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Routes towards New Physics

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’
(Unruh effect, Hawking radiation . . . )

quantum gravity

3 Beyond Quantum Mechanics, but assuming relativity
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Classical, quantum, . . . ?

Where (when, how, . . . ) does the measurement happen?

Is there a gap between QM and QFT?

Are QM & QFT only effective descriptions of Nature?

How to seek possible deviations from QM (and classicality)?
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The “theory independent” black box methodology

Physical systems are treated as information-processing devices
(“black boxes”) and probed by free agents.

The conclusions are drawn from the output–input correlations.

P
(
outputs | inputs

)
Bell test: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The experimental (frequency)
correlation function:

Ce(x, y) = P (a = b |x, y)− P (a ̸= b |x, y)

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of freedom of choice (“measurement independence”):

P (x, y |λ) = P (x) · P (y)

No pre-correlations between the inputs (x, y) and the box (λ).
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Basic compatibility with relativity

∀ y P (a|xy) = P (a|x) ∀x P (b|xy) = P (b|y)

The no-signalling principle

A free agent in spacetime region K cannot influence any detection
statistics outside of J+(K).

M.E., P. Horodecki, R. Horodecki, T. Miller, R. Ramanathan, arXiv:24xx.xxxxx.
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Nonlocal correlations beyond quantum mechanics

Bell-CHSH inequality: 2 parties – 2 inputs – 2 outcomes

S := CLHV(x, y) + CLHV(x, y
′) + CLHV(x

′, y)− CLHV(x
′, y′) ≤ 2 < 2

√
2

Could we have S = 4 assuming free choice and no-signalling?

Yes, we can!

No-signalling boxes [Popescu, Rohrlich (1994)]

P (a, b |x, y) =

{
1
2 , if a⊕ b = xy,

0, otherwise,
SPR = 4.

No-signalling principle admits correlations
that are stronger than entanglement.

[N. Brunner, D. Cavalcanti, S. Pironio, V.
Scarani, S. Wehner, Rev. Mod. Phys.
86, 419 (2014)]
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Nonlocal jamming of correlations

The standard 3-party ‘no-signalling’ conditions

P (a, b |x, y) =
∑

c P (a, b, c |x, y, z).

are sufficient, but not necessary for no-signalling!

[P. Horodecki, R. Ramanathan, Nat. Comm. 10, 1701 (2019)]

Charlie changes ‘at a distance’ the correlations between Alice and
Bob, but he does not influence their local statistics.

Alice and Bob can only check the correlations when they meet.
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Commuting versus tensor correlations

In QM we model spacelike separated measurements with a tensor
product H = HA ⊗HB . Local observables have the form A⊗ 1,1⊗B.

P⊗(ab|xy) = ⟨ψ|Ax
a ⊗By

b |ψ⟩, |ψ⟩ ∈ HA ⊗HB .

C⊗ := {P⊗(ab|xy)} is the set of all tensor product correlations that can
be approximated arbitrarily well by finite dimensional H.

In (A)QFT we model spacelike separated measurements by commuting
observables, A,B ∈ B(H), [A,B] = 0. C[·,·] := {P[·,·](ab|xy)}

P[·,·](ab|xy) = ⟨ψ|Ax
aB

y
b |ψ⟩, |ψ⟩ ∈ H and [Ax

a, B
y
b ] = 0.

The Tsirelson problem

We have C⊗ ⊆ C[·,·], but do we have C⊗ = C[·,·]?

Is the Tsirelson gap physical?
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Beyond quantum physics?

How to seek possible deviations from QM in particle physics?

1 M.E., P. Horodecki,
Probing the limits of quantum theory with quantum information at
subnuclear scales,
Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000.

2 C. Altomonte, A. Barr, M.E., P. Horodecki, K. Sakurai,
Prospects for quantum process tomography with polarized beams,
arXiv:24xx.xxxxx.
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Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed from quantum tomography.

We assume that validity of QM outside the box, but not inside it.
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Quantum-data tests

ψin ρout

p

P

x

M

a

A Q-data test consists in probing a Q-data box with prepared input states.

For every input state ψin one performs the full tomography of ρout.

A Q-data test yields a dataset {ψ(k)
in , p(ℓ); ρ

(k,ℓ)
out }k,ℓ.

Compare against the SM predictions — quantum process tomography

ψin is pure, initially uncorrelated with the box — freedom of choice

We do not need to gather all outgoing quantum information.
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An example — the Helstrom test

Suppose that we have two available inputs ψ(1)
in , ψ

(2)
in .

We choose randomly the input (with probability 1/2).

The task is to guess, which of the two states was input.

Define the success rate: Psucc
(
ψ
(1)
in , ψ

(2)
in

)
:= 1

2

∑2
k=1 P

(
a = k |ψ(k)

in

)
.

In quantum theory Psucc cannot exceed the Helstrom bound

Psucc ≤ PQM
succ :=

1

2

(
1 +

√
1−

∣∣⟨ψ(1)
in |ψ(2)

in ⟩
∣∣2) .

Make a Q-data test with
{
ψ
(k)
in ; ρ

(k)
out

}
k=1,2

.

If Psucc
(
ρ
(1)
out, ρ

(2)
out

)
> Psucc

(
ψ
(1)
in , ψ

(2)
in

)
then the Q-data box is not quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.
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Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics



Summary

Take-home messages:

The mathematical structure of QFT may hide surprises!

Relativity allows for theories even weirder than quantum mechanics.

We do not have beyond-quantum maths nor physics . . .

(. . . , with the exception of nonlinear QM and objective collapse models, . . . )

. . . , but we can still test them!

Whenever we make an honest Bell-type test we are testing QM against
both LHV and beyond-quantum correlations.

We can probe QM ‘from the outside’ using polarized beams/targets.

Thank you for your attention!

Michał Eckstein Beyond quantum mechanics


