

Improving the measurement of the HZZ density matrix and QE

Martina Javurkova, Rafael Coelho Lopes de Sa, Matthew Maroun, Verena Martinez Outschoorn

University of Massachusetts-Amherst

Workshop on the Quantum Tests in Collider Physics 03/10/2024

Introduction

- Study quantum mechanical concepts in $H \rightarrow ZZ$ decays, where the Z bosons decay into light leptons at the LHC
 - ► Clean signature
 - Statistically limited
 - Two-quitrit system

- An experimentalist's view of the theoretical papers on this decay channel
 - Making it a reality
 - ► Work in progress

Taken from https://www.questionpro.com/blog/experimental-research/

Ref: "Testing entanglement and Bell inequalities in $H \rightarrow ZZ$ " by **JAAS** et al. [arxiv:2209.13441]

• General form of the spin density matrix for spin-1 particles with 80 independent coefficients:

$$\rho = \frac{1}{9} \left[\mathbb{1}_3 \otimes \mathbb{1}_3 + A_{LM}^1 \ T_M^L \otimes \mathbb{1}_3 + A_{LM}^2 \ \mathbb{1}_3 \otimes T_M^L + C_{L_1 M_1 L_2 M_2} \ T_{M_1}^{L_1} \otimes T_{M_2}^{L_2} \right]$$

► Differential cross-section can be written:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} = \frac{1}{(4\pi)^2} \left[1 + A_{LM}^1 B_L Y_L^M(\theta_1, \varphi_1) + A_{LM}^2 B_L Y_L^M(\theta_2, \varphi_2) + C_{L_1 M_1 L_2 M_2} B_{L_1} B_{L_2} Y_{L_1}^{M_1}(\theta_1, \varphi_1) Y_{L_2}^{M_2}(\theta_2, \varphi_2) \right],$$

Coefficients can be derived from the integration over the full phase space of angular distributions:

$$\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} Y_L^M(\Omega_j) d\Omega_j = \frac{B_L}{4\pi} A_{LM}^j, \qquad j = 1, 2$$
$$\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} Y_{L_1}^{M_1}(\Omega_1) Y_{L_2}^{M_2}(\Omega_2) d\Omega_1 d\Omega_2 = \frac{B_{L_1} B_{L_2}}{(4\pi)^2} C_{L_1 M_1 L_2 M_2},$$

Relying on integration over the full phase space of the angular distributions

Martina Javurkova (UMass) Improving the measurement of the HZZ density matrix

Spin density matrix

The general form of the density operator of the di-boson production in Higgs boson decays (vanishing third-component) and assuming CP and P conservation

where
$$\frac{1}{\sqrt{2}}A_{2,0}^1 + 1 = C_{2,2,2,-2}$$

Our goal is to measure the coefficients of this matrix

5

Conditions for QE and violation of Bell inequalities

Entanglement conditions

• Peres-Horodecki criterion provides a necessary and sufficient (in the $H \rightarrow ZZ$ system) condition for entanglement which, given the form of spin density matrix, translates into

 $C_{2,1,2,-1} \neq 0$ or $C_{2,2,2,-2} \neq 0$

Conditions for violation of Bell inequalities

- Once the spin density matrix is known, it is possible to test the CGLMP inequality which is a Bell inequality optimized for qutrits (e.g. massive spin-1 particles)
- When using the <u>optimal choice for the Bell operator</u>, the system violates the CGLMP inequality when:

$$I_{3} = \frac{1}{36} \left(18 + 16\sqrt{3} - \sqrt{2} \left(9 - 8\sqrt{3} \right) A_{2,0}^{1} - 8 \left(3 + 2\sqrt{3} \right) C_{2,1,2,-1} + 6 C_{2,2,2,-2} \right) > 2$$

In the context of quantum mechanics

Fully differential angular coefficients

► Dependence of the fully differential cross-section of $H \rightarrow ZZ \rightarrow 4\ell$ on charged lepton decay angles can be written analytically. The result is well-known at LO: [arxiv:2209.14033, arxiv:2105.07972].

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2 dm_{Z_1} dm_{Z_2} dm_H} = \frac{1}{(4\pi)^2} \begin{bmatrix} 1 + A_{20}^{1 \text{ per-event}} B_2 Y_2^0(\theta_1, \phi_1) & A_{20}^{1 \text{ per-event}} = \sqrt{2} \frac{1 - K^2}{2 + K^2} \\ + A_{20}^{1 \text{ per-event}} B_2 Y_2^0(\theta_2, \phi_2) & C_{1010}^{1 \text{ per-event}} = \frac{3}{2 + K^2} \\ - (1 + \sqrt{1/2} \cdot A_{20}^{1 \text{ per-event}}) B_1^2 Y_1^0(\theta_1, \phi_1) Y_1^0(\theta_2, \phi_2) & C_{2020}^{1 \text{ per-event}} = \frac{1 + 2K^2}{2 + K^2} \\ + (1 - \sqrt{1/2} \cdot A_{20}^{1 \text{ per-event}}) B_2^2 Y_2^0(\theta_1, \phi_1) Y_2^0(\theta_2, \phi_2) & C_{2020}^{1 \text{ per-event}} = \frac{3K}{2 + K^2} \\ - C_{212 - 1}^{2 \text{ per-event}} B_1^2 Y_1^1(\theta_1, \phi_1) Y_1^{-1}(\theta_2, \phi_2) & C_{212 - 1}^{2 \text{ per-event}} = -\frac{3K}{2 + K^2} \\ + C_{222 - 2}^{2 \text{ per-event}} B_2^2 Y_2^1(\theta_1, \phi_1) Y_2^{-1}(\theta_2, \phi_2) & C_{222 - 2}^{2 \text{ per-event}} = \frac{3}{2 + K^2} \\ - C_{212 - 1}^{2 \text{ per-event}} B_1^2 Y_1^{-1}(\theta_1, \phi_1) Y_1^{-1}(\theta_2, \phi_2) & C_{222 - 2}^{2 \text{ per-event}} = \frac{3}{2 + K^2} \\ - C_{212 - 1}^{2 \text{ per-event}} B_2^2 Y_2^2(\theta_1, \phi_1) Y_2^{-2}(\theta_2, \phi_2) & C_{222 - 2}^{2 \text{ per-event}}} = \frac{3}{2 + K^2} \\ - C_{212 - 1}^{2 \text{ per-event}} B_2^2 Y_2^{-1}(\theta_1, \phi_1) Y_1^{-1}(\theta_2, \phi_2) & C_{222 - 2}^{2 \text{ per-event}}} = \frac{3}{2 + K^2} \\ - C_{212 - 1}^{2 \text{ per-event}} B_2^2 Y_2^{-1}(\theta_1, \phi_1) Y_2^{-1}(\theta_2, \phi_2) & K = \frac{m_H^2 - m_{Z_1}^2 - m_{Z_2}^2}{2 m_Z_1 m_Z_2} \end{bmatrix}$$

Per-event values can be used to build templates

Spin density matrix

Reweighting and optimal observables

We want to measure C, defined as $C^{\text{per-event}}$ integrated over the full phase-space.

1) We build **signal templates** by reweighting the $H \rightarrow ZZ$ sample with:

$$w_{\text{gen}}(\mu) = \frac{\left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2 dm_{Z_1} dm_{Z_2} dm_H}\right] (C^{\text{per-event}} = \mu \mathcal{G}_{\text{SM}}^{\text{per-event}})}{\left[\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2 dm_{Z_1} dm_{Z_2} dm_H}\right] (C^{\text{per-event}} = C_{\text{SM}}^{\text{per-event}})$$

The "gen" weight is calculated with born-level variables

2) We define optimal observables at the reconstruction level as $\log_{10}[w_{\text{reco}}(\mu)]$

- The "reco" weight is calculated with the same formula but with reconstructed variables
- Each template (each μ) has a **unique** optimal observable
- Does not include the background, since the selection has high purity

Martina Javurkova (UMass) Improving the measurement of the HZZ density matrix

8

MadGraph MadGraph+Delphes

Expected values of the full phase-space coefficients

Full phase-space integration as the **weighted average**:

Analytical calculation" method: [arxiv:2302.00683] (Emidio at al.)

$$C_{222-2}^{ ext{SM}} = rac{\sum w_{ ext{MC}} C_{222-2}^{ ext{per-event}}}{\sum w_{ ext{MC}}}$$

• "Spherical basis" method: [arxiv:2209.13441] (JAAS et a.)

$$C_{222-2}^{\rm SM} = \frac{(4\pi)^2}{B_2^2} \frac{\sum w_{\rm MC} Y_2^2(\Omega_1) Y_2^{-2}(\Omega_2)}{\sum w_{\rm MC}}$$

	Analytical calculation	Spherical basis
C_{222-2}^{SM}	0.54 +/- 0.09	0.54 +/- 0.09
$C_{212-1}^{\rm SM}$	-0.89 +/- 0.09	-0.89 +/- 0.09
$A_{20}^{1 \text{ SM}}$	-0.65 +/- 0.09	-0.65 +/- 0.09

Uncertainty from the number of MC events.

Martina Javurkova (UMass) Improving the measurement of the HZZ density matrix

 $\rightarrow ZZ$

Scaled to unity

03/10/2024

Expected values of the full phase-space coefficients

Full phase-space integration as the **weighted average**:

* "Analytical calculation" method: [arxiv:2302.00683] (Emidio at al.)

$$C_{222-2}^{ ext{SM}} = rac{\sum w_{ ext{MC}} C_{222-2}^{ ext{per-event}}}{\sum w_{ ext{MC}}}$$

• "Spherical basis" method: [arxiv:2209.13441] (JAAS et a.)

$$C_{222-2}^{\rm SM} = \frac{(4\pi)^2}{B_2^2} \frac{\sum w_{\rm MC} Y_2^2(\Omega_1) Y_2^{-2}(\Omega_2)}{\sum w_{\rm MC}}$$

	Analytical calculation	Spherical basis
C_{222-2}^{SM}	0.54 +/- 0.09	0.54 +/- 0.09
<i>C</i> SM ₂₁₂₋₁	-0.89 +/- 0.09	-0.89 +/- 0.09
$A_{20}^{1 \text{ SM}}$	-0.65 +/- 0.09	-0.65 +/- 0.09

Uncertainty from the number of MC events.

Martina Javurkova (UMass) Improving the measurement of the HZZ density matrix

10

03/10/2024

Expected values of the full phase-space coefficients

Full phase-space integration as the **weighted average**:

* "Analytical calculation" method: [arxiv:2302.00683] (Emidio at al.)

$$C_{222-2}^{ ext{SM}} = rac{\sum w_{ ext{MC}} C_{222-2}^{ ext{per-event}}}{\sum w_{ ext{MC}}}$$

• "Spherical basis" method: [arxiv:2209.13441] (JAAS et a.)

$$C_{222-2}^{\rm SM} = \frac{(4\pi)^2}{B_2^2} \frac{\sum w_{\rm MC} Y_2^2(\Omega_1) Y_2^{-2}(\Omega_2)}{\sum w_{\rm MC}}$$

	Analytical calculation	Spherical basis
$C_{222-2}^{\rm SM}$	0.54 +/- 0.09	0.54 +/- 0.09
$C_{212-1}^{\rm SM}$	-0.89 +/- 0.09	-0.89 +/- 0.09
$A_{20}^{1 \text{ SM}}$	-0.65 +/- 0.09	-0.65 +/- 0.09

Uncertainty from the number of MC events. Identity (slide 4) is perfectly valid.

Events generated at LO for gluon-induced production gg → H → e⁺e⁻µ⁺µ⁻
 (distinguishable) and for qq̄ → ZZ with MadGraph and reconstructed using Delphes
 Cross-section reweighted to match the expected number of events in the Higgs boson production cross-section measurements paper [hepdata]

Basic selection for leptons and quadruplets

- Lepton momentum: $p_{T}^{\ell \ 1 \ (2) \ [3] \ \{4\}} > 20 \ (15) \ [10] \ \{5\} \ GeV$
- Higgs mass: $115 < m_H < 130 \text{ GeV}$
- Z-boson mass: $50 < m_{Z_1} < 106 \text{ GeV}$ and $12 < m_{Z_2} < 115 \text{ GeV}$
- Luminosity scaled up to **500 ifb** (Run 2 + Run 3)
- Event selection and number of bins (currently 25) can be further optimised

Optimal observables

Optimal observables for two different signal templates build for

$$(\mu_{C_{212-1}} = 0, \mu_{C_{222-2}} = 0)$$
 and $(\mu_{C_{212-1}} = 1.4, \mu_{C_{222-2}} = 1.4)$

2D NLL scan: C_{212-1} vs C_{222-2}

• No-entanglement hypothesis ($\mu_{C_{212-1}} = 0$, $\mu_{C_{222-2}} = 0$) excluded at the 2σ level

• Using one observable per POI eliminated correlations and reduced the uncertainty of the C_{222-2} coefficient

•
$$C_{212-1} = -0.89 \pm 0.80$$
 and $C_{222-2} = 0.54 \pm 0.60$

Martina Javurkova (UMass) Improving the measurement of the HZZ density matrix

03/10/2024 14

Expected stat-only results for spin density matrix

Predicted spin density matrix

	/0	0	0	0	0	0	0	0	0\
	0	0	0	0	0	0	0	0	0
	0	0	$0.18 \pm 0.03 \; ({ m MC})$	0	-0.30 ± 0.03 (MC)	0	$0.18 \pm 0.03 \; ({ m MC})$	0	0
	0	0	0	0	0	0		0	0
$ \rho_{\rm Th.}^{\rm Sph. \ basis} = $	0	0	-0.30 ± 0.03 (MC)	0	$0.64 \pm 0.06 \ ({ m MC})$	0	-0.30 ± 0.03 (MC)	0	0
	0	0	0	0	0	0	0	0	0
	0	0	$0.18 \pm 0.03 \; ({ m MC})$	0	$-0.30 \pm 0.03 \; ({ m MC})$	0	$0.18 \pm 0.03 \; ({ m MC})$	0	0
	0	0	0	0	0	0	0	0	0
	$\setminus 0$	0	0	0	0	0	0	0	0/

Measured (stat-only) spin density matrix

	$\sqrt{0}$	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	$0.18 \pm 0.20 \; ({\rm stat.})$	0	-0.30 ± 0.27 (stat.)	0	0.18 ± 0.20 (stat.)	0	0
	0	0	0	0	0	0		0	0
$ \rho_{\rm Meas.}^{\rm Asimov} =$	0	0	-0.30 ± 0.27 (stat.)	0	$0.64 \pm 0.40 \; ({\rm stat.})$	0	-0.30 ± 0.27 (stat.)	0	0
	0	0	0	0	0	0	0	0	0
	0	0	$0.18 \pm 0.20 \; ({\rm stat.})$	0	-0.30 ± 0.27 (stat.)	0	$0.18 \pm 0.20 \; ({\rm stat.})$	0	0
	0	0	0	0	0	0	0	0	0
	$\setminus 0$	0	0	0	0	0	0	0	0/

 ${\scriptstyle \bullet}$ Only two coefficients were measured (scanned) simultaneously: C_{212-1} and C_{222-2}

- \blacktriangleright Relation between A_{20}^1 and C_{222-2} was assumed: $C_{222-2}=1+1/\sqrt{2}~A_{20}^1$
- Results are very **preliminary** and can be **improved**

Bell inequality

Martina Javurkova (UMass) Improving the measurement of the HZZ density matrix

03/10/2024 16

Bell inequality interpretation

• Again from **JAAS** et al. [arxiv:2209.13441]: $I_3 = \text{Tr} \{ \rho \ \mathcal{O}_{\text{Bell}} \} > 2$

$$I_{3} = \frac{1}{36} \left(18 + 16\sqrt{3} - \sqrt{2} \left(9 - 8\sqrt{3} \right) A_{2,0}^{1} - 8 \left(3 + 2\sqrt{3} \right) C_{2,1,2,-1} + 6 C_{2,2,2,-2} \right)$$

$$I_{3} = \frac{\sqrt{A^{2} + B^{2} + C^{2}}}{36} D_{3} + \frac{18 + 16\sqrt{3}}{36} \qquad \text{where} \qquad D_{3} = \frac{A \cdot A_{20}^{1} + B \cdot C_{212-1} + C \cdot C_{222-2}}{\sqrt{A^{2} + B^{2} + C^{2}}} A = -\sqrt{2}(9 - 8\sqrt{3}), B = -8(3 + 2\sqrt{3}), C = 6$$

• *Rotation*:

$$\begin{pmatrix} D_{1}^{\text{per-event}} \\ D_{2}^{\text{per-event}} \\ D_{3}^{\text{per-event}} \end{pmatrix} = \mathbf{R} \begin{pmatrix} A_{20}^{1} \text{ per-event} \\ C_{212-1}^{\text{per-event}} \\ C_{222-2}^{\text{per-event}} \end{pmatrix} = \frac{1}{\sqrt{A^{2} + B^{2} + C^{2}}} \begin{pmatrix} \frac{AC\sqrt{A^{2} + B^{2} + C^{2}}}{\sqrt{1 + C^{2}}\sqrt{A^{2} + B^{2}}} & -\frac{\sqrt{A^{2} + B^{2} + C^{2}}}{\sqrt{1 + C^{2}}} \\ -\frac{B\sqrt{A^{2} + B^{2} + C^{2}}}{\sqrt{A^{2} + B^{2}}} & \frac{A\sqrt{A^{2} + B^{2} + C^{2}}}{\sqrt{A^{2} + B^{2}}} & 0 \\ A & B & C \end{pmatrix} \begin{pmatrix} A_{20}^{1} \text{ per-event} \\ C_{212-1}^{1} \\ C_{222-2}^{1} \end{pmatrix} = \mathbf{R}^{-1} \begin{pmatrix} D_{1}^{\text{per-event}} \\ D_{2}^{\text{per-event}} \\ D_{3}^{\text{per-event}} \end{pmatrix} = \begin{pmatrix} \sqrt{2} \frac{1 - K^{2}}{2 + K^{2}} \\ -\frac{3K}{2 + K^{2}} \\ \frac{3}{2 + K^{2}} \end{pmatrix} \qquad \Rightarrow \qquad A_{20}^{1} \text{ per-event} = A_{20}^{1} \text{ per-event} + \mu A_{20}^{1} \text{ per-event} \\ A_{20}^{1} \text{ per-event} + \mu C_{212-1}^{1} \text{ per-event} \end{pmatrix}$$

Coefficients (A_{20}^1 , C_{212-1} and C_{222-2}) expressed as linear combinations of three terms from which one represents D_3

Optimal observables

- Defined in the same way as for the measurement of the spin density matrix
- Optimal observables for two different signal templates build for $\mu_{D_3} = 0.6$ and $\mu_{D_3} = 1.2$

1D NLL scans

• Sensitivity to a violation of the Bell inequalities is at the $\sim 2.6\sigma$ level

Conclusions

A spherical method approach for measuring the coefficients of the $H \rightarrow ZZ \rightarrow 2e2\mu$ spin density matrix was presented based on the paper by JAAS et al. [arxiv:2209.13441]

- ▶ Run2+Run3 projections (~500 ifb) and only-statistical uncertainties
- This method can be used to test the <u>entanglement</u> condition (at the 2σ level) and the violation of the <u>Bell inequalities</u> (at the 2.6σ level)
- Validate templates
- Quantum <u>entanglement</u> (only) can be also probed as a binary test: SM versus longitudinal polarisation (JAAS [arxiv:2209.14033])
 - A clear experimental approach
 - Relies on the reliability of MC generators: validate samples

Thank you for your attention and stay tuned!