Bell inequality violations: the QBist view

Rüdiger Schack Royal Holloway, University of London

October 2024

つくい

Rüdiger Schack Royal Holloway, University of London [Bell inequality violations: the QBist view](#page-41-0)

The B in QBism

Rüdiger Schack Royal Holloway, University of London [Bell inequality violations: the QBist view](#page-0-0)

メロメメ 御 メメ きょく きょう

E

• Bayesian?

Rüdiger Schack Royal Holloway, University of London [Bell inequality violations: the QBist view](#page-0-0)

メタメ メミメ メミメ

そロト

E

Bayesian? NO

Rüdiger Schack Royal Holloway, University of London [Bell inequality violations: the QBist view](#page-0-0)

 \sqrt{m}) \sqrt{m}) \sqrt{m})

そロト

E

Bayesian? NO

• Bohr?

 \sqrt{m}) \sqrt{m}) \sqrt{m})

そロト

E

- Bayesian? NO
- Bohr? NO

 \sqrt{m}) \sqrt{m}) \sqrt{m})

そロト

E

- Bayesian? NO
- Bohr? NO
- Bruno de Finetti?

 $\langle \overline{m} \rangle$ and \overline{m} and \overline{m} and \overline{m}

ALCOHOL

 299

э

- Bayesian? NO
- Bohr? NO
- **•** Bruno de Finetti? Better

ALCOHOL

何 ▶ (ヨ ト (ヨ ト

 299

∍

- Bayesian? NO
- Bohr? NO
- **•** Bruno de Finetti? Better
- **Bettabilitarian?**

4 17 18

何 ▶ (三) (三)

 2990

∍

- Bayesian? NO
- Bohr? NO
- **•** Bruno de Finetti? Better
- Bettabilitarian? Excellent, but it won't catch on...

 \mathbf{A} . The first set of \mathbf{A}

- Bayesian? NO
- Bohr? NO
- **•** Bruno de Finetti? Better
- Bettabilitarian? Excellent, but it won't catch on...
- \bullet B?

ARACTE

- Bayesian? NO
- Bohr? NO
- **•** Bruno de Finetti? Better
- Bettabilitarian? Excellent, but it won't catch on...
- B? YES! (QBism is a noun, not an acronym)

QBism in 2 words

Rüdiger Schack Royal Holloway, University of London [Bell inequality violations: the QBist view](#page-0-0)

メロメメ 御 メメ きょく きょう

E

The world is bettable.

 \sim \sim

医尿管的尿管

 2990

∍

Personalist decision theory

Bayes 1755 de Finetti 1931 Savage 1954

$\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

4 17 18

つくへ

Rüdiger Schack Royal Holloway, University of London [Bell inequality violations: the QBist view](#page-0-0)

QBism, the Perimeter of Quantum Bayesianism

Christopher A. Fuchs Perimeter Institute for Theoretical Physics Waterloo, Ontario N2L 2Y5, Canada

cfuchs@perimeterinstitute.ca

 \sim \sim

 \triangleright \rightarrow \exists \triangleright \rightarrow

 \equiv

 QQ

Bell's theorem is the most famous example of what is now often called a no-go theorem.

医间周的

The assumption of an ontological model:

For any measurement on a physical system, either the outcomes or their probabilities are determined by the system's real properties, λ . (Harrigan and Spekkens, 2007).

(Potentially misleading alternative labels for the same idea: "hidden variables", "realism".)

Einstein 1927

Assuming λ (elements of physical reality) and locality (no spooky action at a distance) implies that ψ is not in one-to-one correspondence with λ .

Einstein 1927

Assuming λ (elements of physical reality) and locality (no spooky action at a distance) implies that ψ is not in one-to-one correspondence with λ .

Einstein 1935 (letter to Schrödinger, not EPR)

Assuming λ and locality implies ψ is not determined by λ .

つくい

Einstein 1927

Assuming λ (elements of physical reality) and locality (no spooky action at a distance) implies that ψ is not in one-to-one correspondence with λ .

Einstein 1935 (letter to Schrödinger, not EPR)

Assuming λ and locality implies ψ is not determined by λ .

Recent no-go theorems (e.g., Pusey, Barrett & Rudolph)

Assuming λ plus further assumptions implies ψ is determined by λ .

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

つくい

Einstein 1927

Assuming λ (elements of physical reality) and locality (no spooky action at a distance) implies that ψ is not in one-to-one correspondence with λ .

Einstein 1935 (letter to Schrödinger, not EPR)

Assuming λ and locality implies ψ is not determined by λ .

Recent no-go theorems (e.g., Pusey, Barrett & Rudolph)

Assuming λ plus further assumptions implies ψ is determined by λ .

ADALER (B)

 QQ

Bell

Assuming λ and locality contradicts quantum mechanics.

Consider the state $|\psi^{AB}\rangle=\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle|0\rangle+|1\rangle|1\rangle),$

where $|0\rangle$ and $|1\rangle$ are the eigenstates of the spin Z operator.

伊 ▶ イヨ ▶ イヨ ▶

Consider the state $|\psi^{AB}\rangle=\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle|0\rangle+|1\rangle|1\rangle),$

where $|0\rangle$ and $|1\rangle$ are the eigenstates of the spin Z operator.

Now, $\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle|0\rangle+|1\rangle|1\rangle)=\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|+\rangle|+\rangle + |-\rangle|-\rangle),$

where $\ket{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle\pm|1\rangle)$ are the eigenstates of the spin X operator.

モー イモン イミン イ野

Consider the state
$$
|\psi^{AB}\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle),
$$

where $|0\rangle$ and $|1\rangle$ are the eigenstates of the spin Z operator.

Now,
$$
\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle) = \frac{1}{\sqrt{2}}(|+\rangle|+\rangle+|-\rangle|-\rangle),
$$

where $\ket{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle\pm|1\rangle)$ are the eigenstates of the spin X operator.

Let $\ket{\psi^B}$ be the conditional state after a measurement on A:

す 何 ト す ヨ ト す ヨ ト

つくい

Consider the state
$$
|\psi^{AB}\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle),
$$

where $|0\rangle$ and $|1\rangle$ are the eigenstates of the spin Z operator.

Now,
$$
\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle) = \frac{1}{\sqrt{2}}(|+\rangle|+\rangle+|-\rangle|-\rangle),
$$

where $\ket{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle\pm|1\rangle)$ are the eigenstates of the spin X operator.

Let $\ket{\psi^B}$ be the conditional state after a measurement on A:

 $\mathcal{A} \oplus \mathcal{B}$ \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B}

 200

A measures Z $|\psi^B\rangle \in \{|0\rangle,|1\rangle\}$

Consider the state
$$
|\psi^{AB}\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle),
$$

where $|0\rangle$ and $|1\rangle$ are the eigenstates of the spin Z operator.

Now,
$$
\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle) = \frac{1}{\sqrt{2}}(|+\rangle|+\rangle+|-\rangle|-\rangle),
$$

where $\ket{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle\pm|1\rangle)$ are the eigenstates of the spin X operator.

Let $\ket{\psi^B}$ be the conditional state after a measurement on A:

- **A** measures Z
- \bullet A measures X.

 $|\psi^B\rangle \in \{|0\rangle,|1\rangle\}$ $|\psi^B\rangle \in \{ |+\rangle, |-\rangle \}$

す 何 ト す ヨ ト す ヨ ト

つくへ

Let $\ket{\psi^B}$ be the conditional state after a measurement on A :

- A measures Z.
- \bullet A measures X.

 $|\psi^B\rangle \in \{|0\rangle,|1\rangle\}$ $|\psi^B\rangle \in \{ |+\rangle, |-\rangle \}$

つくへ

Let $\ket{\psi^B}$ be the conditional state after a measurement on A :

- A measures Z.
- \bullet A measures X.

 $|\psi^B\rangle \in \{|0\rangle,|1\rangle\}$ $|\psi^B\rangle \in \{ |+\rangle, |-\rangle \}$

Einstein:

"[...] the real state of (AB) consists precisely of the real state of A and the real state of B , which two states have nothing to do with one another. The real state of B thus cannot depend upon the kind of measurement I carry out on A."

Let $\ket{\psi^B}$ be the conditional state after a measurement on A :

- A measures Z.
- \bullet A measures X.

 $|\psi^B\rangle \in \{|0\rangle,|1\rangle\}$ $|\psi^B\rangle \in \{ |+\rangle, |-\rangle \}$

つくへ

Einstein:

"[...] the real state of (AB) consists precisely of the real state of A and the real state of B , which two states have nothing to do with one another. The real state of B thus cannot depend upon the kind of measurement I carry out on A."

Implication, assuming locality (Caves,Fuchs,RS 2002):

 $|\psi^{B}\rangle$ is not a function of "the real state at B ", i.e., $|\psi^{B}\rangle$ is not a real property of the system at B .

A choice: do you give up locality or λ ?

If you accept the validity of quantum mechanics, you have to give up either locality or λ , i.e., the assumption of an ontological model.

(There are many good reasons to accept the validity of quantum mechanics. For instance, loophole-free Bell tests.)

A choice: do you give up locality or λ ?

If you accept the validity of quantum mechanics, you have to give up either locality or λ , i.e., the assumption of an ontological model.

(There are many good reasons to accept the validity of quantum mechanics. For instance, loophole-free Bell tests.)

QBism rejects λ , i.e., in QBism,

- quantum states
- measurement outcomes
- **•** probabilities

are not determined by a system's real properties.

Quantum mechanics is a theory of the world. It is concerned with properties of physical systems.

つくへ

Quantum mechanics is a theory of the world. It is concerned with properties of physical systems.

QBism:

Quantum mechanics is a decision theory. It guides agents in their actions. (But its mathematical form tells us about the character of the world. QBism is a form of "participatory realism".)

Agents are entities that

• can take actions freely on parts of the world external to themselves

so that

• the consequences of their actions matter to them.

つくへ

Agents are entities that

• can take actions freely on parts of the world external to themselves

so that

• the consequences of their actions matter to them.

Users of quantum mechanics are agents

capable of applying the quantum formalism normatively.

A measurement is modeled by unitary interaction between a system and a meter,

 $\rho \otimes \vert 0 \rangle \langle 0 \vert \longrightarrow U(\rho \otimes \vert 0 \rangle \langle 0 \vert) U^{\dagger} \; ,$

followed by a readout of the meter. The outcome is objective.

A measurement is modeled by unitary interaction between a system and a meter,

 $\rho \otimes \vert 0 \rangle \langle 0 \vert \longrightarrow U(\rho \otimes \vert 0 \rangle \langle 0 \vert) U^{\dagger} \; ,$

followed by a readout of the meter. The outcome is objective.

QBism:

A measurement is an action an agent takes on a system. The meter is an extension of the agent. Outcomes as well as outcome probabilities are personal to the agent.

Quantum mechanics describes the world from an agent-independent perspective. Third person.

QBism:

The quantum formalism is a tool that I can use to make decisions regarding the consequences for me of my measurement actions. First person.

Quantum dynamics

The mainstream approach:

Unitary evolution is fundamental and well understood, but there is a "measurement problem".

つくへ

Quantum dynamics

The mainstream approach:

Unitary evolution is fundamental and well understood, but there is a "measurement problem".

QBism:

Measurement is fundamental. Unitary (and non-unitary) dynamics can be understood by analysing an agent's current decisions regarding future measurements.

Quantum dynamics

The mainstream approach:

Unitary evolution is fundamental and well understood, but there is a "measurement problem".

QBism:

Measurement is fundamental. Unitary (and non-unitary) dynamics can be understood by analysing an agent's current decisions regarding future measurements.

Accepted Paper

QBism's account of quantum dynamics and decoherence Phys. Rev. A

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

 Ω

John B. DeBrota, Christopher A. Fuchs, and Rúdiger Schack

Accepted 13 September 2024

Thank you!

 \leftarrow

 \mathbf{h} a. ∍ \mathbf{h} э \mathbf{h} E