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Bell: Classically

The famous Bell inequality is well known in quantum mechanics. Let us
first consider a classical counterpart.

Indeed, consider Alice and Bob, measuring in their “far apart” lab’s
(read: space-like separation). Both measure two binary (dichotomic)
quantities, let’s say (A,A′) and (B,B′). They carry out the experiment
n times. Each measurement, viz. aj , a′j , bj , b′

j , gives as value ±1.

Then, for the classical average, one has〈
(A+A′)B+(A−A′)B′〉= 1

n ∑
i

(
(ai +a′i)bi +(ai −a′i)b

′
i

)
≤ 2
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Bell: Quantum Mechanically
Quantum mechanically, this gets replaced by the Bell-Clauser-Horne-
Shimony-Holt1 inequality,

⟨ψ|C |ψ⟩= ⟨ψ|(A+A′)B+(A−A′)B′ |ψ⟩ ,

where |ψ⟩ is the quantum state of the system and we now consider four
bounded (dichotomic) Hermitian operators with

A2 =A′2 = 1 , B2 =B′2 = 1 , [A∨A′,B∨B′] = 0 , [A,A′] ̸= 0 ̸= [B,B′]

One speaks of a violation of the Bell-CHSH inequality whenever

| ⟨ψ|C |ψ⟩ |> 2

whilst there is a maximal violation (Tsirelson’s bound) 2

| ⟨ψ|C |ψ⟩ | ≤ 2
√

2 .

1Bell, Physics Physique Fizika 1, 195 (1964); Clauser, Horne, Shimony, Holt, Phys. Rev. Lett. 23, 880 (1969).
2Tsirelson, Lett. Math. Phys. 93 (1980).
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Bell: Quantum Mechanically

Using entangled states, numerous examples of the violation have been
found.

Needless to mention are the experimental studies of Aspect, Clauser
and Zeilinger of the Bell inequalities in quantum systems.

During this workshop, another type of experimental evidence will be
discussed, now coming from the world of high energy physics, see other
talks.

Speaking about high energy physics, the appropriate language is quan-
tum field theory.
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Bell: Quantum Field Theory

Pioneering work of Summers & Werner3 for free (non-interacting) QFTs:
maximal violation is reached, even in the vacuum state!

Their result is rooted in Algebraic Quantum Field Theory, heavily relying
on the language of C∗-operator (von Neumann) algebras and analysis
(Tomita-Takesaki modular theory). I will not go into this, but I can give a
hint where it comes in.

3Summers, Werner, J. Math. Phys. 28, 2440 (1987); 2448 (1987).
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Bell: Quantum Field Theory

One starts from a free spinor field in (1+1)-dimensions, with action

S =
∫

d2x
[
ψ̄
(
iγµ

∂µ −m
)

ψ
]
.

The plane wave basis gives

ψ(t,x) =
∫

dk
2π

m
ωk

[
u(k)ck e−ikµxµ

+ v(k)d†
k e+ikµxµ

]
,

where kµxµ = ωk t − kx and ωk =
√

k2 +m2.

For the creation and annihilation operators’ algebra, we get

{ck ,c
†
q}= {dk ,d

†
q}= 2π

ωk

m
δ(k −q).
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Bell: Quantum Field Theory
One must smear the quantum fields to get well-defined operator-valued distributions4,
with two-component spinor test functions hα(x) = (h1(x),h2(x))

t , where h1,h2 are
commuting test functions belonging to the space C∞

0 (R
2) of infinitely differentiable

functions with compact support (aka. bump functions). Then,

ψ(h)=
∫

d2x h̄α(x)ψα(x); ψ
†(h)=

∫
d2x ψ̄

α(x)hα(x)

so that

ψ(h) = ch +d†
h , ψ

†(h) = c†
h +dh,

and

ch =
∫

dk
2π

m
ωk

h̄(k)u(k)ck ; dh =
∫

dk
2π

m
ωk

v̄(k)h(−k)dk ,

next to

{ch,c
†
h′}=

∫
dk
2π

1
2ωk

h̄(k)(/k +m)h′(k),

{dh,d
†
h′}=

∫
dk
2π

1
2ωk

h̄′(−k)(/k −m)h(−k),

4Haag, Local quantum physics: Fields, particles, algebras, Springer-Verlag, 1992.
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Example of a 1d bump function
Consider the Planck taper window5,

σ0(x ,ε) =



[
1+exp

(
ε(2x−ε)
x(x−ε)

)]−1
, ifx ∈

(
0,ε

)
,

+1, ifx ∈ [ε,1− ε] ,[
1+exp

(
ε(−2x−ε+2)
(x−1)(x+ε−1)

)]−1
, ifx ∈

(
1− ε,1

)
,

0, otherwise.

which defines a smoothened rectangle.

5McKechan et al, Class. Quant. Grav. 27 (2010), 084020.
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Bell: Quantum Field Theory
The dichotomic Bell operators are eventually given by

Ah = ψ(h)+ψ
†(h)

with
⟨0|AhA ′

h|0⟩= ⟨h|h′⟩
. To be more precise, the vev AhAh′ corresponds to a inner product,

⟨h|h′⟩=
∫

dk
2π

1
2ωk

[
h̄(k)(/k +m)h′(k)+ h̄′(−k)(/k −m)h(−k)

]
,

For the Bell-CHSH correlator in the vacuum, one finally gets

⟨C ⟩ = ⟨0|(Af +Af ′)Ag +(Af −Af ′)Ag′ |0⟩,
= ⟨f |g⟩+ ⟨f |g′⟩+ ⟨f ′|g⟩−⟨f ′|g′⟩.

The problem of finding a violation is thus reduced to finding proper test functions. In

general, by a magical mapping of the free QFT case to a QM case (and much more than

that of course), Summers & Werner exactly showed this, confirming the asymptotic

reaching of the Tsirelson bound. The explicit form of these test functions is however

unknown, to the best of our knowledge.

Motivation Bell-CHSH numerics Bell-CHSH proof Outlook



Overview

Motivation for this work

Maximal violation of the Bell-CHSH correlation function via bumpified
Haar wavelets: numerically

Maximal violation of the Bell-CHSH correlation function via bumpified
Haar wavelets: formally

Outlook



D. Dudal BellQFT 11 / 27

Our work
We shall numerically construct proper test functions. The procedure can then (hope-
fully) be generalized in the future to the interacting QFT case, for which the Sum-
mers & Werner magic is unknown.

In practice, we explicitly implement relativistic causality by considering the hypersurface
t = 0 (read: a fine-smeared version of δ(t).) and adopt the supports of Alice-(f , f ′) to
x < 0, and Bob-(g,g′) to x > 0.

For the litmus test, we will take m → 0, for which in k -space

⟨f |g⟩=
∫

dk
2π

[
(1+ sgn(k)) f ∗1 (k)g1(k)+(1− sgn(k)) f ∗2 (k)g2(k)

]
,

or, in x-space, ⟨f |g⟩= I1 + I2, where

I1 =
∫

dx [f ∗1 (x)g1(x)+ f ∗2 (x)g2(x)] ,

I2 =− i
π

∫
dxdy

(
1

x − y

)
[f ∗1 (x)g1(y)− f ∗2 (x)g2(y)] .
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Step 1: a Haar wavelet solution
Consider the Daubechies db2 wavelets6, aka. Haar wavelets7,

ψn,k (x) = 2n/2
ψ(2nx − k)

descending from its mother wavelet ψ

ψ(x) =


+1, ifx ∈

[
0, 1

2

)
,

−1, ifx ∈
[ 1

2 ,1
)
,

0, otherwise.

These wavelets functions provide an orthonormal basis,
∫

dx ψn,k (x)ψm,ℓ(x)= δnmδkℓ,
for the square-integrable functions on the real line and, moreover, have a compact
support whose maximum size can be controlled. More precisely, ψn,k has support
In,k =

[
k2−n,(k + 1)2−n

)
and is piecewise constant, giving +2

n
2 on the first half of

In,k and −2
n
2 on the second half. We use these to expand the would-be test function

entering the Bell-CHSH inequality

f̃j(x) =
nf

∑
n=ni

kf

∑
k=ki

fj(n,k)ψn,k (x),

The {ni ,nf ,ki ,kf } set the range and resolution of the Haar wavelet expansion.
6Daubechies, Commun. Pure Appl. Math. 41, 909 (1988); Ten Lectures on Wavelets, (SIAM, Philadelphia, 1992).
7Lepik, Hein, Haar Wavelets: With Applications (Springer International publishing, Switzerland, 2014).
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Step 1: a Haar wavelet solution

What do we gain using the Haar wavelets?

▶ The integrals entering the inner products/norms can be executed in (lengthy but)
closed form, of great assistance for the sought for numerical precision (→ it is
hard to get close to 2

√
2!)

▶ Inspired by Summers & Werner, we shall impose〈
f̃ |̃f

〉
=

〈
f̃ ′ |̃f ′

〉
= ⟨g̃|g̃⟩=

〈
g̃′|g̃′〉= 1 ,〈

f̃ |g̃
〉
=

〈
f̃ ′|g̃

〉
=

〈
f̃ |g̃′

〉
=−

〈
f̃ ′|g̃′

〉
=−i

√
2

λ

1+λ2

with λ ∈ (
√

2−1,1] ⇒ |⟨C ⟩|= 4
√

2λ

1+λ2 ∈ (2,2
√

2]

We can gradually increase the global support and local resolution of the chosen
wavelet basis to (numerically) find the appropriate wavelet coefficients. We rely
on a minimization procedure, given the quadratic nature of the constraints.
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Step 2: Bumpification of the Haar wavelet solution
ψ(x) σ(x,0.1) σ(x,0.01)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

x

ψ(x), σ(x,ϵ)

Figure: The mother Haar wavelet and two of its bumpifications. These
would-be test functions are not smooth, due to the jumps in the Haar
wavelets. Nevertheless, there is a class of smooth bump functions (C∞ with
compact support), which can be used to approximate the Haar wavelets as
precisely as we want.
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Step 2: Bumpification of the Haar wavelet solution

Consider again the already shown basic Planck-taper window function with support on
the interval [0,1]. We then introduce the mother bump function with support on [0,1]
by

σ(x ,ε) =


+σ0(2x ,ε), ifx ∈

(
0, 1

2

)
,

−σ0(2x −1,ε), ifx ∈
( 1

2 ,1
)
,

0, otherwise.

to define C∞
0 (R) version of the Haar wavelet,

σn,k (x ,ε) = 2n/2
σ(2nx − k ,ε)

with support on the interval In,k that approximates as precisely as we want ψn,k (x) per
choice of ε. As such, each wavelet solution can be replaced by a bumpified version,

fj(x) =
nf

∑
n=ni

kf

∑
k=ki

fj(n,k)σn,k (x ,ε),

up to arbitrary precision if ε is chosen small enough.
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Step 2: Bumpification of the Haar wavelet solution

We minimize R = |
〈

f̃ |̃f
〉
−1|2+|

〈
f̃ ′ |̃f ′

〉
−1|2+| ⟨g̃|g̃⟩−1|2+| ⟨g̃′|g̃′⟩−1|2+|

〈
f̃ |g̃

〉
+

i
√

2 λ

1+λ2 |2 + |
〈

f̃ |g̃′
〉
+ i

√
2 λ

1+λ2 |2 + |
〈

f̃ ′|g̃
〉
+ i

√
2 λ

1+λ2 |2 + |
〈

f̃ |g̃′
〉
− i

√
2 λ

1+λ2 |2.

Targeting ⟨C ⟩ ≈ 2.82 for λ = 0.99 and willing to achieve precision at the percent

level, corresponding to R = O(10−5), we are able to solve the constraints for {ni =

−10;nf = 120;ki =−5;kf =−1} for (f , f ′) and {mi =−10;mf = 120;ℓi = 0;ℓf = 4}
for (g,g′).
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The “easy” step: formalisation of the bumpification

As visually expected, it can indeed be rigourously proven that for any p ∈ [1,∞[, the
difference between the window function sε and the basic rectangle r is ∀ε > 0 subject
to

∥r − sε∥p
p ≤ ε,

At the wavelet level, this implies, after some manipulations,

∥ψ−σ
ε∥p

p ≤ ε

∥ψn,k −σ
ε
n,k∥

p
p ≤ 2−n/2

ε

This is sufficient to show that a wavelet solution with violation arbitrarily close to 2
√

2,

can be smoothened into a proper bump solution arbitrary close to 2
√

2.
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The “hard” step: does a wavelet solution exist?
We must prove the existence of a solution to〈̃

f | f̃
〉
=

〈̃
f ′ | f̃ ′

〉
=

〈
g̃ | g̃

〉
=

〈
g̃′ | g̃′〉= 1〈̃

f | g̃
〉
=

〈̃
f ′ | g̃

〉
=

〈̃
f | g̃′〉=−

〈̃
f ′ | g̃′〉=−i

√
2λ

1+λ2 .

where

f̃j :=
N1

∑
n=N0

−1

∑
k=−K

fj(n,k)ψn,k , g̃j :=
N1

∑
n=N0

K−1

∑
k=0

gj(n,k)ψn,k ,

f̃ ′j :=
N1

∑
n=N0

−1

∑
k=−K

f ′j (n,k)ψn,k , g̃′
j :=

N1

∑
n=N0

K−1

∑
k=0

g′
j (n,k)ψn,k ,

The 3 parameters N0 < N1 and K > 1 set the resolution. Causality is implemented
by only using Haar wavelets supported on [−2−N0 K ,−2−N1) to represent Bob’s test
functions (f , f ′) and only using Haar wavelets supported on [0,2−N0 K ) to represent
Alice’s test functions (g,g′).

Conjecture

For a given λ ∈ (
√

2−1,1) arbitrarily close to 1, we can find a resolution sufficiently
fine such that this system of equations has a solution for the wavelet coefficients.
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The “hard” step: does a wavelet solution exist?
A posteriori, we noticed some (anti-)symmetry and/or rescaling properties between the
various wavelet solutions. We can now build these in a priori. Then the problem can
be mapped onto

yTAy = ∑
(n,k)

∑
(m,l)

A(n,k),(m,l) yn,k ym,l =
2πλ

1+λ2 ≤ π,

such that ∥y∥2 = 1 with the matrix A defined in terms of the Haar wavelets via

A(n,−k),(m,l+1) ≡−
∫∫ (

1
x + v

)
ψn,k (x)ψm,−l−1(v)dxdv

Due to some index-shift symmetries, A depends only on the difference N := N1 −N0.
So we can focus on A(N0 = 0,N1 =N,K ). Then, the problem can be rephrased further
in terms of the minimal/maximal eigenvalues of A, namely

λmin ≤
2πλ

1+λ2 ≤ λmax.

We can show that λmin is well under control and certainly small enough. We thus

need to push λmax → π.
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The “hard” step: does a wavelet solution exist?
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Figure: Numerical evidence in terms of λmax

(
A(N,2)

)
, λmax

(
A(N,5)

)
.
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The special case K = 1: closed case

I am glad to spare you all underlying details and series manipulations trickery, but
suffice to say that for K = 1, N arbitrarily large, we are able to show that

λmin = λmax = a0 +2
∞

∑
n=1

an

= a0 +2(
√

2−1− (2+
√

2) ln2+3 ln3+
∞

∑
n=1

ιn)≈ 3.10

where

an = 2−n/2
((

2n+1 −2n) ln(2)−2
(
2n−1 +1

)
ln
(
2n−1 +1

)
+3(2n +1) ln(2n +1)

−
(
2n+1 +1

)
ln
(
2n+1 +1

))
ιn =

∫ 1

0

2−n/2(1− x)
x +2n dx = 2−

n
2 (−((2n +1)n ln2)+(2n +1) ln(2n +1)−1)

This corresponds to | ⟨C ⟩ | ≈ 2.80. For the record, 2
√

2 ≈ 2.83.
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The special case K = 1: closed case
We relied on a corollary of the

fundamental eigenvalue distribution theorem of Szegö8

Let (an)n≥0 be an absolutely summable sequence in C and define an associated
sequence of Hermitian Toeplitz (= band) matrices

An =


a0 a∗1 a∗2 · · · a∗n
a1 a0 a∗1 · · · a∗n−1
a2 a1 a0 · · · a∗n−2
...

...
...

. . .
...

an an−1 an−2 · · · a0

 .

The Fourier series f (t) = a0 +
∞

∑
n=1

(an +a∗n)cos(nt), t ∈ [0,2π], is real valued

and we have lim
n→∞

λmax(An) = max f , lim
n→∞

λmin(An) = min f where λmax(An)

increases with n and λmin(An) decreases with n.

8See f.i. Gray, Toeplitz and Circulant Matrices: A Review. Foundations and Trends in Communications and Information
Theory, Now Publishers, 2006.

Motivation Bell-CHSH numerics Bell-CHSH proof Outlook



D. Dudal BellQFT 23 / 27

The general case K > 1: unfinished business

To get closer to π (or to 2
√

2 for the violation), we must increase K 9.
Unfortunately, the matrix A is then no longer Toeplitz, but block Toeplitz.

Despite some nice properties of this A and the known generalization of
the Szegö distribution theorem to the block Toeplitz case, it seems we
cannot explicitly find the necessary min/max eigenvalue of the corre-
sponding (now matrix-valued) F(t).

This being said, we numerically see it still works. So we have an an-
alytical proof for up to 99% of the Tsirelson bound, the remaining 1%
remains conjecture based on numerical evidence:).

9Roughly speaking, the “size” of the wavelets.
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Outlook
Bumpified Haar wavelets. . .

. . . offer an excellent numerical (and analytical) tool to explicitly study the Bell-CHSH
inequality

2 < | ⟨C ⟩ | ≤ 2
√

2

in free quantum field theory.

We are now armed to enter the terra incognita where the inequality with an interacting
QFT can be studied.

Interesting side note: strictly (read: mathematically) speaking, in Algebraic QFT, in-
teractions are not allowed. Roughly speaking, modulo the AQFT axioma’s, there is no
unitary equivalence between the free and interacting version of a given QFT [→ Haag’s
theorem10.]

Luckily, we are pragmatic physicists, so we ignore this. After all, QFT works and com-

pares quite well with the real (̸= mathematical) experimental world:).

10See f.i. Haag, Local quantum physics: Fields, particles, algebras, Springer-Verlag, 1992.
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Outlook
As a toy model for a d = 2 interacting model, we will focus on the
Thirring model11

S =
∫

d2x
(

ψ̄(i/∂)ψ− g
2
(ψ̄γµψ)2

)
Quite interesting model, since its Green functions are exactly known!12

As a consequence, its (positive) Källén-Lehmann spectral function ρ(µ)
is also exactly known. This ρ(µ) will enter the inner product between (&
norm of) the test functions.

A small sacrifice: no more dichotomic operators (A(f )2 = 1) since this
is based on the (non-interacting) (anti-)commutation relations, but we
can still prove that ⟨A(f )A(f )⟩ = ||f ||2 < ∞. But these are the relevant
quantities entering the | ⟨C ⟩ | after all!

11Thirring, Annals Phys. 3, 91 (1958).
12Bozkaya et al, J. Phys. A 39, 11075 (2006) and refs. therein.
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Outlook

A few pertinent questions

▶ Is the maximal violation still attainable when interactions are included? Does the
violation, for fixed test functions, change with the coupling constant? Can it run
according to the renormalization group scale/energy?

▶ Of course, in the long run, we are interested in e.g. QED or even QCD, in d = 4.
Unfortunately, no longer exactly solvable theories, but can we develop a pertur-
bation theory around the free test functions? What happens with the violation
when perturbative corrections are added? Any non-perturbative QCD correc-
tions? Interplay with confinement?

▶ . . .
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The End.

Thanks!
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