

ALMA MATER STUDIORUM Università di Bologna

STUDIES ON QUANTUM CORRELATIONS IN $(H\rightarrow)VV$ FINAL STATES

F. Fabbri, with several contributions.

F.Fabbri - Oxford2024

OUTLINE

Impact of higher order electroweak and new physics on the spin density matrix in $H\rightarrow 4I$

Feasibility study for observing entanglement in WZ final states at LHC

Both works are in preparation and should be on arxiv soon.

F.Fabbri - Oxford2024

IMPACT OF HIGHER ORDER ELECTROWEAK AND NEW PHYSICS ON THE SPIN DENSITY MATRIX IN H J 4L

M. Del Gratta, F. Fabbri, D. Pagani, F. Maltoni, P. Lamba

INTRODUCTION

- H->ZZ* highly studied in several paper on QI at LHC.
 - Including several studies on constraints on new physics
- Higgs characteristic make the ZZ highly entangled on the whole phase space
 - Violation of Bell's Inequality $(I_3 > 2)$
 - The level of entanglement depend on the masses of the two bosons
- Experimental advantage:
 - Pure signal
 - Fully re-constructable final state (no neutrinos)
 - Disadvantage: small statistics

BASIC FORMALISM-I

- Assuming the SM and H→ZZ*→4I the form of the spin density matrix is driven by the possible helicity states in the final state.
- The existence of superposition between the helicity state implies entanglement
 - Non zero non-diagonal elements [Saavedra, Bernal, Moreno, Casas]
 - Easy criteria for entanglement

$$|\psi
angle = a_+|+-
angle + a_0|0\,0
angle + a_-|-+$$

The a depends on the mass of the bosons. ZZ produced at rest \rightarrow a0 == 1 \rightarrow Bell state

5

BASIC FORMALISM-II

- "Easy" quantum tomography approach:
 - Based on the measurement of θ and φ in parent boson rest frame (passing by the H rest frame)
 - Averages of the products (or single) spheric harmonics
 - Weighted by the "spin analysing power"

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a d\Omega_b} = \frac{1}{(4\pi)^2} [1 + A^a_{LM} B^a_L Y^M_L(\theta_a, \phi_a) + A^b_{LM} B^b_L Y^M_L(\theta_b, \phi_b) + C_{L_1 M_1 L_2 M_2} B^a_{L_1} B^b_{L_2} Y^{M_1}_{L_1}(\theta_a, \phi_a) Y^{M_2}_{L_2}(\theta_b, \phi_b)]$$

$$\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_a d\Omega_b} Y_L^{*M}(\Omega_j) \, d\Omega_a d\Omega_b = \frac{B_L^j}{4\pi} A_{LM}^j \quad j = a, b$$
$$\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_a d\Omega_b} Y_{L_1}^{*M_1}(\Omega_a) Y_{L_2}^{*M_2}(\Omega_b) \, d\Omega_a d\Omega_b = \frac{B_{L_1}^a B_{L_2}^b}{(4\pi)^2} C_{L_1 M_1 L_2 M_2}$$

BASIC FORMALISM-II

- "Easy" quantum tomography approach:
 - Based on the measurement of θ and ϕ in parent boson rest frame (passing by the H rest frame) Putting together the this and last slides we obtain the
 - Averages of the pl following relations:
 - Weighted by the

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega_a d\Omega_b} = \frac{1}{(4\pi)}$$

$$A_{2,0}^{a} = A_{2,0}^{o} \neq 0$$

$$\frac{A_{2,0}^{a}}{\sqrt{2}} + 1 = C_{2,2,2,-2} \neq 0$$

$$-1,1,1 = C_{1,1,1,-1} = -C_{2,-1,2,1} = -C_{2,1,2,-1} \neq 0$$

$$C_{2,2,2,-2} = -C_{1,0,1,0} = 2 - C_{2,0,2,0} \neq 0$$

7

 $[b,\phi_b)]$

With the entanglement condition that is reduced to:

 $C_{1,\cdot}$

$$C_{2,2,2,-2} \neq 0,$$
 or $C_{2,1,2,-1} \neq 0$

ANALYSIS

8

- Simulated $H \rightarrow e^- e^+ \mu^+ \mu$
- Histograms generated with MG5@NLO (no showering)
- Z reconstructed combining same-flavour leptons
- Matrix extracted by averaging on the harmonics histograms
 - (0,0,1) direction assumed for the proton in the Higgs rest frame

Н

 μ^{\dashv}

 $e^{}$

• Excellent agreement with literature at LO.

REAL LIFE: NLO EW

- The same kind of analysis will be performed at LHC (plus all other complications)
 - There is no way to enforce the presence of two Z between the Higgs and the 4 leptons
- This opens the floor to a much more complex structure:
 - The contribution on the total xs is small, but what is the effect of the observables of interest? And the structure of the matrix?

- Lepton definition: merging with photons in a cone 0.1
- Same approach employed for the quantum tomography
 - We are able to reconstruct all the elements of the spin density matrix

F.Fabbri - Oxford2024

NLO EFFECTS SPIN DENSITY MATRIX-I

- Different values of the coefficients
- Different structure of the matrix:
 - Some relations are broken
 - Some terms that used to be 0 have the same size of the other terms

10

NLO EFFECTS SPIN DENSITY MATRIX-I

NLO

LO

- Different values of th
- Different structure of
 - Some relations d
 - Some terms that

Looking at the relations existing at LO

$$\begin{array}{l} A_{2,0}^{a} = A_{2,0}^{b} \neq 0 & \text{NLO} \rightarrow \text{Sort of valid} \\ \frac{A_{2,0}^{a}}{\sqrt{2}} + 1 = C_{2,2,2,-2} \neq 0 & \text{NLO} \rightarrow \text{Broken} \\ C_{1,-1,1,1} = C_{1,1,1,-1} = -C_{2,-1,2,1} = -C_{2,1,2,-1} \neq 0 & \text{NLO} \rightarrow \text{Broken} \\ C_{2,2,2,-2} = -C_{1,0,1,0} = 2 - C_{2,0,2,0} \neq 0 & \text{NLO} \rightarrow \text{Broken} \end{array}$$

en

- Now it is very complicated to interpret the matrix only in terms of the helicities of the vector bosons.
 - What about the entanglement conditions? Is the condition itself valid?
- The NLO effect can be diminished in some specific regions of the phase space

REAL LIFE: NEW PHYSICS?

- We can only measure $H\rightarrow 4$ leptons
 - We can write this as a generic current with this kind of interaction (EFT):

$$\mathcal{L}_{\text{EFT}}^{7} = \frac{h}{\Lambda^{3}} \sum_{i} a_{i} \bar{\psi}_{1} \Gamma^{i} \psi_{2} \ \bar{\psi}_{3} \Gamma^{i} \psi_{4}, \qquad \text{with} \qquad \begin{array}{ccc} \Gamma^{i} & = & \{1, \gamma_{5}, \sigma_{\mu\nu}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}\}, \\ & a_{i} & = \{a_{S}, a_{5}, a_{T}, a_{V}, a_{A}\} \end{array}$$

- We can use simplified models with intermediate resonances (tensors, scalar, vectors)
- Then we can investigate how these effects would modify the spin density matrix structure

EXAMPLE: TENSOR-TENSOR

- The amplitude can be expressed in terms of the four-momenta of the final state leptons
- Then the spin density matrix can be estimated analytically calculating the squared amplitudes

$$\begin{split} \sum_{s} \mathcal{A}_{S}^{*} \mathcal{A}_{S} &= 16|c_{S}|^{2} \Pi_{0} \left(a^{2} + b^{2}\right) \left(a^{\prime 2} + b^{\prime 2}\right) \\ \sum_{s} \mathcal{A}_{V}^{*} \mathcal{A}_{V} &= 16|c_{V}|^{2} \left[\left(c_{L}^{2} d_{L}^{2} + c_{R}^{2} d_{R}^{2}\right) \Pi_{1} + \left(c_{L}^{2} d_{R}^{2} + c_{R}^{2} d_{L}^{2}\right) \Pi_{2} \right] \\ \sum_{s} \mathcal{A}_{T}^{*} \mathcal{A}_{T} &= 128|c_{T}|^{2} (2\Pi_{1} + 2\Pi_{2} - \Pi_{0}) \\ \sum_{s} \mathcal{A}_{S}^{*} \mathcal{A}_{T} + \mathcal{A}_{S} \mathcal{A}_{T}^{*} &= -64 \operatorname{Re}(c_{S} c_{T}^{*}) \left[(ab' + a'b) \Pi_{\epsilon} + (aa' - bb') (\Pi_{1} - \Pi_{2}) \right] \\ \sum_{s} \mathcal{A}_{V}^{*} \mathcal{A}_{T} &= 0 \\ \sum_{s} \mathcal{A}_{V}^{*} \mathcal{A}_{S} &= 0 \end{split}$$

F.Fabbri - Oxford2024

13

EXAMPLE: TENSOR-TENSOR

	0	0	0	0	0	0	0	0	0)
	0	0	0	0	0	0	0	0	0
	0	0	x	0	y	0	x	0	0
	0	0	0	0	0	0	0	0	0
) =	0	0	y	0	z	0	y	0	0
	0	0	0	0	0	0	0	0	0
	0	0	x	0	y	0	x	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0 /

VV

	$\int x_1$	0	0	0	0	0	0	0	0)
	0	$-x_1$	0	$-y_1$	0	0	0	0	0
	0	0	(x_1)	0	y_1	0	$4x_1$	0	0
	0	$-y_1$	0	$-x_1$	0	0	0	0	0
ho =	0	0	y_1	0	1	0	y_1	0	0
	0	0	0	0	0	$-x_1$	0	$-y_1$	0
	0	0	$4x_1$	0	y_1	0	x_1	0	0
	0	0	0	0	0	$-y_1$	0	$-x_1$	0
	0	0	0	0	0	0	0	0	x_1

TT

Part of the structure of the tensor-tensor case resemble the structure of the matrix obtained for the NLO

|4

EXAMPLE: TENSOR-TENSOR

TT

	0	0	0	0		0
$\rho =$	0	0	0	0	• The NLO corrections modify the structure of the spin density	0
	0	0	x	0	matrix for $H \rightarrow 4l$	0
	0	0	0	0	 Break symmetries, modified some coefficients 0 at LO The same effects can be obtained assuming different 	0
	0	0	\boldsymbol{y}	0	intermediate resonances (e.g. TT)	0
	0	0	0	0	• The measurement of the spin density matrix has been ⁻³	$_{1}^{\prime 1} 0$
	0	0	x	0	• Need to disentangle possible new physics effects from $-a$	$c_1 = 0$
	0	0	0	0	NLO effects	x_1
	0	0	0	0	0 0 0 0 0 /	

Part of the structure of the tensor-tensor case resemble the structure of the matrix obtained for the NLO

15

VV

F.Fabbri - Oxford2024

MEASURING QUANTUM CORRELATIONS IN WZ FINAL STATE AT LHC

03/10/2024

N. Forti, F. Maltoni, F. Fabbri

200

300

400

p^z₋[GeV]

100

Data / MC 1

F.Fabbri - Oxford2

0.5

WHY WZ FINAL STATE?

Experimental advantages:

- Among diboson channels has more statistics than ZZ
- The final state is "easy" to reconstruct (it contains only a single neutrino)
- There is a small amount of background

•10.1

	Process	$c_{\rm MB}^2$
	$pp \to W^+W^- \to \ell^+ \nu \ell^- \bar{\nu}$	-0.147
	$H(125) \to WW^{(*)} \to \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell$	0.973
	$H(200) \rightarrow WW \rightarrow \ell^+ \nu_\ell \tau^-(30) \bar{\nu}_\tau$	0.946
	$pp \to ZZ \to e^+e^-\mu^+\mu^-$	-0.21
	$H(125) \to ZZ^{(*)} \to e^+e^-\mu^+\mu^-$	0.53
	$pp \rightarrow W^+ Z \rightarrow e^+ \nu_e \mu^+ \mu^-$	0.10
)()7/JHEP05(2023)020	

WHY WZ FINAL STATE?

Experimental advantages:

- Among diboson channels has more statistics than ZZ
- The final state is "easy" to reconstruct (it contains only a single neutrino)
- There is a small amount of background

QI perspective :

- Only process that is expected to be slightly entangled (on average) in the inclusive phase space
- Sensitive to new physics effects

03/10/2024

ANALYSIS STRATEGY

- Based the quantum tomography approach described in <u>R. Ashby-Pickering, A. J. Barr, A.</u> <u>Wierzchucka</u>
 - Gell-Mann matrices parametrization

19

• Quantum tomography based on the Weyl-Wigner P symbols

- Events simulated at LO (MG5 + Pythia8), processed through Rivet
 - Charged leptons dressed with photons $p_T > 7 \text{ GeV}$, $|\eta| < 2.5$
 - Neutrinos reconstructed as MET
- Implemented a realistic selection (trigger, == 31, |total charge| = 1)
- Final state reconstructed imposing W mass
- Statistical uncertainty assuming 450 fb⁻¹ F.Fabbri - Oxford2024

LOWER BOUND ON THE CONCURRANCE

- Reconstructed all 80 histograms corresponding to the coefficients of the spin density matrix
- Extracted the concurrence using the lower bound

$$\left(c(\rho)\right)^2 \ge c_{MB}^2 = -\frac{4}{9} - \frac{2}{3}\sum_{i=1}^8 a_i^2 - \frac{2}{3}\sum_{j=1}^8 b_j^2 + 8\sum_{i,j=1}^8 c_{ij}^2$$

 Value barely above the entanglement limit, considering the uncertainty difficult to observe entanglement

 $c_{MB}^2 = 0.036 \pm 0.018$

- Using bootstrap method to propagate the statistical uncertainty and preserve the correlations
 - Statistical uncertainty based on Run2 + Run3 data

RECONSTRUCTED LEVEL

- Unfolded each distribution from reconstructed to "truth" level:
 - Using IBU

21

- Identified a large limitation for the analyses: some values are extremely sensitive to the binning
- Expected concurrence:

 $c_{MB}^2 = 0.046 \pm 0.031$

- Compatible with parton level (method works!)
- Inclusively not possible to observe entanglement
- Studied several regions of the phase space to identify the optimal region:

 $\cos |\theta| > 0.5, pT(WZ) < 40 \text{ GeV}:$ $c_{MB}^2 = 0.19 \pm 0.05 (3.5\sigma)$

03/10/2024

Parton Level a

IMPACT ON NEW PHYSICS SEARCHES

- Observing entanglement is not necessary the only interesting point in measuring c_{MB}^2
- Could be used to set constraints for new physics searches
 - As in $t\bar{t}$ where the presence of new physics had a larger impact on the entanglement markers than xs
- For now tested in direct searches with scalar and vector resonances decaying in W^{+/-}Z
 - Heavy vector model (https://arxiv.org/abs/1402.4431)
- GM model (https://arxiv.org/abs/1404.2640) E.Eabbri - Oxford2024

CONCLUSIONS

- Presented 2 studies in the context of the diboson final state
 - We have investigated the effects of NLO EW on the structure of the spin density matrix for $H\rightarrow 4l$
 - NLO effects heavily modify the matrix (not just the values) but also the structure, with effects that can mimic new physics presence
 - We have performed a feasibility study for measuring the entanglement between WZ bosons at LHC (before HL)
 - Possible only in specific regions of the phase space to reach > 3 σ
 - Assumptions:
 - No MET smearing \rightarrow in progress
 - No systematic uncertainties, no background
 - Sub-optimal neutrino reconstruction and statistical interpretation
 - Even if entanglement is not observed, the lower bound on the concurrence may be interesting in putting constraints on the existence of new physics.