Indications of Entanglement Through Thermalization

A Study in Top Quark Pair Production at the LHC

Mira Varma October 3, 2024

Quantum tests in Collider Physics Merton College, Oxford, UK

Acknowledgments

This work was done in collaboration with Keith Baker.

Presentation is derived from:

DOI: 10.1016/j.nuclphysa.2023.122795

Outline

Why does the transverse momentum distribution in tt collisions have a thermal component at low p_T?

Outline

Eigenstate Themalization Hypothesis (ETH)

- Deutsch and Srednicki
- Individual energy eigenstates exhibit thermal properties
- Thermalization w/out time averages

Entanglement between subsystems causes the appearance of thermal behavior.

Neutrino Scattering (weak interaction)

- Nucleon initially in pure state
- W boson only samples the region A
- l: longitudinal
- d: transverse

[Iskander, Pan, Tyler, Weber, Baker '20]

Neutrino Scattering (entanglement)

 Neutrino scattering from a nucleus (hydrocarbon)

Neutrino Scattering (no entanglement)

10

Minerva $\overline{v_{\mu}}$ + ¹²C $\rightarrow \mu^{+} + \pi^{-} + {}^{12}C$ Data 10^{2} $\frac{d0}{dE_{\pi}^{2}} (cm^{2}/GeV^{2/12}C) \times 10^{-39}$ $10^{-10} Cm^{-10} Cm^$ 10 hard scattering 10^{-5} 10^{-6} 10^{-1} 10 E_{π} (GeV) [Iskander, Pan, Tyler, Weber, Baker '20]

- Diffractive
- Neutrino does not break up ¹²C
- Neutrino scatters from nucleus as a whole

Baker and Kharzeev Proposal

- Entanglement of collision & spectator regions
- Effective temperature: $T_{th} \approx Q/(2\pi)$
- Probing subsystem reveals mixed state

When two entangled particles are at the BH event horizon, one particle escapes and one is trapped.

Outline

Why are top quarks interesting?

- Most massive SM particle
- Decays before hadronizing
- Probes strong interactions

Our focus

• **Transverse momentum** in top quark pairs

• Evidence of entanglement-induced thermalization

• Two-component model analysis

Thermal/Hard Scattering

$$\frac{d\sigma}{p_T dp_T} = A_{th} * exp(-m_T/T_{th})$$
$$m_T = \sqrt{m^2 + p_T^2}$$
$$T_{th} = 0.098 \times \sqrt{(s/s_0)}^{0.06} \text{ GeV}$$

- THERMAL

A_{th} and A_{hard}: fitting parameters n: fitting parameter m: mass of $t\bar{t}$ pair m_T: transverse mass p_T: transverse momentum \sqrt{s} : p-p collision energy (13 GeV) $\sqrt{s_0}$: constant (1 GeV)

Thermal/Hard Scattering

TMD — ATLAS

TMD — CMS

TMD — Additional Jet

Additional Leading Jet

- Arises from ISR or FSR
 - ISR (FSR): Gluon emission from incoming (outgoing) partons before (after) hard scattering
- In literature, **ISR/FSR** is treated as a **perturbative** correction
- Independent of initial hard scattering that produces tt pair

Additional Leading Jet

Implications for QE

R	Process	Reference
0.16 ± 0.05	$pp \rightarrow$ charged hadrons	[1], [2]
0.15 ± 0.05	$pp \to H \to \gamma \gamma$	[1], [2]
0.23 ± 0.05	$pp \rightarrow H \rightarrow 4l(e,\mu)$	[1], [2]
1.00 ± 0.02	$pp(\gamma\gamma) \rightarrow (\mu\mu)X'X''$	[1], [2]
0.13 ± 0.03	$\bar{\nu_{\mu}} + N \to \mu^+ + \pi^0 + X$	[3]
1.00 ± 0.05	$\bar{\nu_{\mu}} + {}^{12}C \rightarrow \mu^{+} + \pi^{-} + {}^{12}C$	[3]
0.19 ± 0.03	$pp \rightarrow t\bar{t} \rightarrow WbWb$ (ATLAS)	current work
0.16 ± 0.03	$pp \rightarrow t\bar{t} \rightarrow WbWb$ (CMS)	current work
1.00 ± 0.05	$pp \rightarrow t\bar{t} \rightarrow WbWb \rightarrow jets$	current work

R = -

[1] Baker, Kharzeev '18

[2] Weber, Baker, Kharzeev, '19

[3] Iskander, Pan, Tyler, Weber, Baker '20

Main Takeaways

- Entanglement → transverse momentum dist. has a thermal part (in addition to hard component)
- Interaction independent, process dependent
- We show evidence of this for $t\bar{t}$

Key References

- O. Baker, D. Kharzeev, (2017); PRD 98, 054007 (2018)
- G. Iskander, J. Pan, M. Tyler, C. Weber, OKB Phys Lett B 811, 135948 (2020)
- M. Varma, O. Baker, Nuc. Phys A 1042, 122795 (2024)