Les Houches flavour studies

Giovanni Stagnitto (on behalf of the flavour gang at the PhysTeV 2023 workshop)

Flavoured Jets at the LHC, IPPP Durham, 11-12.06.2024

LES HOUCHES 2023: PHYSICS AT TEV COLLIDERS STANDARD MODEL WORKING GROUP REPORT

Conveners

Higgs Physics:

M. Donegà (CMS), S. Jones (Theory), K. Köneke (ATLAS), R. Röntsch (Theory)

Standard Model Phenomenology:

P. Azzurri (CMS), A. Hinzmann (CMS, Jet-Substructure subgroup), A. Huss (Theory), J. Huston (ATLAS), S. Marzani (Theory, Jet-Substructure subgroup), M. Pellen (Theory)

Monte Carlo generators, Tools, Machine-Learning: S. Höche (Theory), J. McFayden (ATLAS), V. Mikuni (ML contact), S. Plätzer (Theory)

Authors and Participants

J. Andersen¹, B. Assi², K. Asteriadis³, P. Azzurri^{4a}, G. Barone⁵, A. Behring⁶, A. Benecke⁷,
S. Bhattacharya⁸, E. Bothmann⁹, S. Caletti¹⁰, X. Chen¹¹, M. Chiesa¹², A. Cooper-Sarkar¹³, T. Cridge¹⁴, A. Cueto Gomez¹⁵, S. Datta¹⁶, P. K. Dhani¹⁷, M. Donegà¹⁸,
T. Engel¹⁹, S. Ferrario Ravasio⁶, S. Forte^{20a,20b}, P. Francavilla^{4a,4b}, M.V. Garzelli²¹, A. Ghira^{22a,22b},
A. Ghosh^{25,24}, F. Giuli^{25a,25b}, L. Gouskos⁵, P. Gras²⁶, C. Gütschow²⁷, Y. Haddad²⁸,
L. Harland-Lang²⁷, F. Hekhorn^{29,20a,20b}, I. Helenius²⁹, A. Hinzmann¹⁴, S. Höche², J. Holguin^{30,31},
A. Huss⁶, J. Huston³², T. Ježo³³, S. Jones¹, S. Kiebacher³⁴, M. Knobbe⁹, R. Kogler¹⁴,
K. Köneke¹⁹, L. Kunz³⁴, M. LeBlanc^{5,30}, P. Loch³⁵, G. Loeschcke Centeno³⁶, M. Löschner¹⁴,
A. Maas³⁷, G. Magni³⁸, A. Maier¹⁴, M. Marcoli¹, S. Marzani^{22a,22b}, J. McFayden³⁶, P. Meinzinger¹,
V. Mikuni³⁹, S. Moch²¹, P. Nadolsky⁴⁰, D. Napoletano^{41a,41b}, M. Pellen¹⁹, S. Plätzer^{37,42},
R. Poncelet⁴³, C. Preuss⁴⁴, H. Qu⁴⁵, K. Rabbertz⁴⁶, D. Reichelt¹, A. Rescia^{14,22a}, J. Roloff⁵,
R. Röntsch^{20a,20b}, S. Sanchez Cruz⁴⁵, T. Sarkar^{4a}, L. Scyboz^{47,48}, F. Sforza^{22a,22b}, A. Siódmok⁴⁹,
G. Stagnitto^{41a,41b}, A. Tarek³², R.S. Thorne²⁷, A. Valassi⁵⁰, J. Whitehead⁴³, J. Winter⁵¹

+ others (E. Lesser, G. Salam, ...)

Contents

Introduction

I Higgs Physics and SM phenomenology

1	The 2023 Les Houches Wishlist	
2	$N^{3}LO$ PDF Evolution Benchmarking	
3	Impact of approximate N3LO PDFs on gluon fusion Higgs production uncertainties	
4	A Critical Study of the gluon-gluon fusion Higgs+2 Jet Background to Vector-boson fusion Higgs Boson Production	
5	Common cross section definitions for vector-boson fusion and scattering processes	
6	LHCHXSWG study for vector-boson fusion at the LHC \ldots	
7	Theoretical uncertainties for electroweak corrections	
8	Infra-Red and Collinear Safe definitions of jet flavour	
9	Studies on possible STXS binning options for $t\bar{t}H$ production \ldots	

Flavoured jets hot topic in LH2023! A dedicated paper in preparation

A lot of discussions (and headaches)

PART 1 Les Houches, there's a place you can go I said, Les Houches, when you're short on ideas You can stay there, and I'm sure you will find Many ways to have a good time!

PART 2

Les Houches, where we all can discuss I said, Les Houches, in the beautiful Alps You can stay there, and then try to combine truth and reco, then go drink wine!

CHORUS A

We want jet's flavour to be I. R. C. Safe We want jet's flavour to be I. R. C. Safe Cannot just count the b's, of an anti-kt because even a soft gluon splits

PART 1

Les Houches, there's a place you can go I said, Les Houches, when you're short on ideas You can stay there, and I'm sure you will find Many ways to have a good time!

PART 2

Les Houches, where we all can discuss I said, Les Houches, in the beautiful Alps You can stay there, and then try to combine truth and reco, then go drink wine!

CHORUS B

We should reduce the ne-ga-tive weights and compute processes at N3L0 This is our wishlist, to make Joey in peace and then make the best of stats

CHORUS A x2

We want jet's flavour to be I. R. C. Safe We want jet's flavour to be I. R. C. Safe Cannot just count the b's, of an anti-kt because even a soft gluon splits

...and even the LH2023 song "I.R.C. safe" (to the tune of YMCA) was dedicated to flavoured jets

Ongoing studies started in Les Houches

Phenomenological studies both at fixed-order and with (N)LO+PS simulations \rightarrow in this talk I will focus on (N)LO+PS simulations see talk by Arnd tomorrow about fixed-order calculations

- Compare new generation of theory-friendly flavour-dependent jet algorithms: infrared safe to all orders (or up to high order) and with exact (or close to exact) anti- k_t kinematics.
 - [Caletti, Larkoski, Marzani, Reichelt (2205.01109)] SDF
 - [Czakon, Mitov, Poncelet (2205.11879)] CMP
 - [Gauld, Huss, Stagnitto (2208.11138)] GHS
 - [Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler (2306.07314)] IFN

First step: common framework with FastJet implementation of the four algorithms

Popular repositories

A FastJet contribution (fjcontrib) is in preparation

https://github.com/jetflav

Packag	es ጸ People	
olic	SDFlavPlugin	Public
	• C++	
olic	GHSAlgo	Public
	● C++	

Z+b-jet in the central region: detail of the analysis

- MC@NLO sample of $Z(\rightarrow \mu^+\mu^-)$ + jet events with SHERPA (100M events) LHC @ 13 TeV, PDF4LHC21, scale choice $E_T(Z)$
 - Generation cuts: $p_T(\mu^{\pm}) > 20 \text{ GeV}; |y(\mu^{\pm})| < 2.4; 71 \text{ GeV} < m(\mu^{+}\mu^{-}) < 111 \text{ GeV};$ $p_T(\mu^+\mu^-) > 20$ GeV (avoid jet requirement at generation level)
 - Samples both at parton and stable heavy-hadron level
- Rivet analysis FlavAlgAnalysis (https://github.com/DReichelt/LH23FlavAlgs) Based on https://rivet.hepforge.org/analyses/CMS_2017_11499471
- Jet reconstructed with anti- k_t and then tagged (e.g. GHS, SDF) or directly reconstructed and tagged with a flavoured algorithm (e.g. CMP, IFN) $R = 0.5, p_T(j) > 30 \text{ GeV}, |\eta(j)| < 2.4$

Default parameter choice for the algorithms

- $\beta = 1$, $z_{cut} = 0.1$ (soft-drop parameters)
- [Czakon, Mitov, Poncelet (2205.11879)] CMP
 - a = 0.1 (anti- k_{t} -like distance)
- [Gauld, Huss, Stagnitto (2208.11138)] GHS
- $\alpha = 1, \omega = 2$ (flavour- k_t -like and beam distance)
- [Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler (2306.07314)] IFN

In plots, **AKT** is the naive IRC-unsafe flavour tagging of anti- k_t jets (does the jet contain a flavoured parton/hadron?)

[Caletti, Larkoski, Marzani, Reichelt (2205.01109)] SDF

 $\alpha = 1, \omega = 2$ (flavour- k_{τ} -like distance)

Z+b-jet in the central region: comparison of algorithms

For many distributions, difference between algorithms negligible, both at parton and hadron levels: once you require IRC safety, constrained behaviour in most of the phase space?

Z+b-jet in the central region: comparison of algorithms

Visible difference at high- p_T : CMP and IFN outliers compared to AKT/GHS/SDF

Z+b-jet in the central region: comparison of algorithms

Unfolding correction as simple K-factor: similar to AKT for most distributions, CMP behaviour at high $p_T(Z)$ to be understood

Z+b-jet in the central region: comparison of (unsafe) tagging strategies

AKT: check if flavoured particle / hadron is inside the anti- k_{t} jet

CONE: ATLAS-style tagging (heavy hadron with $\Delta R(j,h) < 0.3$ and with $p_T > 5$ GeV)

CMS-style tagging (bTagged method with ghost-tagging in Rivet)

TAG:

Effect of multi-b tags important at high- p_T : by requiring presence of 2 b-jets, we have a reduced probability of double tags, mostly coming from first splitting

Z+b-jet in the central region: comparison of (unsafe) tagging strategies

As we increase the p_T , the difference between algorithms is enhanced

Fraction of retained bb pairs depends on the value of the parameter entering the algorithm As it become larger, more bb pairs are neutralised

Z+c-jet in the forward region: details

We then shower with Pythia8 and we apply analysis cuts similar to LHCb 2109.08084: $p_T(\mu^{\pm}) > 20 \text{ GeV}; 2.0 < \eta(\mu^{\pm}) < 4.5; 60 \text{ GeV} < m(\mu^{+}\mu^{-}) < 120 \text{ GeV}$

Jets are clustered with R = 0.5 and are required to have: 20 GeV < $p_T(j)$ < 100 GeV; 2.2 < $\eta(j)$ < 4.2; $\Delta R(\mu^{\pm}, j)$ > 0.5

Same algorithms with default parameters as before, but we now consider both charm and bottom as flavoured particles

We first create LHEF with MadGraph5_aMC@NLO [LHC @ 13 TeV, PDF4LHC21, scale choice $E_T(Z)$] with very loose generation cuts (no requirement on rapidity of particles)

The difference we observe in case of charm needs to be understood, but one can make some considerations:

- more $g \rightarrow c\bar{c}$ splittings compared to $g \rightarrow bb$ \rightarrow stressing algorithms
 - charm in the LHCb fiducial region likely to come from gluon splitting
 - IFN undershooting other algorithms \rightarrow it tends to neutralise $c\bar{c}$ pairs more
- interesting to vary parameters and perform a study similar to the Z+b-jet one

Tagging efficiency at LHCb Rate of *c*-jet events in events with a D^0 meson ($R = 0.5, 2 < \eta(D^0) < 5, 2.5 < \eta(j) < 4.5$)

Jet substructure observables: rescaled jet mass $m(j) \equiv m/p_T$

25

Jet substructure observables: jet mass

All algorithms remove the second peak (probably due to $g \rightarrow c\bar{c}$ within the jet)

Performance studies of current FastJet implementations

Clustering time of Z+jet Pythia8 events

No UE

GHS/CMP slower with higher multiplicities (some optimisation done in IFN, implementation of GHS/CMP to be improved)

With UE

Performance studies of current FastJet implementations

Clustering time of Z+jet Pythia8 events

Current implementations of GHS/CMP scale like N^2

Also IFN scaling is worsening with many flavoured particles

Conclusions (?)

Many studies started in Les Houches, preliminary results available, to be finalised and collected in a dedicated paper

Comparison between algorithms crucial to assess size of MC corrections needed for theory-data comparison and to explore adoption of "improved" labels for flavour tagging

Many thanks to Ezra, Gavin, Ludo, Rene for providing me with material for this talk!

- ...

Next steps: - Compare fixed-order predictions with NLO+PS ones - Explore NLO+PS samples with other showers e.g. Herwig

BACKUP

