktriangleright Wide range of $\mathcal{O}_{\rm Bell}$ values, many local extrema when increasing d


```
\langle \mathcal{O}_{\text{Bell}} \rangle_{\text{max}} from our ANALYTICAL expression (+ numerical scan of SO(3))
```

Scan in *R*, rotations
 3 parameters

the signature is nothing but Sign(Eigen)

 \blacktriangleright Narrow range of $\mathcal{O}_{\rm Bell}$ values when increasing d

Quantum non locality in atom - cavity systems

Consider a two level atom coupled to an electromagnetic cavity (\approx harmonic oscillator)

The Hilbert space is
$$\mathscr{H} = \mathscr{H}_2 \otimes \mathscr{H}_\infty$$

In practice,
 $\mathscr{H} = \mathscr{H}_2 \otimes \mathscr{H}_d$

It is interesting to work in the resonant regime, $\omega_0 = \omega_c$. Then the atom-cavity interaction is described by the Jaynes-Cummings Hamiltonian

$$H_{I} = \hbar\lambda \left(\sigma_{+} \otimes a + \sigma_{-} \otimes a^{\dagger}\right)$$

that couples pairs of states, producing oscillations between them, characterised by the Rabi frequency

$$\Omega_n = 2\lambda\sqrt{n+1}$$

A pure state is given by its two projections on the atom subsystem

$$|\psi\rangle = |e\rangle \otimes |\varphi_e\rangle + |g\rangle \otimes |\varphi_g\rangle$$

QUESTION:

• Suppose we start from a pure, separable state, with the atom in its excited level:

$$|\psi\rangle = |e\rangle \otimes |\varphi_e\rangle$$
 at t=0

▶ It will evolve in time into a pure, in general entangled, state

 $|\psi(t)\rangle = |e\rangle \otimes |\varphi_e(t)\rangle + |g\rangle \otimes |\varphi_g(t)\rangle$

WHAT about its NON-LOCALITY?, ie

WHAT is the $\langle \mathcal{O}_{\text{Bell}} \rangle_{\text{max}}$ value for a given time?

Atom-cavity: Initial Squeeze state

Our results improve the ones obtained by Halder et al using pseudo spin operators

Atom-cavity: Initial Coherent state

Our results improve the ones obtained by Halder et al using pseudo spin operators

Atom-cavity: Initial Coherent state with noise

At t=0

$$|\psi\rangle = |e\rangle \otimes |\varphi_{\text{Coherent}}\rangle$$
, with $|\varphi_{\text{Coherent}}\rangle = \sum \frac{1}{\sqrt{n!}} e^{-\frac{|\alpha|^2}{2}} \alpha^n |n\rangle$

Assume that there is some gaussian noise in the atom-cavity coupling, λ

$$H_{I} = \hbar\lambda \left(\sigma_{+} \otimes a + \sigma_{-} \otimes a^{\dagger}\right)$$
$$P(\lambda) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\lambda - \bar{\lambda})^{2}}{2\sigma^{2}}}$$

This can be incorporating by dealing with the mixed state:

$$\rho(t) = \int d\lambda \ P(\lambda) \ |\psi(\lambda,t)\rangle \langle \psi(\lambda,t)|,$$

The quantum non locality is, in general, lost after some time

Non locality Random Density Matrices

Non locality in Random Density Matrices

Non locality in tW at the LHC

We can study the tW system, described by a mixed $\mathcal{H}_2 \otimes \mathcal{H}_3$ state

Thanks to JA Aguilar-Saavedra for the data !

	(0.2372	0	0	0	0.1089	0	
	0	0.1667	0	0.0121	0	0.1089	
	0	0	0.0961	0	0.0121	0	
	0	0.0121	0	0.0961	0	0	
Kinem. Reg I $\rho =$	0.1089	0	0.0121	0	0.1667	0	$\langle O_{\text{Bell}} \rangle_{\text{max}} = 0.89$
	0 /	0.1089	0	0	0	0.2372)
PRELIMINART	(0.2566	5 0	0	0	0.353	38 0)	
	0	0.10	74 0	0.0303	b 0	0	
	0	0	0	0	0	0	
Kinem. Reg II ρ =	0	0.03	03 0	0.0467	′ 0	0	$\langle O_{\rm Bell} \rangle_{\rm max} = 2.07$
	0.3538	8 0	0	0	0.589	93 0	
	$\begin{pmatrix} 0 \end{pmatrix}$	0	0	0	0	0)	

Balance between cuts / statistics

The study of non-locality in qubit-qudit systems has been addressed

We have obtained a closed, compact expression for $\langle \mathcal{O}_{\text{Bell}} \rangle_{\text{max}}$

Easy to implement numerically. Allows to address the Large d limit

Many applications (Hybrid - discrete / continuous - models, Random matrices sets, Non locality in tW) THANKS