Testing the Born rule in high-energy collisions

Antony Valentini

Theoretical Physics, Imperial College London

-- high-energy collision experiments can be repurposed as tests of the Born rule

The Born rule

probability density: $\rho = |\psi|^2$

The Born rule

probability density: $\rho = |\psi|^2$

high-energy physics, S-matrix elements

$$
\bra{f}\hat{S}\ket{i} \sim \delta^4(p_f-p_i)\mathcal{M}
$$

Born rule implies cross sections

$$
\frac{d\sigma}{d\Omega}\sim |\mathcal{M}|^2
$$

-- high-energy collision experiments can be repurposed as tests of the Born rule

- -- high-energy collision experiments can be repurposed as tests of the Born rule
- -- de Broglie-Bohm quantum mechanics suggests:

- -- high-energy collision experiments can be repurposed as tests of the Born rule
- -- de Broglie-Bohm quantum mechanics suggests:

 Born rule is for 'quantum equilibrium' only (cf. thermal equilibrium)

- -- high-energy collision experiments can be repurposed as tests of the Born rule
- -- de Broglie-Bohm quantum mechanics suggests:

 Born rule is for 'quantum equilibrium' only (cf. thermal equilibrium)

 equilibrium state might be modified, or unstable (corrections to the Born rule)

- -- high-energy collision experiments can be repurposed as tests of the Born rule
- -- de Broglie-Bohm quantum mechanics suggests:

 Born rule is for 'quantum equilibrium' only (cf. thermal equilibrium)

 equilibrium state might be modified, or unstable (corrections to the Born rule)

-- possible effects to look for:

- -- high-energy collision experiments can be repurposed as tests of the Born rule
- -- de Broglie-Bohm quantum mechanics suggests:

 Born rule is for 'quantum equilibrium' only (cf. thermal equilibrium)

 equilibrium state might be modified, or unstable (corrections to the Born rule)

-- possible effects to look for:

smeared zeros of differential cross sections

- -- high-energy collision experiments can be repurposed as tests of the Born rule
- -- de Broglie-Bohm quantum mechanics suggests:

 Born rule is for 'quantum equilibrium' only (cf. thermal equilibrium)

 equilibrium state might be modified, or unstable (corrections to the Born rule)

-- possible effects to look for:

 smeared zeros of differential cross sections anomalous polarisation probabilities

Scanned at the American
Institute of Physics

De Broglie's Pilot-Wave Dynamics (1927)

$$
i\frac{\partial\psi}{\partial t} = -\sum_{n=1}^{N} \frac{1}{2m_n} \nabla_n^2 \psi + V\psi \quad \frac{d\mathbf{x}_n}{dt} = \frac{\nabla_n S}{m_n}
$$

$$
\psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N, t) \qquad \psi = |\psi| e^{iS}.
$$

of Physics

De Broglie's Pilot-Wave Dynamics (1927)

$$
\frac{\partial \psi}{\partial t} = -\sum_{n=1}^{N} \frac{1}{2m_n} \nabla_n^2 \psi + V\psi \quad \frac{d\mathbf{x}_n}{dt} = \frac{\nabla_n S}{m_n}
$$

 $\psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N, t)$ $\psi = |\psi| e^{iS}$

$$
q = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)
$$

 Motion of configuration *q*(*t*) is determined by a 'pilot wave' ψ

(ψ is defined on configuration space)

An example: the two-slit experiment

An example: the two-slit experiment

Given the wave function ψ and the initial position $\mathbf{x}(0)$, the particle trajectory **x**(*t*) is determined by de Broglie's *law of motion* $\nabla \alpha$

$$
\frac{d\mathbf{x}}{dt} = \frac{\nabla S}{m} \qquad \psi = |\psi| e^{iS}
$$

Postulated to be true, even if in practice we do not know **x**(0)

at the American nstitute of Physics

De Broglie's Pilot-Wave Dynamics (1927)

$$
i\frac{\partial\psi}{\partial t} = -\sum_{n=1}^{N} \frac{1}{2m_n} \nabla_n^2 \psi + V\psi \quad \frac{d\mathbf{x}_n}{dt} = \frac{\nabla_n S}{m_n}
$$

$$
\psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N, t) \qquad \psi = |\psi| e^{iS}.
$$

Consider an ensemble of systems with the same ψ and different q 's Ensemble distribution $\rho(q,t)$

of Physics

De Broglie's Pilot-Wave Dynamics (1927)

$$
\frac{\partial \psi}{\partial t} = -\sum_{n=1}^{N} \frac{1}{2m_n} \nabla_n^2 \psi + V\psi \quad \frac{d\mathbf{x}_n}{dt} = \frac{\nabla_n S}{m_n}
$$

 $\psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N, t)$ $\psi = |\psi| e^{iS}$

Consider an ensemble of systems with the same ψ and different q' s Ensemble distribution $\rho(q,t)$ Recover quantum mechanics *if assume* initial distribution $\rho = |\psi|^2$ (preserved in time by dynamics) (shown fully by Bohm in 1952)

$$
i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi \qquad \qquad \frac{\partial |\psi|^2}{\partial t} + \nabla \cdot \left(|\psi|^2 \frac{\nabla S}{m} \right) = 0
$$

$$
\psi = |\psi| e^{iS}
$$

$$
i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi
$$

$$
\psi = |\psi|e^{iS}
$$

$$
\psi = |\psi|e^{iS}
$$

Guidance equation $\frac{d\mathbf{x}}{dt} = \frac{\nabla S}{m}$ applied to an *ensemble* (same ψ , different $\mathbf{x}'s$)

Distribution $\rho(\mathbf{x},t)$ obeys

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \frac{\nabla S}{m}\right) = 0
$$

$$
i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi
$$

$$
\psi = |\psi|e^{iS}
$$

$$
\psi = |\psi|e^{iS}
$$

Guidance equation $\frac{d\mathbf{x}}{dt} = \frac{\nabla S}{m}$ applied to an

ensemble (same ψ , different $\mathbf{x}'s$)

Distribution
$$
\rho(\mathbf{x},t)
$$
 obeys $\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \frac{\nabla S}{m}\right) = 0$

THEOREM (quantum equilibrium):

If
$$
\rho(\mathbf{x}, 0) = |\psi(\mathbf{x}, 0)|^2
$$
, then $\rho(\mathbf{x}, t) = |\psi(\mathbf{x}, t)|^2$ for all t

$$
i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi
$$

$$
\psi = |\psi|e^{iS}
$$

$$
\psi = |\psi|e^{iS}
$$

Guidance equation $\frac{d\mathbf{x}}{dt} = \frac{\nabla S}{m}$ applied to an

ensemble (same ψ , different $\mathbf{x}'s$)

Distribution $\rho(\mathbf{x},t)$ obeys $\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \frac{\nabla S}{m}\right) = 0$

THEOREM (quantum equilibrium):

If $\rho(\mathbf{x}, 0) = |\psi(\mathbf{x}, 0)|^2$, then $\rho(\mathbf{x}, t) = |\psi(\mathbf{x}, t)|^2$ for all t (Generalisation: replace **x**(t) by general configuration *q*(*t*))

Similarly for a general system

System with configuration $q(t)$ and wave function(al) $\psi(q,t)$

$$
i\frac{\partial \psi}{\partial t} = \hat{H}\psi \qquad \qquad \frac{dq}{dt} = v = \frac{j}{|\psi|^2}
$$

where $j = j [\psi] = j(q, t)$ is the Schrödinger current

Similarly for a general system

System with configuration $q(t)$ and wave function(al) $\psi(q,t)$

$$
i\frac{\partial \psi}{\partial t} = \hat{H}\psi \qquad \qquad \frac{dq}{dt} = v = \frac{j}{|\psi|^2}
$$

where $j = j[\psi] = j(q, t)$ is the Schrödinger current

By construction $\rho(q,t)$ will obey

$$
\frac{\partial \rho}{\partial t} + \partial_q \cdot (\rho v) = 0 \quad \text{(same as } \frac{\partial |\psi|^2}{\partial t} + \partial_q \cdot (|\psi|^2 v) = 0 \text{)}
$$

Similarly for a general system

System with configuration $q(t)$ and wave function(al) $\psi(q,t)$

$$
i\frac{\partial \psi}{\partial t} = \hat{H}\psi \qquad \qquad \frac{dq}{dt} = v = \frac{j}{|\psi|^2}
$$

where $j = j[\psi] = j(q, t)$ is the Schrödinger current

By construction $\rho(q,t)$ will obey

$$
\frac{\partial \rho}{\partial t} + \partial_q \cdot (\rho v) = 0 \quad \text{(same as } \quad \frac{\partial |\psi|^2}{\partial t} + \partial_q \cdot (|\psi|^2 v) = 0 \text{)}
$$

and $\rho(q,t) = |\psi(q,t)|^2$ preserved in time (Born rule).

If $\rho = |\psi|^2$ at $t = 0$ then $\rho = |\psi|^2$ at $t > 0$

Consider the example of the two-slit experiment

Quantum Equilibrium $\rho(\mathbf{x},t) = |\psi(\mathbf{x},t)|^2$ *same* statistical predictions as quantum mechanics

Quantum Nonequilibrium $\rho(\mathbf{x},t) \neq |\psi(\mathbf{x},t)|^2$ statistical *deviations* from quantum mechanics

Quantum theory = special case of a wider physics

BUT: *experimentally* we always find the "quantum equilibrium" distribution:

 $\rho = |\psi|^2$ (Born rule)

y

Why? (2D box, 16 modes)

x

Quantum relaxation (cf. thermal relaxation)

Non-equilibrium ($\rho \neq |\psi|^2$) relaxes to equilibrium

Compare with time evolution of equilibrium $\rho = |\psi|^2$

(Valentini and Westman, Proc. Roy. Soc. A 2005)

Quantum theory = special case of a wider physics

Quantum Theory is the effective description of a special state of statistical equilibrium

We are in that state now because of past relaxation

When did quantum relaxation happen?

Presumably, a long time ago, in the very early universe, soon after the big bang

If so, we can expect that quantum theory will break down close to the big bang.

CMB anisotropies are ultimately generated by early quantum noise (inflationary vacuum) *This can be tested using inflationary cosmology*

We are testing the Born rule in the early universe

CMB anisotropies are ultimately generated by early quantum noise (inflationary vacuum) *This can be tested using inflationary cosmology*

 Signatures of quantum relaxation in the CMB?

(AV, PRD 2010; Colin and AV, PRD 2013; Colin and AV, PRD 2015) Vitenti, Peter and AV, PRD 2019)

Trapped in quantum equilibrium

Is there a way to escape?

Can we *create* nonequilibrium (from equilibrium)?

Can we *create* nonequilibrium (from equilibrium)?

Apparently not: $P = |\Psi|^2$ is preserved by the dynamics.

Can we *create* nonequilibrium (from equilibrium)?

Apparently not: $P = |\Psi|^2$ is preserved by the dynamics.

At least in non-gravitational physics…

Quantum gravity may change the game

 Tiny quantum-gravitational corrections to the Schrödinger equation can make the Born rule unstable ($\rho = |\psi|^2$ evolves to $\rho \neq |\psi|^2$).

Small non-Hermitian terms in the effective Hamiltonian (Kiefer and Singh 1991; Brizuela et al. 2016).

Consistent with pilot-wave theory: non-Hermitian terms generate a small instability of the Born rule (AV 2021, 2023).

Final burst of Hawking radiation breaks the Born rule

Exploding primordial black holes

Exploding primordial black holes

The Born rule is being tested:

-- in the early universe (inflationary cosmology)

-- in space (upcoming satellites)

The Born rule is being tested:

-- in the early universe (inflationary cosmology)

-- in space (upcoming satellites)

What about in the lab? In high-energy collisions?

The Born rule is being tested:

-- in the early universe (inflationary cosmology)

-- in space (upcoming satellites)

What about in the lab? In high-energy collisions?

De Broglie-Bohm quantum mechanics has another natural suggestion for where new physics might lie… Pilot-wave dynamics predicts its own demise at $\psi = 0$.

For Hamiltonians quadratic in momenta, de Broglie velocity is proportional to a phase gradient:

$$
\partial_q S = \operatorname{Im} \frac{\partial_q \psi}{\psi}
$$

This generally diverges at $\psi = 0$.

Usually ignored, nodal regions $\text{Re}\,\psi=0$, $\text{Im}\,\psi=0$ are of measure zero (dimension $n-2$ in *n*-D space)

> *New physics must set in close to* $\psi = 0$ *.* (cf. classical gravitational singularities)

Example of hydrogen atom:

stationary state $\psi(r, \theta, \phi, t) = \psi_{nlm}(r, \theta, \phi)e^{-iE_nt}$

nodal line $\psi_{nlm} = 0$ along *z*-axis (for $m \neq 0$)

trajectories circle round *z*-axis at distance $d = r \sin \theta$

velocity diverges as $d \rightarrow 0$

Is this an artifact of the low-energy theory?

No such divergence for Dirac fermions:

Dirac equation
$$
i\frac{\partial \psi}{\partial t} = -i\boldsymbol{\alpha} \cdot \nabla \psi + m\beta \psi
$$

Continuity equation $\frac{\partial (\psi^{\dagger} \psi)}{\partial t} + \nabla \cdot (\psi^{\dagger} \alpha \psi) = 0$
Finite de Broglie velocity $\frac{d\mathbf{x}}{dt} = \frac{\psi^{\dagger} \alpha \psi}{\psi^{\dagger} \psi}$ $(|\mathbf{v}| \le 1)$

Problem solved? No…

Not an artifact of the low-energy theory

Diverging phase gradient for bosonic fields:

Scalar field
$$
i \frac{\partial \Psi}{\partial t} = \int d^3 x \frac{1}{2} \left(-\frac{\delta^2}{\delta \phi^2} + (\nabla \phi)^2 + m^2 \phi^2 \right) \Psi
$$

Continuity equation $\frac{\partial |\Psi|^2}{\partial t} + \int d^3x \frac{\delta}{\delta \phi} \left(|\Psi|^2 \frac{\delta S}{\delta \phi} \right) = 0$

De Broglie velocity $\frac{\partial \phi}{\partial t} = \frac{\delta S}{\delta \phi}$

 Again diverges at nodes (on field configuration space)

Regularisation of the de Broglie velocity

Simple suggestion (Bell 1987): smearing of j and $|\psi|^2$ $j(q,t)_{\text{reg}} = \int dq' \mu(q'-q) j(q',t)$ $(|\psi(q,t)|^2)_{reg} = \int dq' \ \mu(q'-q) |\psi(q',t)|^2$

(narrow and positive, with $\int dq' \mu(q'-q) = 1$)

Regularisation of the de Broglie velocity

Simple suggestion (Bell 1987): smearing of j and $|\psi|^2$ $j(q,t)_{\text{reg}} = \int dq' \mu(q'-q) j(q',t)$ $(|\psi(q,t)|^2)_{reg} = \int dq' \mu(q'-q) |\psi(q',t)|^2$

(narrow and positive, with $\int dq' \mu(q'-q) = 1$)

Regularised de Broglie velocity

$$
v(q,t)_{\text{reg}} = \frac{j(q,t)_{\text{reg}}}{(|\psi(q,t)|^2)_{\text{reg}}}
$$

Regularisation of the de Broglie velocity

Simple suggestion (Bell 1987): smearing of j and $|\psi|^2$ $j(q,t)_{\text{reg}} = \int dq' \mu(q'-q) j(q',t)$ $(|\psi(q,t)|^2)_{reg} = \int dq' \mu(q'-q) |\psi(q',t)|^2$

(narrow and positive, with $\int dq' \mu(q'-q) = 1$)

Regularised de Broglie velocity

$$
v(q,t)_{\text{reg}} = \frac{j(q,t)_{\text{reg}}}{(|\psi(q,t)|^2)_{\text{reg}}}
$$

Modified equilibrium: (smeared Born rule)

$$
p(q,t) = (|\psi(q,t)|^2)_{\text{reg}}
$$

-
-
-
-
-

1-D:
$$
I_a(x) = \int dx' \delta_a(x' - x) f(x') = \int ds \delta_a(s) f(x + s)
$$

$$
f(x + s) = f(x) + sf'(x) + \frac{1}{2}s^2 f''(x) + ...
$$

$$
I_a(x) = f(x) + \frac{1}{2}a^2 f''(x) + ...
$$

1-D:
$$
I_a(x) = \int dx' \delta_a(x' - x) f(x') = \int ds \delta_a(s) f(x + s)
$$

$$
f(x + s) = f(x) + sf'(x) + \frac{1}{2}s^2 f''(x) + ...
$$

$$
I_a(x) = f(x) + \frac{1}{2}a^2 f''(x) + ...
$$

Corrected Born rule:

$$
\left(|\psi|^2 \right)_\text{reg} = |\psi|^2 + \frac{1}{2} a^2 \frac{\partial^2 \left| \psi \right|^2}{\partial x^2} + \ldots
$$

1-D:
$$
I_a(x) = \int dx' \delta_a(x' - x) f(x') = \int ds \delta_a(s) f(x + s)
$$

$$
f(x + s) = f(x) + sf'(x) + \frac{1}{2} s^2 f''(x) + \dots
$$

$$
I_a(x) = f(x) + \frac{1}{2} a^2 f''(x) + \dots
$$

Corrected Born rule:

n-D: $I_a(q) = \int d^n q' \ \delta_a^n(q'-q) f(q')$ (correction is $I_a(q) = f(q) + \frac{1}{2}a^2\nabla^2 f(q) + ...$ local Laplacian)

proportional to

Example

1-D oscillator (first excited state, node at $x = 0$):

$$
\psi_1(x) = \left(\frac{4}{\pi}\right)^{1/4} (m\omega)^{3/4} x \exp\left(-\frac{m\omega x^2}{2}\right)
$$

node is replaced by a minimum

$$
\min\left(\left|\psi\right|^2\right)_{\text{reg}}=a^2\frac{2}{\pi^{1/2}}\left(m\omega\right)^{3/2}+\dots
$$

Example

1-D oscillator (first excited state, node at $x=0$):

$$
\psi_1(x) = \left(\frac{4}{\pi}\right)^{1/4} (m\omega)^{3/4} x \exp\left(-\frac{m\omega x^2}{2}\right)
$$

node is replaced by a minimum

$$
\min\left(\left|\psi\right|^2\right)_{\text{reg}} = a^2 \frac{2}{\pi^{1/2}} \left(m\omega\right)^{3/2} + \dots
$$

Applies realistically to high-energy field theory:

Fourier mode $\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} (q_{\mathbf{k}1} + iq_{\mathbf{k}2})$ ($m = 1$, $\omega = k$) Wave function $\psi_{\mathbf{k}}(q_{\mathbf{k}1}, q_{\mathbf{k}2}, t)$, 2D oscillator, has nodes de Broglie velocities

$$
\dot{q}_{\mathbf{k}1} = \frac{\partial s_{\mathbf{k}}}{\partial q_{\mathbf{k}1}} , \quad \dot{q}_{\mathbf{k}2} = \frac{\partial s_{\mathbf{k}}}{\partial q_{\mathbf{k}2}} \quad \text{(can diverge)}
$$

Expect smearing of cross sections at small scales

- -- outcomes of measurements are determined by initial conditions
- -- distributions of outcomes are determined by distributions of initial conditions
- -- expect to see smearing of differential cross sections

$$
\frac{d\sigma}{d\Omega} \sim |\mathcal{M}|^2
$$

(as functions of scattering angles, small angular scales)

(*work in progress*)

Extended regularised theory

- -- time-dependent $\mu(q'-q,t)$ (during collisions?)
- -- $(|\psi|^2)_{\text{reg}}$ now satisfies

$$
\frac{\partial (|\psi|^2)_{\text{reg}}}{\partial t} + \partial_q \cdot ((|\psi|^2)_{\text{reg}} v_{\text{reg}}) = s
$$

$$
s(q, t) = \int dq' \frac{\partial \mu(q' - q, t)}{\partial t} |\psi(q', t)|^2
$$

-- no longer matches continuity equation for ρ

$$
\frac{\partial \rho}{\partial t} + \partial_q \cdot (\rho v_{\text{reg}}) = 0
$$

-- initial $\rho = (|\psi|^2)_{\text{reg}}$ can evolve into $\rho \neq (|\psi|^2)_{\text{reg}}$

Creation of nonequilibrium (at high energies?)

Possible effects to look for

Smeared zeros (nodes) of differential cross sections

$$
\frac{d\sigma}{d\Omega} \sim |\mathcal{M}|^2
$$

(as functions of scattering angles, small angular scales)

 Does the cross section really go to zero at certain angles?

Possible effects to look for

Anomalous polarisation probabilities:

polarisers

 $p^{+}(\Theta) \neq p^{+}_{OT}(\Theta) = \cos^{2} \Theta$?

 General signature of quantum nonequilibrium (AV 2004, cf. Timpson 2004)

Conclusions

- -- The Born rule can and should be tested in high-energy collisions
- -- de Broglie-Bohm quantum mechanics suggests how the Born rule may be broken in some conditions
- -- repurpose collision data to test the Born rule: regions of low probability (nodes) polarisation probabilities